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TRANSVERSALLY PERTURBED PLANAR
DYNAMICAL SYSTEMS

RoGER C. McCANN

This paper investigates the behavior of limit cycles of a
planar dynamical system which has been perturbed trans-
versally. In particular, it is shown that if C is a limit cycle
of the unperturbed dynamical system, then there are limit
cycles of the perturbed dynamical systems arbitrarily close to
C. Also, if C is an exterior limit cycle of the unperturbed
dynamical system, then there is an outer neighborhcod of C
which consists solely of cycles of the perturbed dynamical
systems.

In what follows R and R* will denote the reals and the plane
respectively.

A dynamical system is an ordered pair (X, 7) consisting of a
topological space X and a mapping © of X x R into X such that
(where xnt = ww(x, t)

(i) ant=¢ for all ze X

(ii) @r)ws=axn(t+s) = x.(s+ 1) for all xze X and s,te R

(ili) = is continuous in the product ropology.

A point ze X is called critical if and only if a7t = = for every tc R.
A point e X is called periodic if and only if x is noncritical and
axmt = ¢ for some ¢t > 0; if X is Hausdorff the least such ¢ is called
the fundemental pariod of x. If x is periodic, xwR is called a cycle.
A cycle is a simple closed curve. Hence, if C is a cycle of a planar
dynamical system (R? 7), then C decomposes R?into two components;
one bounded and denoted by int C; the other unbounded and denoted
by ext C. A subset A of X is called a trajectorial arc if and only
if there is an xe¢ X and a compact interval [a, b], a=b, such that
A = zr[a, b].

Let (R* m) be a dynamical system. A subset 7 of R? is called a
transversal if and only if

(i) T is homeomorphic with either [0,1] or S*, the 1-sphere

(ii) there is an >0 such that 7N (Txt) = @ for 0 < |t]| <L e.

Our investigation depends heavily upon the following three pro-
positions which may be found in [2, VII, 4.4], [2, VII, 4.7], and
[2, VII, 4.8] respectively.

PROPOSITION A. Let C be a trajectory and T a transversal of a
planar dynamical system. If C or T is a closed curve, they have at
most one intersection point; if both are closed curves, they do mot
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intersect.

ProroSITION B. Let CUT be a simple closed curve with C a
trajectorial arc and T a transversal of a planar dyrnamical system.
Then one component of RB*—(C U T) is posttively invariant, the second
1s negatively invariant, and neither is tnvariant. The result is also
valid if C = Q.

ProprosiTiION C. In a planar dynamical system the interior of
each cycle, closed transversal, or simple closed curve consisting of a
transversal and a trajectorial arc, all contain a critical point.

We are interested in studying a family of dynamical systems
which is defined as follows. Let 7: R*X R X R— R be a mapping
continuous in the product topology such that

(i) for each ae R the mapping =x,: R*X R—R? defined by
7w, (x, t) = w(x, t, a) defines a dynamical system on RZ

(ii) critical points of the dynamical systems are independent of
the index.

(iii) the noncritical trajectories of =, are transversal to the non-
critical trajectories of x, if a == b, i.e., if T is a trajectorial arc of
7., then T is a transversal with respact to =, if o # b.

C,(x), CJ(x), L (x), and Ly (x) will denote the trajectory, positive
semitraiectory, positive limit set, and negative limit set, respectively,
of x with respect to 7,. The family of all trajectories of x,, a fixed,
will be called a system and the family of all trajectories will be
called a complete family.

In [1] and [4] sufficient conditions are given which assure that
the differential equations

&= P(x, v, a), Y= Qv a),

where the dots stand for differentiation with respect to the inde-
pendent vaiable ¢ and o is a paremeter, define a complete family.

Immediate consequences of Propositions A and C are the follow-
ing two propositions.

ProPOSITION 1. Cycles of distinct systems of a complete family
do not interset.

PROPOSITION 2. Let x be a noncritical point of a complete family,
a #b, and suppose that C,(x) and C,(x) have a point y,y +* x, n
common. If the trajectorial arcs of C,(x) and C,(x) connecting the
points & and Yy have only their endpoints in common, then the region
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bounded by these trajectorial arcs contains a critical point.

ProrosiTiON 3. Let C be a cycle of m,. Then int C is positively
wmvariant with respect to m, for all b>a or intC is negatively
wnvariant with respect to w, for all b > a, but in mneither case is
int C invariant with respect to m, for any b > a. A similar result
holds for b < a.

Proof. Consider the sets

A =1{be(a, +0): int C is positively invariant with respect to w,}

B = {be(a, +): int C is negatively invariant with respect to 7,}.
By Proposition B, int C is positively invariant or negatively invariant,
but not both, with respect to each w,, 6 >a. Thus 4 U B=(a,+ =)
and ANB= @. We now show that both 4 and B are open. If
ce(a, +o) — A = B, then there exist xcint C and ¢ > 0 such that
arteext C. Since 7w is continuous xm,tcext C for all b sufficiently
close to ¢. Hence B is open. Similarly A is open. The connectivity
of (@, + ) implies either A or B must be empty. This completes
the proof.

ProrosiTiON 4. Let C be a cycle of w,. If int C is positively in-
variant with respect to every w,, b>a, then ext C is positively in-
variant with respect to every m, b<a. A similar result holds if
b>a and b < a are interchanged.

Proof. Let xcC and T be a trajectorial arc of C,(x), ¢ > a,
which contains x as a nonend point. Then T is a transversal with
respect to m,, b+ ¢, Moreover, if 7 is the fundamental period of C,
then Tr,[—7,7] is a connected neighborhood of C which contains
no critical points. Choose a neighborhood U of z, 0 < o < |c-a|, and
0 <e <t so small that Ur,[—¢, €] < Tw, [z, 7] for all bea-0,a+ o].
This is possible because 7 is continuous. We can now define a map-
ping h of [a, a+0a] into S = {ame: bela, a+0]} by k() = 2me. h is
continuous since 7 is continuous. For b #d, zm,e and xm,e cannot
be equal; for if they were Proposition 2 would imply that Tr,[—7, 7]
contains a critical point. Hence % is one-to-one. Obviously, % is an
onto mapping. A one-to-one continuous mapping of a compact space
onto a Hausdorff space is a homeomorphism. Thus S is an are. Since
int C is, by assumption, positively invariant with respect to z,, b > a,
we have ScintC. Moreover, (x7,[0,¢]) US U (27,.,[0, €]) forms a
simple closed curve J such that intJc Tr[—7,7] and intJ is a
neighborhood of 2m,/2 relative to intC. Let yeintJ and set
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J, = (a7,]0, t]) U (@7,+,[0, t]) U {am,t: bela, a+0o]}.

For each ¢, 0 <t<e¢, J, is a simple closed curve. Since 7 is con-
tinuous, ycextJ, for ¢ sufficiently small. But for ¢t = ¢, yeintJ =
int J. The continuity of = implies there is an sc (0, &) such that
yedJ,. By the construction of J, and since yeintJ, ¥y must be an
element of {wrw,s: be[a, a+o]}. This shows that intJ consists solely
of trajectorial arcs from the systems x,, b¢la, a+0].

Now let V be a neighborhood of 27,/2 such that V N intC cint J.
Then there is an «, 0 <« <o, such that zm,e/2¢ V for all b e [a-«,0].
For be[a-a, 0), am,e/2 cannot be an element of int C for then

eme/2C VNint Ccint J ¢ Y{xx,[0, €]: cela, a+0o]}.

This, by Proposition 2, implies that Tx,[-z, t] contains a critical point.
Hence for bela-a, 0) we have zm,e/2ec ext C and therefore, by Pro-
position B, C;(x) C ext C. Proposition 3 now implies the desired result.

Proposition 4 allows us to assume throughout the remainder of
the paper that if C is a given cycle of x,, then int C is positively
invariant with respect to every =,, b < a, and negatively invariant
with respect to every x,, b >a. If the opposite invariance properties
hold, the following propositions remain valid after the obvious modi-
fications are made.

DEFINITION 5. Let C be a cycle of z,. If there is an zecextC
such that Lj(x) = C or L;(x) = C, then C is called an external limit
cycle or a external negative limit cycle, respectively. Similarily, if
there is an zeint C such that L} (x) = C or L;(x) = C, then C is
called an internal limit cycle or a internal negative limit cycle, res-
pectively.

DEFINITION 6. Let U be a neighborhood of a simple closed curve
C. Then U-int C and U-ext C are called an outer neighborhood and
an inner neighborhood, respectively, of C.

PrOPOSITION 7. Let C be an external limit cycle of w,. Then,
given any outer meighborhood U of C, there exists an € > 0 such that,
for each bela,a+c¢], U contains both an external limit cycle and an
internal limit cycle of w, (the two cycles may coincide). A similar
result holds for C an internal limit cycle and be [a-¢, a].

Proof. Let V < U be an outer neighborhood of C containing no
critical points and such that int C U V is simply connected. Let xe C,
yeext C be such that Li(y) = C, and T V be a trajectorial arc of
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C.(x), ¢ < a, containing x as an endpoint. Then 7T is a transversal
with respect to w,, b #¢. Since L} (y) = C, yecext(C, and V is an
outerneighborhood of C, there is a = > 0 such that yz,[z, + ) V.
Let y,, y,€ ym.[t, + ) be consecutive points of intersection between
Ci(y) and T with 4,€ CJ(y,). Then the trajectial arc of C;(y) and
the subarc of T connecting v, and y, form a simple closed curve JC V
such that int J-intCc V. Now L} (y,) = L} (y) = C CintJ and Pro-
position B imply v,7,(0, + ) cintJ. Since y.,e C}(y,) and 7 is con-
tinuous there is an ¢ > 0 such that C; (y,) intersects int J for [b-a| <e.
If ymiteintJ for some ¢ >0, then y,w,[t, ) must be a subset of
int J; for if it were not y,7,[t, o) would intersect J and Proposition 2
would imply intJ—int C, and hence V, contains a critical point.
Moreover, by the continuity of =, and the fact L}(y,) = C, we may
assume that ¢ was chosen so small that C{(y), |b-a|<e, intersects
T at least twice between y, and . This is true because C; (v,
intersects T infinitely many times and the only limit point of the
intersections is x, [2, VIII, 1.2] and [2, VIII, 1.5]. The trajectorial
arc connecting two such consecutive points of intersection and the
corresponding subarc of T form a simple closed curve J, such that
int J,cintJ and int J,-int Cc V. Moreover, intJ, is positively in-
variant with respect to m, by Propoisition B. Thus intJ, and ext C
are both positively invariant with respect to z,. Henece int J,-int C
is positively invariant, so that Cj (x) C int J,—int C which is compact
and contains no critical points. By the Poincaré-Bendixson Theorem,
[2, VII, 1.14], L{ (x) is a cycle C,. Since int J, is positively invariant,
but not invariant by Proposition B, and C, N C= @ by Proposition 1,
we have C, N d(int J,-int C) = @. Thus C, is an internal limit cycle of
m, contained in int J,C U. For c sufficiently large y,7;[¢,)C int J, and
therefore y,7;[¢, o) int J, —int C;. The Poincaré-Bendixson Theorem
now implies the existence of an external limit cycle. This completes
the proof.

In a similar manner it can be shown that

PROPOSITION 8. Let C be an external megative limit cycle of T,.
Then, given any outer meighborhood U of C, there exists an € > 0
such that, for each bela-g, a], U contains both an external megative
limit cycle and an internal negative limit cycle of w, (the two cycles
may coincide). A similar result holds for C an internal megative
limit cycle and be[a, a+c¢].

LEmMMA 9. Let D, and D, be cycles of a complete family such
that D, cCint D, and that int D,—int D, contains mo critical points.
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If C, and C, are distinct cycles in int D,—int D,, then C,cCint C, or
C,cint C,.

Proof. Since int D,—int D, contains no critical points, we must have
D, cintC;, v =1,2. ThusintC, Nint C,+# @. Then int C, cint C, or
intC,NnextC,# @. In the first case intC,cintC,. Therefore
C,cintC,or C,NnC,+# @. The latter is impossible by Proposition 1.
In the second case, d(int C,) Nint C, = @. Therefore C,Nint C, - @&
and C,Cint C, since int C, is either positively invariant or negatively
invariant for the system containing C, (Proposition 3).

Let D, and D, be as in the statement of Lemma 9. Then

LemMmA 10. If C, and C, are distinct cycles in int D,—int D,
such that C, Cext C, then C,C int C,

Proof. By Lemma 9, C,cintC, or C,cintC,. C, cannot be
contained in both int C, and ext C,. Therefore C,cint C,.

In a topological space X, it is possible to define limits of nets of
subsets X;c X as follows. Let lim inf X, consist of all limits of
nets of points w; € X;; let lim sup X; consist of all limits of subnets
of points z;e X;. Obviously lim inf X; Clim sup X;. If equality holds,
the net X, is said to converge to its limit and we write

lim X; = lim inf X; = lim sup X; .

DEFINITION 11. A net (R% x;), % contained in a directed set con-
taining 0, of dynamical system is called regular if

(i) m;— 7, in the sense that if x;— « and ¢; — ¢ then x,7;t; — 7 t.

(ii) critical points are independent of the index 1.

(iii) to each noncritical point % there corresponds a subset 7 of
R* which is a transversal with respect to each x; and contains z as
a nonend point.

In [3] the following theorem is proved.

THEOREM D. Let (R 7;) be a regular net of dynamical systems.
Let C;(z;) be a cycle of (R, ;) with fundamental period t,(x;). If
lim inf Ci(x;) = @, then

Q) If 7ix)— 0, then lim C(v,) exists and is a single critical
point.

(2) If lim inf C;(x,) intersects a cycle Cy(x), then T,(x;) — T,(x)
and lim C;(x;) = Cy(z).
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(3) If lim inf C;(x;) intersects a moncyclic trajectory, them t;(x;)

— oo,

DEFINITION 12. Let C,(x) be a cycle of 7,. Then z,(x) will denote
the fundamental period of « with respect to =,.

ProOPOSITION 13. Let C be an external limit cycle of w,. There
exists an outer neighborhood U of C and an &€ > 0 such that U con-
sists entirely of periodic points of the systems w,, bela,a+e]l. A
stmila~ result holds for C an internal limit cycle and be [a-¢, a].

Proof. Let xe Cand V be an outer neighborhood of C which con-
tains no other cycles of x, or critical points and such that V U int C is
simply connected. Moreover, by Theorem D, ¥V may be chosen along
with a ¢ > 0 such that if C,(y) is a cycle of 7, in V with |b-a| <0,
then |7,(x)-7,(y)| <1/27,(x). By Proposition 7 there is an ¢, 0 <e <o
such that, for each be[a, a+¢],V contains a cycle of 7,. Thus the
fundamental periods cycles of 7,,. which lie in V are contained in
[1/27.(x), 8/27,(x)]. This, Theorem D with each 7= a + &, and the
fact that cycles of distinct systems do not intersect imply that there
is a eycle D of ... in V such that int D—int C contains no eycle of ...
Set U = int D—int C. U is an outer neighborhood of C by Lemma 10.
Let A denote the set of periodic points of x,, be [a, a+¢], which are
contained in U. We will show that A = U. Assume the contrary that
there exists a we U— A and consider the sets

F={intCy(y): ye A, Ci(y) a cycle, weext Cy(y)}
G = UF.

Since we U, we have wecextC = extC,(x), so that F= @. If
Ciy)cGc U, then <t,(y)e[l/2z.(x),3/27,(x)]. Proposition 7 and
Theorem D now imply, respectively, that G NextC = ¢ and oG
consists entirely of periodic points. Lemma 9 implies that oG Nnext C
is a cycle C;() where ze U and dela,a+¢]. Moreover, since
w e ext Cy(y) for each int C,(y) in F and C,(w) is not a cycle for any
bela, a+¢], we have weext Cyz). d+a since Cyz) = dGNnextCcV
and the only cycle of 7, in V is C. Sinece U+ A, Cyz)# D. Hence
d#a + . Also, by the construction of C,(z), there is no cycle B of
Ty, bela, a+¢€], in U such that Cy2) cint B and weext B. Thus C,
is either an external limit cycle or an external negative limit cycle,
[2, VIII, 3. 3]. Proposition 7 or 8, respectively, now implies the existence
of a cela,a+¢] such that a cycle C, of w, has the property that
Cy(2) cint C, and weext C,. This contradiction implies A = U. This
completes the proof.
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In a similar manner it can be shown that

PROPOSITION 14. Let C be an external megative limit cycle of w,.
There exists an outer neighborhood U of C and an & >0 such that
U consists entirely of periodic points of the systems m,, be [a-¢, al.
A stmilar result holds for C an internal negative limit cycle and
bela, a+el.
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