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ON THE STRUCTURE OF COMMUTATIVE
PERIODIC SEMIGROUPS

B D. ARENDT AND C. J STUTH

It is well known that a commutative periodic semigroup
is a semilattice of one-idempotent (or unipotent) semigroups.
Thus the characterization of commutative periodic semigroups
reduces to two subproblems: (1) the structure of commutative
periodic unipotent semigroups, and (2) the means for putting
these together in the semilattice. In this paper a complete
solution is given for problem (1), while problem (2) is solved
for the special case where each unipotent subsemigroup is
cyclic.

If £ is a semigroup with zero (S = S°), then the concepts of
nilpotence and the kernel of a homomorphism may be defined in the
usual ring-theoretic sense. Thus x e S is said to be nilpotent if
xn — o for some n, and the kernel of a homomorphism is the com-
plete inverse image of zero. S is said to be nil if every element of
S is nilpotent. Let T be a semigroup with zero and S be any semi-
group. Denote by T* the nonzero elements of T. A mapping a
from T* into S is said to be a partial homomorphίsm if α, b e T*, abφO
implies (άb)a — (acήφcή.

It is easily seen that a commutative semigroup S is periodic and
unipotent if and only if S is the ideal extension of a periodic abelian
group G by a commutative nil semigroup T. Furthermore, every
such extension is determined by the partial homomorphisms of T*
into G [2, Th. 4.19]. Thus our solution to (1) is obtained by deter-
mining the structure of commutative nil semigroups and using the
characterization of partial homomorphisms found in [1].

l Commutative nil semigroups* An element x of a semigroup
S is said to be prime if x does not belong to S2. S is said to have
unique factorization if every nonzero element of S can be written
uniquely as a product of powers of primes. Of course, if S is not
commutative, we must take the order of the factors into account.
The following result is a corollary to Theorem 1 of [1].

LEMMA 1. S = S° is commutative nil if and only if there exists
a commutative nil semigroup U with unique factorization and a
homomorphism from U onto S with trivial kernel.

If s = S° is commutative and xeS we define the annihilator of
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x as in ring theory by Ann (x) = {y: xy = 0}. Define a relation R on
S by 0R0, and for x Φ 0 Φ y, xRy if and only if Ann (x) = Ann (?/).
It is straightforward to show that R is a congruence on S with
trivial kernel (the class containing zero). Moreover, if τ is any con-
gruence on S with trivial kernel, then τ ^ R.

THEOREM 2. Let S be a commutative nil semigroup and let
{Ail ie 1} be the set of R-classes of S. Then:

( i ) Any partition Bi3, j eJif of some R-class A{ induces a con-
gruence Ti with trivial kernel on S such that the Bi3 are congruence
classes of τ{.

(ii) Every congruence on S with trivial kernel is the inter-
section of a collection of such congruences τ{.

Proof. Let {Bi3 : j e J%) be a partit ion of some iϋ-class A{. Define

Ti as follows:

( a ) 0r<0;

( b ) for x, y e A& xτty <=>x,ye Bi3, for some j e J^

( c ) for x Φ 0 Φ y and x,y& Aί9 xτty «=> for all zeS and j e Jiy

xz e Bi3 <~yze Biά.

Ti is an equivalence relation on S. To show τ< is a congruence we
consider separately the last two cases of the definition.

First , suppose xfy$ A{ and xτfl. If xz e A+ then xz e Bi3 for

some j and so yzeBi3- and (xz)Ti(yz). If xz$Ai9 then yz&Ai9 and
^ G J ? ^ - if and only if y(zw)eBi3- for all weS, so that (xz)Ti(yz)
for all ^ e S . Secondly, let x,yeAi and arr̂ /. Then »,j/e Biά for
some j . Now if A* = {0}, then (xz)Ti(yz) follows immediately, so
assume At Φ {0}. If xze A{ for some ze S, then xR(xz) which implies
xR(xz*) for all w, but S is nil, so xRO and a? = 0, a contradiction.
Thus for x,yeAiΦ {0} we have xz, yz $ A* for all z in S, so trivially
(xz)Ti(yz), and we have proved (i).

To prove (ii), let τ be any congruence on S with trivial kernel.
Then τ ^ R, and τ induces a partition J?ίy on each ϋί-class A{. If
we define τ< to be the congruence induced on S by each such parti-
tion (as in the proof of (i)), then it follows directly that τ = Γ) {r<: iel}
since τ and r< agree on At for all i.

All commutative nil semigroups with unique factorization are
easily determined [1]. Let F be the free commutative semigroup on
X with ideal K. Then F/K is nil if and only if K contains some
positive power of each x in X. Combining Theorem 2 with Lemma
1 we obtain all commutative nil semigroups.

We remark that there are sufficient congruences in Theorem 2
to separate distinct elements of S.
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2* Semilattices of cyclic semigroups* A cyclic semigroup S
has an idempotent if and only if it is finite, and for these semigroups
the concepts of index and period are defined as in [2, p. 19]. If S is
infinite cyclic we may say it has infinite index and zero period, so that
these terms are defined for all cyclic semigroups. With that convention
in mind the following theorem characterizes semilattices of all cyclic
semigroups, not just those with idempotents, and the solution of
problem (2) mentioned in the introduction is obtained by assuming
each cyclic semigroup is finite.

By Z, Z+ and Zo we mean the integers, positive integers and
nonnegative integers respectively.

THEOREM 3. Let Y be any semilattice and {Sa: ae Y} a collec-
tion of disjoint cyclic semigroups where Sa = <(αα)> with index na,
and period pa. For all a ^ β e Y, choose f(a, β) e Zo such that

( i ) f(a,a) = l;
(ii) nn Φ 1 =>/(λ, <5λ) + f(δ, δx) Φ 0.
Define g: Y x Y—>Z such that:
(iii) g(a, β) = g(β, a) for all a,βeY;
(iv) aΦaβΦ β and f(a,aβ) +f(β,aβ) = 0=>g(a,β) = 1;
(v) aΦaβΦ β and f(a, aβ) + f(β, aβ) = naβ-l=> g(a, β) = l

or 0;
(vi) aΦaβ Φ β and f(a, aβ) + f(β, aβ) = naβ - 1 + kpaβ + S

for some keZ+ and 0 ̂  S ^ p — 1=> g(a, β) = — k or 1 — k
(vii) g(a, β) = 0 otherwise.
Let S = [j{Sa\ae Y} and define multiplication in S by

<1) aiaj

β = aif

β

{a>aβ)+>'f{β>aβ)+9{0C>β)p«β, for all a,βeY.
Further assume that f and g are defined such that
(viii) aiiafar) = aό

β{a?aa
k

γ) = a*(aiaj

β) for all a, β, 7 e Γ, and i, j , k e
{1, 2} such that i + j + k ^ 4.

Then S is a commutative semigroup. Converselyf every commuta-
tive semigroup which is a semilattice of cyclic semigroups may be
constructed in this manner.

Proof. Suppose S = U {Sa: a e Y} is a commutative semigroup
which is a y-semilattice of the Sa. Denote by Ga the maximal sub-
group of Sa9 if it exists. For a > β in Y, define f(a, β) = exp (aaaβ) — 1
where exp (aaaβ) is the least positive integer t such that aaaβ — a*β.
Define f(a, a) = 1 for all a e Y.

Now let a, βe Y. Then aaaβ = a\β for some least positive integer
t. We have alγ = aa(aβaaβ) = af

aF>*»+™>*»+1, so

t = f(a, aβ) + f(β, aβ) + g{a, β)paβ
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for some integer g(a, β). By induction

ti)*«β, for all i, i G Z + .

Suppose a Φ aβ Φ β in Y" in the following three cases.

Case 1. /(α, aβ) + /(/3, α/3) = 0: Then f(a, aβ) = f(β, aβ) = 0 so
naβ = 1 and paβ = £. Thus (ii) and (iv) are satisfied because g(a, β) = 1.

Case 2. f(a, aβ) + /(/3, a/3) - naβ - 1: Then (a*,)**' - aLΫ1. If
a ^ g Ga^, then ί = ^a i 3 - 1 and gr(α, β) = 0. On the other hand if
aaaβ e Gaβ, then t = paβ + ^αi8 — 1 so that ^(α:, β) = 1. Thus (v) holds.

Case 3. /(α, α/S) + f(β, aβ) = naβ - 1 + &pα/ϊ + S where Λ G Z+,
O^S^p-1: If ααα^ g G^, then t = naβ-l, 5 = 0, and ̂ r(α, /3) = -A:.
If ααα̂ s G Gff/3 and S ^ 0, then t = naβ — 1 + S and g(a, β) — —k. If
α^α^ G Gaβ and S = 0, then t — naβ — 1 + p and βf(α:, β) ~ 1 — k.

In every other situation we see aι

aβ — aζ(

β

a>aβ)+f{β>aβ) where the
exponents are in fact equal, so that g(a, β) — 0, giving (vii)

Now that g(a, β) is defined for all a, β e Y it is clear that (iii)
is satisfied, and (viii) is obvious by the associativity of S.

Conversely, suppose S — U {Sa: a e Y} and the functions / and g
are defined satisfying (i)-(viii) with multiplication given by (1).
Multiplication is commutative by (1) and (iii). For a > β > T in Yf

condition (viii) implies

f(a, j) = f(a, β)f(βy 7) mod pr or
( } f(a, y) = f(a, β)f(β, 7) .

Let αi, αj, a) be any three elements of S. Then ai(aj

βaγ), aj

β(aiaγ)
and aγ(aiaj

β) are powers of aaβr (using (1)) with exponents which we
denote el9 e2 and β3 respectively. If min {e19 e29 e3} ̂  naβr, then the as-
sociativity follows by applying (2) to corresponding parts of the ex-
ponents e19 e2 and β3. So we may assume that, say, eλ < naβr. Then
from (viii) it follows that the exponents of αα(αiSαr), aβ(aaar) and
ar(aaaβ), which we denote by r19 r2 and r3 respectively, are equal. If
i ^ 2, then al(aβar) — α^(α«αr) = ar(a2

aaβ) g Gα/5r so that the exponents
of these expressions are equal, and in conjunction with the previous
statement we get

(3 ) /(α, aβi) = f(a, aβ)f(aβ1 aβj) = f(a, a7)f(ay, aβy) .

Similarly, if j ^ 2 or k ^ 2, then we have the respective equations

(4) f(β, aβy) = f(β, aβ)f{aβ, aβj) - f(β, βy)f(βy, aβj)

or
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< 5 ) /(7, aβy) = /(7, ay)f(ay, aβy) = f(y, βy)f(βy, aβy) .

Adding (ΐ - l)/(α, α/3τ) + (j - l)/(£» α#y) + (fc - l)/(7, α/37) to each
member of the equation rx — r2 = r3, and using (3), (4) and (5) when
appropriate, we obtain ex = e2 = es. Therefore S is associative.

For the special case when each Sa is infinite cyclic, Theorem 3 is
greatly simplified, and we state that result in the following corollary.

COROLLARY 4. Let Y be any semilattice and {Sa = <(αα>: a e Y}
a collection of disjoint infinite cyclic semigroups indexed by Y. For
all a >̂ β in Y choose f(a, β) e Zύ such that

( i ) f(a,a) = l
(ii) /(λ, δX) + f(δ, Xδ) ΦQ, X,δeY.
(iii) a ^ β ^ 7 => /(α, 7) = /(α, /S)/(/S, 7).

i s ί S — U{Sα: O G Γ } cmώ define multiplication in S by

aiaj

β = aif

β

la'aβ)+if^a^ , a, β e Y.

Then S is a commutative semigroup. Conversely, every commuta-
tive semigroup which is a semilattice of infinite cyclic semigroups is
determined in this manner.

Proof. It is easily verified that (iii) is sufficient for the equality
of the three exponents that arise from the product al

aaiak

f. Conversely,
if S is associative and a ^ β ^ 7 then the exponents from aa(aβar) =
ar(aaaβ) will give (iii).

We remark that condition (viii) of Theorem 3 says essentially
that associativity of third degree and fourth degree terms is sufficient
to guarantee all associativity. We conclude with an example to show
that in this respect Theorem 3 is the best possible result.

Let Y be the semilattice consisting of a, β, 7 = on, ccβ, and
aβy = βy. Let the cyclic semigroups indexed by Y be chosen such
that nβy = 11, paβ = pβr = 1 and naβ = 2. Define / and g by f(a, 7) = 1,
/(α, aβ) =f(a, βy) =/(τ, βy) = 0, f(β, aβ) = 2, f(β, βy) =f(aβ, βy) = 11,

and g(a, β) = g(β, 7) = g(y, aβ) = — 1. Conditions (i)-(vii) of Theorem
3 are satisfied. It can be shown that any term of the form xyz where
x, y, z are first powers of the generators is associative. In fact, any
term of the form aiaβa

k

r is associative. However (aaa
2

β)ar = aa(a2

βar)
so that the union of these is not a semigroup under the multiplication
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