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UNBOUNDED INVERSES OF HYPONORMAL
OPERATORS

C. R. PUTNAM

It is shown that certain unbounded inverses of hyponormal
operators have Cartesian representations in which the real
part is absolutely continuous and the imaginary part is
bounded. An example is given which shows that in general
the imaginary part is not absolutely continuous.

A bounded operator Γ on a Hubert space ξ> is said to be
hyponormal if

(1.1) τ*T - TT* ^ 0.

For properties of such operators, see Putnam [2]. Such an operator
is said to be completely hyponormal if there exists no nontrivial sub-
space of φ which reduces T and on which T is normal. Recall that

a self-adjoint operator A with the spectral resolution A = \xdE'λ is

said to be absolutely continuous if | |£J^|]2is an absolutely continuous
function of λ for all x in φ. If T is completely hyponormal with
the Cartesian representation

(1.2) T= H+ iJ ,

then both H and J are absolutely continuous; see [2, p. 42].
In case 0 is not in the spectrum of T then T~ι is also hyponormal;

Stampfli [7]. Further,

(1.3) IIT-1!! = d~ι and ||Γα;|| ^ d\\x\\,xe§ and d = dist (0, sp (T)) .

Suppose however that 0 is in the continuous spectrum of Γ, so that
T~ι exists as an unbounded operator, is closed, and S)Γ_1 = $ϊτ is dense
in φ; cf. Stone [9, pp. 40, 129]. Then it was shown by Stampfli
[8] that

(1.4) SVicSVi* and HT"1*^! ^ WT^xW for x e S ^ .

Thus T~ι still behaves to a certain extent as does T. The question
arises however as to whether T~γ admits a Cartesian representation
Γ"1 = K + ίL, where K and L are self-adjoint, and also, if such a
representation exists, whether these operators are absolutely continu-
ous when T is completely hyponormal. A partial answer is contained
in the theorem below.
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It may be noted that if 0 belongs to the spectrum of T and if
T is completely hyponormal, then 0 cannot be in the point spectrum
of T, so that T~ι exists. To see this, note that if Tx = 0, x Φ 0, then
(1.1) implies that T*x = 0, and so the vector x determines a normal
reducing subspace of T.

THEOREM. Let T be a (bounded) completely hyponormal operator
and suppose that Oesp(T). In addition, suppose that there exists
a number a > 0 for which the two open disks \ z ± ia | < a contain
no points of sp (T). Then 0 is in the continuous spectrum of T, and
T"1 has the representation

(1.5) T~ι = K + iL, K and L self-adjoint and L bounded .

In particular, T"1* = K — iL and (cf. (1.4))

(1.6) (( T-^x H ̂  |( T-'x |(, x e 3)Γ-i( - ®Γ-i* = SB*) .

Further,

(1.7) K is absolutely continuous ,

but

(1.8) L need not be absolutely continuous .

REMARKS. The hypothesis of the theorem assures that 0 is in
the spectrum of T but that a small neighborhood of 0 does not con-
tain too much spectrum. In view of the complete hyponormality
assumption, however, any neighborhood of 0 necessarily intersects
sp (T) in a set of positive measure; Putnam [5].

2* Proof of (1.5). It was noted above that 0 cannot be in the
point spectrum of T. In view of the hypothesis concerning the disks
it also follows that 0 is not in the residual spectrum of T. For,
otherwise, © ^ = 3iτ is not dense and T*x = 0 for some x Φ 0. But,
if z Φ 0 and if z is real and sufficiently small, then | |(Γ* — izl)~ι\\ =
l/dist(iz, sp(!Γ*)) = l^l"1, and this implies that Tx — 0, so that x de-
termines a normal reducing subspace of T, a contradiction; see Putnam
[3], Stampfli [8], Sz.-Nagy and C. Foias [11].

Thus, 0 is in the continuous spectrum of T, 77"1 is closed, and

M (cf. (1.4)). Clearly,

T-1 - K + iL,, where K = Kϊ 7- 1 + I7"1*) and
( 2 # 1 ) L, = (1/2ΪXT-1 - 27-1*) .

Note that
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(2.2) ©j. = ®Ll = S^n 3W - ®r-i .

Moreover, K* = i{T~ι + ϊ 7 - 1 * ) * ^ ? 7 " 1 * + 27-1**) = ^Γ" 1 * + 27-1) = iΓ,
and, similarly, Ll'DL^ (see, e,g., Sz.-Nagy [10, p. 29], so that both
K and L1 are symmetric.

Suppose that z £ sp (T) (and hence z =£ 0). Then z(zl - T ^ T =
(I- z~ιT)-ιT - [ Γ - ^ I - ^ T ) ] - 1 = [T-1 - is-1!]-1 and hence z"1 £ sptT7-1).
(Concerning the spectrum of an unbounded operator, see Stone [9,
p. 129]; Taylor [12, pp. 199-200]. Further, if z Φ 0 and z~ι <£ sp (27"1),
then (z! - T)-1 = z- 1 ! - z~\z~ιI - T~ι)~\ so that for z Φ 0, z e sp (Γ) if
and only if z~ι e sp(T - 1) (Cf. Taylor [12], ίoc. ciί.) Since the mapping
w = 1/z sends the circles \z + ia\ < a and |z — iaI < a (a > 0) re-
spectively onto half-planes Im (w) > /9 and Im (w) < — β for some
/3 = const. > 0, it follows that sp {T~ι) lies between the two lines
Im (w) = ±β.

Next, it will be shown that if z ί sp (T"1) (hence ^ -1 ί sp (T)), then

(2.3) IKT-1 - z!)a?|| ^ dist (̂ , sp (T"1))!!^!! for α e S ^ .

To see this, note that (Γ" 1 - zl)~ι = [T^(I - zT)]~ι = (I - z Γ ) - ^ =
z^[(I - zT)-1 - I], so that (77-1 - zl)~ι is hyponormal. Also, by
(1.3), | | ( ϊ 7 - 1 - zl)"1!! = 1/dist (z, sp (27-1)), and relation (2.3) then fol-
lows. See also Clancey [1].

Let Wτ-i denote the closure of the set {{T~ιx, x); x e Dτ-i and || x \\ = 1}.
It will be shown that Wτ-i is contained in the least closed convex set
containing sp(T - 1 ) It is sufficient to show that if Re (sp (T~1)) ^ 0
and if a + ίb e Wτ-i then a ^ 0. (Note that for this argument one
can replace T~ι by rT~ι + si, where r and s are constants.) But if
this is not the case then there exists some cceSV-i, | |x | | = 1, such
that T~ιx = (α + ib)x + y with (x, y) = 0 and α > 0. Then for c > 0,
it follows from (2.3) that c2 rg IKT"1 - cl)x| | 2 = (α - c)2 + 62 + ||τ/||2

and hence 2αc ^ α2 + 62 + ||τ/||2, which is impossible for large c. (This
argument was used by Stampfli [7] for bounded hyponormal operators.)

It was noted earlier that spί?7"1) lies in some strip —β^
Im(w) ^ /S, β — const. > 0, and it now follows that the set Wτ-i does also.
It follows from (2.1) that -β^(L1xfx)^βioτ | | α | | = l, x e ®X l( = 2V-i =
ΐRT), so that Lx is bounded on its (dense) domain. Consequently,

(2.4) Lι has a unique bounded self-adjoint extension L .

Next, it will be shown that K of (2.1) is self-adjoint. To this
end, it is sufficient to show that

(2.5) ?Hκ+iki = & holds for k = ±j and some j > 0 .

(See, e.g., Sz.-Nagy [10, pp. 37-38].) Since ®τ-i = 2)* = ®L l, then
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K+ ikl= T-1 + i(kl - L,) = T"1 + i(kl - L) and so

(2.6) K+ikI=[I+ i(kl - L)T]T~ι .

(Note that all equations are interpreted in the strict operator sense.)
Since 9tΓ-i = ©Γ = Q, then, in order to prove (2.5), it is sufficient to
show that the (bounded) operator I + ί(kl — L)T is nonsingular for
\k\ sufficiently large.

Choose k so that

(2.7) \k\>\\L\\,

and hence (kl — L) is nonsingular. It is then sufficient to show that
Q = T — i(kl — Z/)-1 is nonsingular, that is,

(2.8) \\Qx\\ ^ c| |α| |, | |Q*a|| ^ c\\x\\ for some c = const. > 0 ,

whenever k is sufficiently large.
Next, choose m real and satisfying 0 < | m | < a/2, where a is

defined in the statement of the theorem. Then | | (T— ίml)x\\ ;> \m\
for | | # | | = 1, in view of the present hypothesis and (1.3). Since Q =
(T-imI) - i[(kl- L)"1 - ml], it follows that, for ||α>|| = 1, ||Qa;|| ^
\m\ - \\(kl - L)-1 - ml\\. Since (hi - L)'1 is definite, it is clear that
by choosing m to have the same sign as k, one has \\(kl— L)~ι — ml\\ <
\m\, provided k is sufficiently large, and hence the first relation of
(2.8) is satisfied. Since Q* = (T* + iml) + i[(kl - L)~ι - ml], the
second relation is clear from a similar argument if one notes that
| | ( Γ - iml)-11| = | |(Γ* + iml)-1 \\ and hence | |(Γ* + iml)x\\ ^ \m\ for
| |a | | = l, 0 < \m\ < a/2. This completes the proof of (1.5).

3* Proof of (1.7). Let K have the spectral resolution

(3.1) K = \xdGλ .

For any finite interval Δ and for any operator A (possibly unbounded),
let AΔ = G(Δ)AG(Δ), as an operator on G(Δ)φ. In order to prove
that K is absolutely continuous (on φ) it is clearly sufficient to show
that the (bounded) operator KΔ is absolutely continuous on G(Δ)ίg for
every finite interval Δ.

In order to show this, it is sufficient to show that the bounded
operator S(Δ) = G{A)T~ιG{Δ) = KΔ + iLΔ is completely hyponormal (cf.
§1 above). If this is not the case however, then there exists a sub-
space φiCG(J)φ, §i Φ 0, with the property that & reduces S(Δ) and

is normal. It will be shown that this implies that

(3.2) & reduces T and Γ/& is normal ,
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thus contradicting the hypothesis that T is completely hyponormal.
To this end, note that in view of (1.5) and (1.6),

(3.3) || T~ιx||2 - || T-^x||2 = 2ί[(Lx, Kx) - (Kx, Lx)] ^ 0, £ e ®* .

Since, for every finite interval Δ, G{Δ)x e ®# (xe φ), then (3.3) im-
plies that

(3.4) i{KΔLΔ - LΔKΔ) = M{J) ^ 0 ,

where now all operators of (3.4) are bounded. It is clear that M{Δ) =
G{Δ)M(Δ)G(Δ) and that if η is any interval containing Δ then
G(Δ)M{7ί)G(Δ) = M^ ^ 0. Since M^x = 0 for x e &, then MWG{Δ)^ = 0,
that is, M(η)!Qι = 0. Since & reduces S(Δ), and hence also KΔ1 then
& is invariant under Kη (note that Kη^ = ϋ Γ ^ c ^ ) , thus Jkfίl?)iiΓ5§1 = 0.
But (3.4) (with Δ replaced by η) implies that i{K2Lη - LηK$) =
(KηM^ + M(7?)ϋΓ,), so that K2

ηLηx = LηK
2

ηx for x in &. In the same
way, one obtains K"Lηx = LvKfx (n = 0, 1, 2, .) for x in Jglm Since
G(Δ) is the strong limit of polynomials in Kη (note that η contains
Δ), this implies that G(Δ)Lx = G{η)Lx for x in φ1# Since η is any
interval containing Δ, it follows that G{Δ)L^ι = L^1# But §i reduces
S(Δ), hence also G(Δ)LG(Δ), so that G{Δ)L®X = G(Δ)LG(Δ)Qι<zQ1. Thus
& reduces L (as well as K, since iΓφi = ϋ Γ ^ c ^ ) . Thus φj. reduces
ϊ7-1. Also, since M{J)$L = 0, it follows from (3.3) and (3.4) that
HT-^II - IIΓ-^H for x in ^ (αG(Δ)ξ>). Thus T~ι is normal on &
(cf. Sz.-Nagy [10, p. 33]) and hence (3.2) follows. As noted earlier,
this yields a contradiction, and, as also noted before, relation (1.7)
follows.

4* Proof of (1.8). Let Q denote the Hubert transform on § =
L2(— oo, oo) defined by

(4.1) (Qχ)(t) = (iπ)-ι[° (s - t)-ιx(s)ds ,
J

the integral being a Cauchy principal value. It is well-known that
Q is both mitary and self-adjoint and that its spectrum consists of
± 1 , each of infinite multiplicity. Define the self-adjoint operators
K and L on L2(—oo, oo) by

(4.2) K=t,L= -21- Q .

The spectrum of the multiplication operator K is (-oo, oo), while
that of the (bounded) operator L consists of the two numbers - 1
and —3, each of infinite multiplicity. Further, K is absolutely con-
tinuous, but L is not. Next, define S by

(4.3) S= K+iL.
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Since L is bounded, S* = K - ίL and 5)* = 2V = %κ. It will be
shown that T = S"1 exists, is bounded and is hyponormal.

First, note that 0 is not in the point spectrum of either S or
S*. For, if x e ®s and if Sx = 0, then 0 = (Sx, x) = (Kx, x) + i(Lx, x)
and hence (Lx, x) = 0. But this is impossible since — 3 1 ^ L <̂  — L
Similarly, 0 is not in the point spectrum of S*.

It follows that T= S"1 exists and that ®Γ = © ^ = 3ΐs is dense.
Further, if £ € ® s , then (&c, x) = (ϋΓx, a?) + i(Lα, «) and so | |x | | 2 ^
I (La?, a;) I ^ KiSa?, x)\ < \\Sx\\\\x\\y that is, ||fifa?|| ^ ||a?||. If y = Sx,
this implies that ||2ty|| ^ ||2/|| for 2/eS)Γ, so that Γ is bounded on its
domain. Since iΓ is closed and L is bounded, then S is closed and
hence (cf. Stone [9, p. 40]), S'1 = Γ is closed. It follows that Γ
must be bounded (with 5)Γ = φ — L2(—oo, oo)).

Next, it will be shown that

(4.4) ||Sa?|| ^ ||S*a?|| for » G S 5 .

To see this, note that (cf. (3.3))

(4.5) | |Sx| | 2 - | |S*x| |2 = 2i[{Lx, Kx) - {Kx, Lx)], x e ® 5 .

For any finite interval A, let x = G(J)x, where K — t— \XdGλ. Then

one obtains | |Sx| | 2 - \\S*x\\2 - 2(MiJ)x, x), where (cf. (3.4)) M'Δ) =
i{KΔLΔ - KΔLΔ) = i{QΔKΔ - KΔQΔ) (cf. (4.2)) and

x, x) = 7Γ-1 I x(s)ds
JΔ

2

Thus,

(4.6) \\SG{Δ)x\\2 - \ \ S * G ( Λ ) x \ \ 2 ^ 0 f o r x e £ ,

where J is any finite interval. If xe®s( = £>s*) a n ( i Δ% — ( — n,n),
n — 1,2, , then G(Λn)x —>x as n—> oo. Moreover, since L is bounded,
it is clear from (4.3) that SG(An)x -> Sx and S*G(Δn)x — S*x. Relation
(4.4) now follows from (4.6).

By an argument similar to that used by Stampfli [$] (cf. (1.4)
above), it follows that T = S~ι is hyponormal; see Clancey [1, p. 33].
Since — 3 I ^ L ^ —I, it follows that sp (S) lies between the lines
Im (w) — — 3 and Im (w) — —1 of the w-plane (cf. Taylor [12, p. 199];
Clancey [1, p. 34]) and hence sp (T) lies between the circles in the
£-plane which are images of these lines under the mapping z — 1/w.
(These circles are centered on the positive imaginary axis and have
the real axis as a common tangent at z = 0.) In case T is completely
hyponormal, it can clearly be identified with the operator occurring
in the statement of the Theorem.

Suppose then that T is not completely hyponormal. Then T
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cannot be normal. For, otherwise (cf. (3.3)), (Lx, Kx) = (Kx, Lx) for
all x e L 2 ( - co, oo), where L, K are defined by (4.2). Thus, (Qx, Kx) =
(Kx, Qx) for all xeL2(— co, oo) and, in particular, if A is any finite
interval and if x is replaced by G(A)x, it follows that KΔQΔ — QΔKΔ = 0,

where AΔ = G(A)AG(A). Thus, for any α e L 2 ( - co, oo), f α(ί)d* = 0, A
J Λ

arbitrary, which is clearly impossible.
Since T is not normal, its normal part (if it exists, i.e., if T is

not completely hyponormal) can be split off, so that T can be re-
presented as

(4.6) T= 2\ 0 T2 ,

where Tι is normal and T2 is completely hyponormal. Further, it is
clear that T~ι = Tr1 0 Tf1 and that T2 has the properties of T in
the statement of the theorem. If Tf1 = K2 + %L2 as in the theorem,
then, since T~ι = K + iL = Tr10 (K2 + iL2), it follows that L =
(lβi)(Trι - Tr1*) @ L2. In particular, sp (L2) is a subset of sp (L),
so that sp (L2) contains at most the two numbers —1 and —3, and
hence L2 is not absolutely continuous.

Thus, an operator T satisfying the conditions of the theorem has
been constructed for which L of (1.5) is not absolutely continuous.
This completes the proof of the theorem.

5* Remarks* In case T is a (bounded) hyponormal operator and
if the spectrum of its imaginary part has measure zero then T must
be normal; see [2, p. 43]. That the corresponding assertion can be
false if T is unbounded, even if T admits the representation (1.5)
(with I7-1 replaced there by T), is clear from the example constructed
above. Also, if T is (bounded and) hyponormal, the spectra of its
real and imaginary parts are precisely the projections onto the co-
ordinate axes of the spectrum of T; [2, p. 46]. This is not in gen-
eral true in the unbounded case. (Concerning the connection between
the spectrum of T and that of its real or imaginary part when T is
unbounded and is, in some sense, "hyponormal," see Clancey [1].)
Roughly speaking, if T has a representation T = K + %L, where K
and L are self-adjoint, then, even if L is bounded, its spectrum is
largely unpredictable unless sp (K) Φ (— co, oo). (In this connection,
see Clancey [1, Th. 4.2.6]; Putnam [2, p. 39], [4]; Rosenblum [6].)
Thus, it is not completely accidental that the operator S of §4 above
has a real part with spectrum equal to the entire real axis.
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