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ON THE SEMIGROUP OF BINARY RELATIONS

R. J. PLEMMONS AND M. T. WEST

The concepts of row and column bases for an element of
7 x, the semigroup of binary relations on a set X, are in-
troduced by interpreting a binary relation as a boolean matrix;
these ideas are then used to characterize the Green’s equiva-
lences on <Z ;. It is shown that the class of idempotent rela-
tions whose rows and columns form independent sets coincides
with the class of partial order relations on subsets of X. Re-
gularity in <&y is investigated using these results,

The Green’s relations and ideals in the semigroup of binary re-
lations <%, on a set X have been studied primarily in terms of lattice
considerations [11], [12]. In this paper we take a more computational
approach. By interpreting a relation as a boolean matrix, we introduce
the concept of row and column bases and use these ideas to obtain
useful characterizations of the Green’s relations & &, 57 and &
on .<#,. These results are then used to investigate the ideal structure
of <#,, in comparison to that of .77, the semigroup of transforma-
tions of X into X. Some simple tests for regularity of a binary re-
lation are obtained, and by characterizing reduced idempotent relations
we show that a regular relation must have the same row rank and
column rank.

These results have made possible the determination of the maximal
subgroups of <#; [6]. Moreover, the characterization of the Green’s
relations in terms of binary matrices will hopefully lead to an ex-
tension of the combinatorial results given in [4] and [9], in which
the numbers of idempotents in the & and 57 -classes of 7, are
investigated. Other applications may be found in Grapy Theory.

A Dbinary relation on a set X is a subset of X x X, and the set
of all binary relations on X is denoted by <#;. The product a8 of
two relations & and B on X is defined to be the relation

aB = {(a, b)|(a, ¢) e a and (¢, by e B for some ce X} .

The operation is associative and hence <& is a semigroup. The
semigroup &, of partial transformations on X is a subsemigroup of
% and it in turn contains .7, the semigroup of transformations
on X as a subsemigroup. It was the ideal structure of 7 that
motivated many of the ideas in this paper. (See [5] and [1] Vol. I,
pp. 51-55.)
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The elements in <&, will usually be denoted by Greek letters.
In general, the notation follows [1]. Let ze X, H< X and ac .
We use the notation:

a™t = {(a’? b)l(br a)e a},

va = {ye X|(z,y) e a},

Hoa = {b|(h, b) e a for some he H}, «H = Ho™, and

¢ty = {(h, k)| h e H}.

Also, the universal relation X x X is denoted by , the identity
transformation on X by ¢, and the empty relation by [].

Let &, denote the set of all X x X matrices A over the boolean
algebra {0, 1}, where a,,, denotes the value of A at the point (w, %)
of X x X. Then <%, is a semigroup under matrix multiplication.
Moreover from [2, Chapter 13], it follows that the map

1if (v, 9 ea,

¢: 00— A, where a,, = .
’ Y 7 |0 otherwise ,

is an isomorphism of <%, onto <Z,. For x€ X we call the set
zafax] a row [column] of a. For example, if X = {x,, x,, x;} and
a = {21, ), (X 3), (5, ), (%5, )} then the relation matrix for « is

010
0 01
1 0 1/,

and the row x,a is the set {x,, x.}. These ideas can be extended in
the natural way to the case where X is countably infinite. For
generality, we shall employ the terms row and column of a relation
even when X is not finite.

1. The green’s relations on <. In this section we obtain
characterizations of the Green’s relations that will be useful in later
work.

Two elements a, b of a semigroup S are said to be ¥[<Z, 7]
equivalent if and only if they generate the same principal left [right,
two-sided] ideal in S. We denote the relation ~¥N<Z by & and
the join ¥V .#Z of ¥ and &2 by <, that is, & is the intersection
of all the equivalence relations on S that contain < and <Z. The
equivalence relations &5 #, 5% and < play an important role in
the study of semigroups.

The proof of the following technical lemma is obvious.

LEMMA 1.1. Let a,Bec By and HS X. Then
(1) H(aB) = (Ha)B and (aB)H = a(BH),
(2) (aB)™ =B
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(8) aBB if and only if a*FB,
(4) azZa if and only of aFa™ or aFa™, and
(5) a=zB if and only if a*<rB.

Let ae %, and V(a) = {Aa|A S X}. Then V() is the collection
of all unions of rows of @ and it forms a lattice under set theoretic
inclusion. The following lemma is a combination of results proved
by Zaretskii in [12].

LEMMA 1.2. Let o, Be <. Then
(1) a#B if and only if Via) = V(B) and
(2) a=z2B if and only if Via) and V(B) are lattice isomorphic.

For our purposes it is more convenient to obtain a characteriza-
tion of the relation &5 and dually .22, in terms of rows and columns.
Using Zaretskii’s result we have the following lemma.

LemmaA 1.3. Let a, Se #y. Then aXBla@B] if and only if
for each xe€ X there exist subsets H and K of X such that xa = HpB
and B = KaJax = BH and Bx = aK]. Moreover a ¥ pla#p] tm-
plies Xa = XplaX = pX].

Proof. If a. ¥R then there exist relations v, 0 in <&, such that
Ya = B and 08 = . Let xe X, then za = (x6)8 and 8 = (zY)a so
that xa = HB and 28 = Ka for H =20 and K = 7. The converse
is immediate from Lemma 1.2 (1).

Finally, if «.”8 and z e Xa, then there exist ye X and HES x
such that xe ya = HR < XB. Hence Xa & XpB. Similarly Xp = Xa.

For any transformation «, the number | X«| is called the rank
of a ([1, Ch. 2]). We now introduce the concepts of row and column
ranks for relations. These ideas will play an important role in the
remainder of the paper. We consider each set mentioned in the
following paragraph to be nonempty.

Let S be a set and .& be a collection of nonempty subsets of
S. Then a subcollection & of &7 is said to be independent if no
member of & is a union of other members of <. The collection &
is said to gemerate . if each member of .97 is a union of members
of . If ¥ < . is independent and generates . then % will
be called a basts of o/

Now let [] # aec #, and &7 = {wa|ze X, v = [}. If & has
a basis & then & is necessarily unique and is called a row basts
of a; |€| is called the row rank of @. Column bases and ranks



746 R. J. PLEMMONS AND M. T. WEST

are defined in a dual manner. Of course, if X is finite, then each re-
lation on X has row and column bases. However, for infinite X it
is possible to construct relations having no row basis. In particular,
if X is the positive integers and .7 is the nonempty subsets of X
whose complements are finite, then .o has no basis. Thus if we
take « to be a relation having as rows the members of .o/ then «
has no row basis.

We say that a relation « is row [column] 7reduced if the non-
empty rows [columns] of « form an independent set. If the relation
is both row and column reduced we say it is reduced.

Notice that by Lemma 1.3, a relation ae <&, has a row basis
if and only if L, has row reduced members. In particular if the
nonempty rows of a’ ¢ <%, form a basis for the rows of « then «&’'¢ L,.
A similar result holds for columns.

The following lemma gives a sufficient condition for the rows of
a relation to have a basis. Its proof follows from an application of
Zorn’s Lemma.

LeMMA 14. If ae <& has the property that |xa| < o for each
ze X, then o« has a row basis and thus L, contains row reduced
members.

The dual of this lemma for column bases also holds. In particular
each &r-class of <7, when X is finite, contains reduced members.

Notice that our definition of column rank of a relation « was
called the rank of « in [1], [5], where « is a transformation. Thus
we have a natural extension of the concept of rank to binary relations.
Also, there exist relations in %%, |X| = 4, for which the row and
column ranks are different. For example, the relation « whose
matrix is

H H O =
H = = O

[l
S O = O

1

’

has row rank 3 and column 4. Also, « is column reduced but not
row reduced.

Now let V*(@) = {xa|xec aX}. The next two theorems charac-
terize the Green’s relations on reduced elements of <#;. All the
relations in the remainder of this section are taken to be nonempty.

THEOREM 1.5. Let  and B be row reduced relations in .
Then the following statements are equivalent.
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A azp,
B) V*@) = V*(B), and
C) «a = pB, where p is a one-to-one map of aX onto BX.

Proof. Now the implication (A) implies (B) is immediate from
Lemma 1.2, since V*(«) is the basis for V().

Assuming V*(a) = V*(B), let p be the map from aX to pX
given by xzp = y if and only if xa = yB. Then clearly o is one-to-
one from aX onto X and a = pg. Thus (B) implies (C).

Now (C) implies (A), since if o = pg where p is one-to-one from
aX onto BX, then p~'a=pg8. Then « and B generate the same
principal left ideal and are thus .&“-equivalent.

Notice that the since a.# g if and only if a8, Theorem 1.5
has a dual formed by replacing “row” by “column”, “<&” by “<#”
and “pgB” by “go” where p is from X@G onto Xa. With this in mind
we have the following results.

COROLLARY 1.6. Let a and B be reduced relations in <&yx. Then
the following statements are equivalent.

(A) as7p,

B) V) = V*p) and V*a™) = V*(B™), and

C) a=po=o0cp where p ts a one-to-one map of XB onto X«
and o is a one-to-one map of aX onto LX.

Lemma 1.7. If ae B, is row [column] reduced, then every
member of R,[L,] is also row [column] reduced. In particular, of
a, Be FZy are reduced and aDpB, then every member of L,NR; s
reduced.

Proof. Let a be row reduced and ge R,. We show B is row
reduced by showing V*(g) = {#8|x € BX} is independent. Let ke X
and []# T < BX such that k8 = T8. Now by Lemma 1.3, ke X =
aX and T S X = aX. If ge R, then o = g7 for some 7€ By. Thus
ka = kEgy = TRY = Ta. Since « is row reduced V*(a) = {xa|xe aX}
is independent and so ke T. Therefore V*(B) is independent, and
thus g is row reduced.

THEOREM 1.8. Let «, B be reduced elements of <Zy. Then a7
if and only if a = oBP, where ¢ is a one-to-one map of aX onto BX
and 0 s a one-to-one map of XB onto Xa.

Proof. If a=rp then there exists 7e &, such that a7 and
Y#B. By Lemma 1.7, 7 is reduced. By Lemma 1.3, Xa = X7 and
7YX = pX. Now by Theorem 1.5 and its dual, o« = 07, where ¢ is a
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one-to-one map of X onto 7X, and ¥ = Bp, where p is a one-to-one
map of X3 onto X7v. Then a = a7 = gpp. '

Conversely, if a = 0Bp, 0, 0 as specified We can let ¥ = go and
note by Theorem 1.5 and its dual, a7 and 728 so a=zp.

If X is finite the partial one-to-one mappings of Theorems 1.5
and 1.8 can be taken to be restrictions of permutations of X to the
requisite domains. Hence we can restate these results in the follow-
ing theorem, where S, denotes the symmetric group on X.

THEOREM 1.9. Let a and B be reduced relations in Zy, X finite.
Then

(1) azp if and only iof a = pB, p€ Sy,

(2) a@pB if and only if a = o, ce Sy,

(8) as#p if and only if a = pB = B0, p, 0 € Sy and

(4) a=zp if and only if a = pGo, p, o€ Sy.

We show next that a fixed row rank and column rank are as-
sociated with each <r-class containing reduced relations.

LEMMA 1.10. Let « be a row reduced relation in <&y and sup-
pose a has row rank r. Then each member of L, has row rank r.

Proof. The proof follows since » = | V*(«)| and V*(«) is a row
basis for each member of L,.

THEOREM 1.11. Let D be a =-class of &y containing reduced
relations. Then the members of D have the same row rank r and
column rank c.

Proof. Let a be a reduced relation in D where a has row rank
r and column rank ¢. Then r =|V*(@)| and ¢ =|V*(@a™)| and by
Lemma 1.10 and its dual each member of L, has row rank » and
each member of R, has column rank ¢. Now let e D. Then there
exists 7e D such that g.<°7 and v“Za. By Lemma 1.7, each member
of R, is row reduced so 7 has a row basis and has row rank » since
7X = aX. Thus g has row rank » since g<¥v. Also there exists
0e D such that B#d and 6.«a. Then 6 is column reduced with
column rank ¢ and so B8 has column rank ¢, by Lemmas 1.7 and 1.10.

Notice that elements having the same row rank and some column
rank need not be <r-equivalent. For example, w\¢ = {(z, ¥) € X X X]|
x # 9} and ¢ have the same rank | X| but are not in the same <-class.

We conclude this section with some remarks concerning ideals
in <%, X finite.
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Let |X|=n>2 and let .9, denote the full transformation
semigroup on X. Notice that each ae 77 is column reduced. The
column rank of a is |Xa| as defined in [1, vol. I, p. 52]. Now « is
row reduced if and only if it is a permutation.

The ideal structure of 7% is quite simple. Each ideal is principle
and the ideals form a principal series [1, vol. I, pp. 74-75]. Also
T 18 semisimple since I* = I for each ideal I. In fact, basically
the same ideal structure holds for F?;, the semigroup of partial
transformations on X. However, the ideal structure of < is not
quite so simple. For example, consider the principal ideals J(w\¢) =
F(W\0)Fy and J(a) = Fyasy where a = cU{(z, )} and = y. Then
the only elements in J(w\¢) having rank % are those in the &r-class
containing w\¢, {w\o|oe Sy}. Thus a¢J(®w\) and similarly w\¢¢ J(«).
Thus the ideal I = J(w\¢)UJ(«) is not principal. Since J(w\¢) £ J(«)
and J(a) & J(w\¢), the principal ideals of <z do not form a chain.
In fact, they do not even form a lattice. Moreover, since [J(w\¢)]* #
J(w\¢), &, is not semisimple when | X| > 2.

Finally, another major difference in the structures of <%, and
7y is that each maximal subgroup of .7% [and of & ,] is a symmetric
group, whereas the class of maximal subgroups of semigroups <%
of binary relations includes all finite groups [6].

2. Regularity in <#%. An element ¢ in a semigroup T is said
to be a regular element if and only if ac aTa; otherwise, a is called
wrregular. It has been shown that in any <r-class D of T, either
every element is regular or else every element in D is irregular. If
the elements of D are regular then D is called a regular <-class.
Moreover D is regular if and only if every & and <# class of T
in D contains an idempotent element [1, vol. I, p. 58].

Regularity in <&, was first investigated by K. Zaretskii in [11]
and [12]. He showed that a relation ae <%, is regular if and only
if the collection of sets V(a) = {Aa|A = X} forms a completely dis-
tributive lattice under inclusion. J. Yang has a shorter proof of
this result in [10]. However, these characterizations can be rather
difficult to use. In this section we relate regularity to row and
column rank and show that if « is regular then its row rank and its
column rank must be the same. However, this condition is not
necessary as we shall show. We also consider idempotent relations
and derive a useful test for regularity.

We first relate the ranks of products of relations to the ranks
of the factors.

LEmMmA 2.1. Let a, Be F; and suppose « and B have row and
column bases respectively. Let r be the row rank of a and ¢ be the
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column rank of 8. Then if aB has row and colummn bases, the row
rank of ¢B < r, and the column rank of ag < c.

Proof. Now a¥a’ and pZR where o is row reduced and g’
is column reduced. Then since & is a right congruence and <7 is
a left congruence on %, apza’l so that ag and a’'p’ have the
same row and column ranks by Theorem 1.11. Moreover r = |&’X]|
and ¢ = |Xg'|. Then row rank ag = row rank &'f < |dgX|<
|’ X| =r and column rank ag = column rank a'p < |Xa'Q'| =<
| Xp'| = c.

It is possible, however, for the row [column] rank of the product
to be greater than the row [column] rank of the last [first] factor.

Now if Y & X then the map ¢ from <7, into <#; given by ag =
{(a,b) e X x X|(a, d) € a} is an isomorphism. Thus we have the fol-
lowing lemma.

LEMMA 2.2. Let X and Y be sets where | Y| < | X|. Then there
1s an 1somorphism of &y into Fy.

An element ae <%, is regular if and only if the <r-class D con-
taining « is regular. But D is regular if and only if it contains an
idempotent. Thus it is important to investigate idempotent relations.

LEMMA 2.3. Let D be a regular <-class of & and assume D
contains reduced elements. Then D contains a reduced idempotent.

Proof. Using Theorem 1.8, we see that D must contain a re-
duced relation a where either Xa S aX or aX < Xa. Suppose
Xa S aX and let «aX =Y. A dual argument holds when aX & Xa.
Then since |Y| < |X|, there is an isomorphism ¢ of <%, into Z.
Let « be the pre-image of & under ¢. Then « is row and column
reduced and has no empty rows. Then each element in the &“-class
L' of <%, containing «’ is row and column reduced. But since « is
regular so is «, and thus L’ contains an idempotent ¢. Then ¢ =
¢'¢ is a reduced idempotent in D.

We now characterize the class of reduced idempotents. By a
partial order relation in <& we mean a relation a such that for
some subset Y of X,«a £ Y x Y and « is a partial order relation on
Y. That is, ana* = ¢, and « is transitive.

THEOREM 2.4. The class of reduced idempotents in By coincides
with the class of partial order relations on subsets of X.
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Proof. If a is a reduced idempotent then (xa)or = wa implies
ze Xa for all e aX. Then aX & Xa, and similarly a(ax) = ax im-
plies Xa S aX. Let Y = Xa = aX. Then xexa for all x ¢ Y implies
ty S a 50 a is reflexive on Y. Now if (x, ¥)e @ where x = y, then
since xa # ya there exists ze X such that either (x, 2) e« and (y, 2) ¢ «
or (x,2) ¢« and (y, 2)€a. But this would be impossible if (y, x)e a
since an idempotent relation is always transitive. Thus « is anti-
symmetric and is therefore a partial order relation on Y.

Conversely, suppose «a is a partial order relation on a subset Y
of X. Then «® = « since it is reflexive and transitive on Y. Now
if xa« = Ha for some xe¢ Y and HZ Y, then < ha for some he H.
But % e aa implies that (x, &) and (%, ) ca. Thus & = & and so « is
row reduced. Similarly, « is column reduced.

We show next that if a regular relation has row and column
bases, then its row and column rank must be equal.

THEOREM 2.5. Let D be a regular <-class containing reduced
relations and suppose the elements in D have row rank r and column
rank ¢. Then r = c.

Proof. By Lemma 2.3 and Theorem 2.4, D contains a reduced
idempotent o where Xa = a«X = Y. Now since « is reduced, |aX| = r
and |Xa|=c. Thus r =c.

COROLLARY 2.6. Let « be a relation in & having row rank r
and colummn rank c¢. Then a is regular only if r = c.

We point out that the converse of Corollary 2.6 does not hold.
In particular, w\¢ is irregular for |X| > 2 and it has row rank =
| X| = column rank. The fact that w\¢ is irregular for [X| > 2 will
follow from Corollary 2.10.

THEOREM 2.7. FEach regular <-class of %y, X finite, containing
reduced relations contains an idempotent a whose relation matrix
A 1s in lower triangular form, that s, where A has the form

100 . « « 0

*x 10 « .« . 0

¥ 0k 1 .+ o« <« 010
A=

**; 17
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where r 1s the row and column rank of «.

Proof. By Theorem 2.4, D contains a partial order relation B
on a subset Y of X. Then » = |Y]| is the rank of the members of
D, and since B is a partial order on Y, there is a permutation o of
Y such that the relation matrix for the idempotent a = pBp~* is in
lower triangular form. The fact that a € D follows from Theorem 1.8.

We now obtain a simple criterion for a reduced relation to be
regular. It becomes quite useful in case X is finite.

THEOREM 2.8. Let a be a reduced relation in Zy. Then « is
regular if and only if there exists a one-to-one partial transformation
o of X, such that a = apa.

Proof. If a is regular then the <r-class containing contains a
reduced idempotent ¢ by Lemma 2.3. Then by Theorem 1.8, there
exist one-to-one partial transformations 6 and ¢ of X such that ¢ =
oao. Then dao = daodao so that & = a(od)a. Letting 06 = p we have
our result.

Since each regular <r-class of %%, X finite, contains reduced re-
lations, the following corollary gives a useful criterion for determining
if a or-class is regular.

COROLLARY 2.9. Let X be finite. Then a reduced relation ac &y
18 regular if and only if a = apa for some o€ Sy.

Finally, the following corollary identifies another class of irregular
relations.

COROLLARY 2.10. If @ =+ [] s a reduced relation with the pro-
perty that xa S ya implies x = y for all =, ye aX, then a is either
a one-to-one partial transformation of X or is irregular.

Proof. Suppose « is regular. Then by the theorem «a = apa
where p is a one-to-one map from Xa onto aX. Now ya = y(apa)
for all ye aX, so that if © € y(ap) then za S ya, whence 2 = y. Thus
y(ap) = {y} and therefore ap = ¢,y. This implies a = p!, so the
corollary is proved.

As an illustration of this corollary we see that the relation with
matrix
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S = O -
=H o = O
H o O
S = = O

is necessarily irregular.

The authors wish to thank the referee for his helpful comments.
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the subject by Russian authors.
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