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ALGEBRAS WITH MINIMAL (
LEFT IDEALS WHICH ARE HILBERT SPACES

BRUCE A. BARNES

This paper gives a necessary and sufficient condition that
certain topological algebras A (normed algebras and algebras
which are inner product spaces) be left (right) annihilator
algebras, It is assumed that the socle of A is dense in A and
that a proper involution * is defined on the socle, Then the
necessary and sufficient condition is essentially that the mini-
mal left (right) ideals of A be complete in the norm on A and
be a Hilbert space in an equivalent norm,

We prove a useful preliminary result in § 2. In § 3 we deal with
the question of when a normed algebra A is a left or right annihilator
algebra. In §4 we consider this same question when A is a topolo-
gical algebra in a topology defined by an inner product. This section
is motivated by the work of P. Saworotnow and B. Yood on such
algebras (see, for example, [5] and [9]). In the final section we
generalize the well known result of Bonsall and Goldie that B* an-
nihilator algebras are dual.

Notation and terminology. A is always a complex algebra. S,
denotes the socle of A, when this exists. If E is a subset of A,
let L(E) and R(E) denote the left and right annihilator of E re-
spectively (L(F) = {ue Aluv = 0 for all ve E}). A is a left (right)
annihilator algebra if for every proper closed right (left) ideal M of
A L(M) # O(R(M) # 0) and L(A) = 0 (R(A) = 0). A left (right) ideal
M of A is a left (right) annihilator ideal if M = L(E) (M = R(E)) for
some subset K of A. If A is semi-simple, A4 is a modular annihilator
algebra if A/S, is a radical algebra; see [8]. Annihilator and dual
algebras are defined and discussed in [4, pp.96-107].

An involution * defined on A (or S,) is proper if wu* = 0 implies
u = 0. uis a self-adjoint if v = u*. We denote the set of all self-
adjoint minimal idempotents of A by H. If * is proper on S,, then
minimal left (right) ideals of A will have the form Ah (hA), he H,
by [4, Lemma 4.10.1, p. 261].

Let &7 be a Hilbert space. <& (5#) is the algebra of all bounded
operators on 57, # (5#) is the subalgebra of <#(5#) consisting of
all operators which have finite dimensional range, and & (2#) is the
algebra of compact operators on 5~ If Te < (5#), we denote the
operator bound of 7 as |T|. Given u, ve 5%, we define an operator
(w|v) on & by (w|v)(w) = (w, w)v for all we 22 More generally
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if X is a normed linear space and X’ is the normed dual of X, given
re X and fe X’ we define an operator (f|x) on X by (f|x)(y) = f(y)x
for all ye X.

2. Preliminary results. Let 57 be a Hilbert space. Assume
that B is a subalgebra of & (5#) with .7 (5#) c B. Furthermore,
assume that B is a topological linear space with a topology .7~ such
that

(i) The maps « — xy and © — yx are continuous on B for all
ye B;

(ii) & (&7) is dense in B in the topology .7~;

(iii) If {u,}c&# and u,— 0 in 57, then (w|u,) — 0 in 7 for
any we S~/

For 9% a closed subspace of 57, define

F () ={TeB|T(eF)c X} .

THEOREM 2.1. Assume B is as given above. Then B is a left
annihilator algebra. Also every right annihilator ideal of B 1is of
the form B(2¢7) for some closed subspace .5¢° of 5#. If Te TB for
all Te B, then every closed right ideal of B is a right annthilator
rdeal.

Proof. Assume that N is a closed right ideal of B. Let
S ={Tu|TeN,uec 2z} .

Assume that w = T(u) + S(v) where u, ve 57 and T, Se N. Assume
that « # 0, and let A = |u]; (|- |, the norm on 5#). Then

A/MN)Su|v)e N

and (T + (1/A)S(%|v))(w) = w. This proves that _# is a subspace of
sz, Let 2 =_Z The proof of [4, Lemma 2.8.24, p. 104] implies
that R(L(N)) = #(2"). If ve 2%, then there exists {u,} c 5 and
{T,} c N such that T,(w,) = v,— v in S~ Then given any we 5%,
(wlv,) = T(w|u,) € N for all n. By (iii) (w|v,) — (w]|v) in the topology
.7 . Thus whenever ve % and we 57, (w|v)e N. Using this re-
sult, the proof of [4, Lemma 2.8.26, p. 105] implies that

R(L(N))-BcC N .
Therefore if L(N) = 0, B2C N, and it follows that &% (£#) c N. Then
by (ii) N = B. This proves that B is a left annihilator algebra.
If TeTB for all Te B, then whenever Te R(L(N)), Te TBC

R(L(N))-Bc N. Therefore N = R(L(N)), so that N is a right an-
nihilator ideal.
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A theorem similar to Theorem 2.1 can be proved concerning the
left ideals of B. Assume that & (5#¥)c Bc <#(5#) and that B
satisfies (i), (ii), and

(iv) If {w,})c s~ and u,— 0 in 57, then (u,|v) — 0 in the to-
pology .7~ on B for all ve 57

Define B* = {T*|T e B}. Topologize B* with the topology
T *={U*UeT}.

Then & (57) c B* < #(57) and B* satisfies (i) and (ii). But also
by (iv) and the fact that (v|w)* = (w|v) for all v, we 57, B* satis-
fies (iii). Then the conclusions of Theorem 2.1 hold for B*. There-
fore B* is a left annihilator algebra and every right annihilator ideal
is of the form {T e B*|T(s#) < ¢} for some closed subspace . of
&# Let N be a proper closed left ideal of B. Then N* is a proper
closed right ideal of B*. Therefore there exists Te B, T # 0, such
that T*N* = 0. Then R(N) # 0. Now assume that N is a left an-
nihilator ideal of B. Then N* is a right annihilator ideal of B*
which implies that N* = {T e B*|T(5#) c 27 '} for 2 some closed
subspace of 5~ Then it is not difficult to verify that

N = {TeB|T(5) = 0} .

Finally if Te BT for all Te B, then Te TB* for all Te B*. This
implies that when T'e BT for all Te B, then every closed left ideal
of B is a left annihilator ideal (by Theorem 2.1 again).

Combining these remarks and Theorem 2.1 we have the follow-
ing result.

THEOREM 2.2. Assume that & (57F)c BC Z(5#) and that B
satiﬂi_es (i)-(iv). Then B is an annihilator algebra. If in addition
TeTB and Te BT for all Te B, then B is dual.

3. Normed algebras. We assume throughout this section that
A is a semi-simple modular annihilator algebra, that there is a proper
involution * defined on S,, and that A is a normed algebra with
norm ||-||. Recall that H denotes the set of self-adjoint minimal
idempotents of A. When & e H, we define a functional f, on S, by
the rule f,(v)h = huh. By the proof of [7, Th. 5.2, p. 358] we have
that f, is a positive hermitian functional on S,. We introduce an
inner product on the minimal left ideal A% by the usual definition,
(uh, vh) = fi((vh)*uh), w,ve A. We call this inner product the can-
nonical inner product on A% and denote the corresponding norm by



540 BRUCE A. BARNES

|+].. We define a *-representation of S, on the inner product space
Ah by w— T}k ueS,, where T}!(vh) = uvh for all ve A. As shown
in the proof of [7, Th. 5.2, p. 358], the operators T} are bounded on
Ah. Also by [7, Lemma 7.1, p. 858] T has finite dimensional range
on Ah for all we S,. In a similar fashion a cannonical inner product
can be introduced on the minimal right ideal hA4, and a *-representa-
tion of S, can be constructed into <Z(hA).

Since S, is a modular annihilator algebra with proper involution
*, then by [1, (1.8), p. 6] there is a unique norm |-| on S, with the
property that [uwu*|= |u|* for all ueS,. We call |-| the operator
norm on S,.

THEOREM 3.1. Assume that A is a left (right) annihilator al-
gebra in the morm ||-||. Also assume that there exists K > 0 such
that K||u]| = |u| for all weS,. Then for any he H, Ah (hA) is a
Hilbert space in the cammonical norm |-, and ||-|| and |-|, are
equivalent on Ah (hA).

Proof. We consider only the case where A is a left annihilator
algebra. Also it is sufficient to prove the theorem when A is primi-
tive. For in the general case given ke H, Ah is a minimal left ideal
of some minimal closed two sided ideal M of A. Then M is primitive
and by the proof of [4, Th. 2.8.12, p. 99] M is a left annihilator
algebra. Therefore assume that A is primitive. We shall show that
S, is a left annihilator algebra. If N is a proper closed right ideal
of S,, then N, the closure of N in A, is a proper closed right ideal
of A. Then L(N) # 0, and therefore there exists a minimal idem-
potent ec L(N). Then ecS, and eN =0. Thus S, is a left an-
nihilator algebra.

Assume 7 e H. Note that |uh|* = |(wh)*uh| = |uh}|h| = |uh|; so
that |-| and |-|, coincide on Ak. By hypothesis K|lu|| = |u| for
all we S,, and therefore K||uh|| = |uh|, for all we A. We prove that
l|-]| and |-|, are equivalent on Ak. Since A is primitive, the re-
presentation u — T} of S, on Ah is faithful. Let & = {Tr|ueS.
By the proof of [4, Lemma 2.8.20, p. 101] (f|x)e & whenever f is
a continuous linear functional on A% with respect to || || and € Ah.
It follows that any such functional f must be continuous on A. with
respect to |-|,. Let V be the normed dual of Az with respect to
||+|l, and let B be the unit ball in Ak with respect to ||,. For any
fe V,sup,es | fix)] < 4 . Then by the Uniform Boundedness Theorem
applied to the set B; sup,.p sup, ;< | fiz)| £ J for some finite number
J. It follows that ||z|| < J|xz|, for all xc Ah. Therefore ||| and
|+ |, are eguivalent on Ah.

It remains to be shown that Ah is a Hilbert space in the norm
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[+],» Since K||u|| = |u| for all we S,, S, is a left annihilator algebra
with respect to |-|. Let 5# be the Hilbert space completion on Ah.
Given we 57, we define f(x) = (z, w) for xe S~ Choose uhe Ah
such that |uh|, = 1. (f|uh)e & by the proof of [4, Lemma 2.8.20,
p. 101]. Therefore (f|uh)* e &#. For any x e Ah,

(z, w) = ((f |wh)x, uh) = (2, (f |uh)*uh). Therefore
w = (f|uwh)*(uh) e Ah.
Thus o7 = Ah.

Using the previous result, we give an example of a norm on
Z (57) in which &7 (£#) is not a left annihilator algebra. Let 57
be an infinite dimensional Hilbert space and denote the norm on 57
by ||, Let ||-]| be any norm on 5# such that |z|, < ||x|| for all

xe 7, and |-, and ||-|| are inequivalent on S~ If f is any dis-

continuous linear functional on 257, then ||z|| = |x|, + |f(®)] is an
example of such a norm. Every functional on 5# continuous with
respect to |-|, is continuous with respect to [|-||. It follows that

every operator T'e & (5#) is bounded in the norm

Tl = sup [Tz .
lalist

We note that there exists K> 0 such that K||T|| = |T| (J]-| the
operator norm on & (7)) by [4, Th. 2.4.17, p. 69]. Now fix ue 57
such that |%|, = 1. Let N be the minimal left ideal of & (5#) de-
fined by N = {(u|v)|ve &#}. v— (u|v) is an isometry of 57 in the
norm ||, onto N in the operator norm since |(u|v)| = |ul,|v], = |0,
To verify that & (£#) is not a left annihilator algebra in the norm
|| 1], it is sufficient to prove that the map v — (u|v) is a bicontinuous
map from 5# in the norm ||-|| onto N in the norm ||:||. For then
[|+] and || are inequivalent on N, and therefore Theorem 3.1 gives
the result.

I}l = sup [[(u[0)@)] = sup @ wlloll < o],

and
(o)l = [[(w]v)@/llwD]] = Q/wDlv] .

This completes the example.

Now we prove a converse of Theorem 3.1.

THEOREM 3.2. Assume that S, is dense tn A. Assume that for
every he H Ah (hA) is a Hilbert space in the nmorm |-|, and that
[«], and ||+]|| are equivalent on Ah (hA). Then A is a left (right)
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annihilator algebra. If in addition wueuA (ueAu) for all ue A,

then every closed right (left) ideal of A is a right (left) annihilator
1deal.

Proof. We assume that for every he H Ah is a Hilbert space in
the norm |:|,, and that |[-|, and ||-|| are equivalent on Ah. First
suppose that A is primitive. Given he H, then v — T} is a faithful
*-representation of S, on the Hilbert space Ah. Given any u, v,
we A, Tt wn(wh) = (wh, vh)(wh) = (vh|uh)(wh). Therefore all the
operators of the form (vh|uh) are in the image of the representation
w— Tk It follows that & (4k) is in the image of this represen-
tation. By [4, Th. 2.4.17, p. 69] there exists K > 0 such that
Kl||lu|| = |Tk| for all weS,. Then since S, is dense in A, there is
a unique extension of the representation v — T} of S, to a representa-
tion w— T, of A onto a subalgebra B of <#(Ah). Therefore

F(Ah)c BC #(Ah) .

We consider B normed by ||-|| in the natural way, ||T.|| = ||»]|| for
ue A. B clearly has properties (i) and (ii) listed previous to Theorem
2.1. If |u,h|;— 0, then by hypothesis ||u,h||— 0, and therefore

[[(wh|wh)H = || T(u,,h)(wh)* [[—0

for any we A. This proves that B also satisfies (iii). By Theorem
2.1, B, and hence A, is a left annihilator algebra. If in addition
ueud for all we A, then again by Theorem 2.1, every closed right
ideal of A is a right annihilator ideal. This proves the theorem when
A is primitive. In the general case let {M,|a e I} be the set of all
minimal closed two sided ideals of A. M, is primitive for each a e I,
and therefore the theorem holds for each M,. Since A has dense
socle, A is the topological sum of the M,, «acI. Then by the proof
of [4, Th. 2.8.29, p. 106], the theorem holds for A.

4. Algebras which are inner product spaces. Throughout this
section we assume that A is a semi-simple modular annihilator algebra
which is an inner product space with inner product (-, :). Also we
assume that the maps 2 — xy and 2 — yx are continuous on A for
all ye A. An element x has a left (right) adjoint if there exists
we A such that (zy, 2) = (y, w2)((yz, 2) = (x, 2w)) for all y,ze A. If
x e A has a left (right) adjoint, then it is unique. Assume that every
element w e S, has a left adjoint which we denote by w*. Suppose
that w*u = 0. By [1, (2.2), p. 6] there exists an idempotent ec A
such that 4 = ue. Then 0 = (u*u,e) = (4, w) so that w = 0. This
verifies that * must be proper on S,. Similarly if every element in
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S, has a right adjoint, then this adjoint must be proper on S,. We
denote the norm determined on A by the inner product by |- |..

THEOREM 4.1. Assume that every element we S, has a left (right)
adjoint w* and that A is a left (right) annihilator algebra. Then
for every he H, Ah (hA) is a Hilbert space im the morm |-|, and
[+]: and ||, are equivalent on Ah (hA).

Proof. We prove the “left” part of the theorem only. As in
the proof of Theorem 3.1, it is sufficient to prove the theorem when
A is primitive. Therefore assume A is primitive. Given he H,

(uh, vh) = ((vh)*uh, h) = (wh, vh)| L |}

for all u,ve A. Therefore |-|, and ||, are equivalent on Ah. u —
T! is a faithful representation of S, on Ah. Let & = {T}|lueS,.
By the same argument as in the proof of Theorem 3.1, S, is a left
annihilator algebra with respect to |-[,. Then by the proof of [4,
Lemma 2.8.20, p. 101] (f|uh)e & for all ue A and all functionals f
continuous on Ak with respect to |-|,. Then the argument in the
last paragraph of the proof of Theorem 3.1 implies that Ak is a
Hilbert space in the norm |- |..

Now we prove a result in the other direction.

THEOREM 4.2. Assume that every element w e S, has a left (right)
adjoint w*. Assume that A has demse socle in the norm |-}, and
that for every he H, Ah (hA) 1s a Hilbert space in the norm |-,
Then A is a left (right) annihilator algebra. If in addition ueuA
(we Au) for all ue A, then every closed right (left) ideal of A is a
right (lefty annihilator ideal.

Proof. We prove the “left” part of the theorem only. It is
sufficient to prove that the theorem holds for each minimal closed
two sided ideal M of A. For then by the proof of [4, Th. 2.8.29,
p. 106] the result follows for A. Therefore assume that M is a
minimal closed two sided ideal of A. Choose he HN M. Then u—
T} is a faithful representation of M on the Hilbert space Ah. T"
is a bounded operator on Ak since u — ux is a continuous map on A.
Let B={T}ueM}. We norm B by |Ts|, = |u], for we M, Given
wh and vh, then T¢, .um€ B, and

Tuman(wh) = (wh, vh)uh = (vh|uh)(wh)
for all whe Ah. Therefore & (Ah)c B. B satisfies properties (i)
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and (ii) given previous to Theorem 2.1 by hypothesis. Also as noted
in the proof of Theorem 4.1, |uk|; = |uh|3|h|i for all we A. There-
fore if |u,h],— 0, then |u,k|,— 0, so that for any ve A, |u,h(vh)*|,—
0. It follows that |(vh|u.h)|. = | T »ywn+l.— 0. Therefore B satis-
fies (iii). Then Theorem 2.1 applies and this completes the proof.

We apply the previous theorems to right-modular complemented
algebras as defined by B. Yood [9, p. 261]. Let A be an algebra
with an inner product (-, :). A is a right-modular complemented
algebra if

(a) the maps z— 2y and x — yx are continuous for all ye A4,

(b) any right or left ideal I for which I+ = {0} is dense in A
(where I+ = {xe A|(%,y) = 0 for all yel}),

(¢) the intersection of the closed modular maximal right ideals
of Ais {0}, and M* is a right ideal for each closed modular maximal
right ideal M.

We prove the following theorem.

THEOREM 4.3. Assume that A is a modular annihilator algebra
and a right-modular complemented algebra. Then A is an annihila-
tor algebra if and only if every minimal left or right ideal of A is
a Hilbert space im the morm determined by the inmer product.

Proof. First note that A is semi-simple by property (c). Since
A is a modular annihilator algebra, then by [8, Lemma 3.3, p. 38]
every modular maximal right ideal M of A is of the form (1 — ¢)A
where ¢ is a minimal idempotent of A. Then by (a) M is closed.
Similarly every modular maximal left ideal of A is closed. Also by
[9, Th. 2.1, p. 262] K* is a right (left) ideal for all right (left) ideals
K of A.

Assume that every minimal left or right ideal of A is a Hilbert
space in the norm determined by the inner product. Given K a
minimal right ideal of 4, then N = K* is a right ideal. Also N + K
is dense by (b). Since K is complete, it follows that N + K = A.
Therefore N is a modular maximal right ideal of A. By the proof
of [8, Th. 4.5, p. 44] every element of N* = K has a left adjoint.
Since K was an arbitrary minimal right ideal, then every element
in S, has a left adjoint. A similar proof shows that every element
of S, has a right adjoint. A has dense socle by (b). Therefore by
Theorem 4.2, A is an annihilator algebra.

Now assume that A4 is an annihilator algebra. Take K minimal
right ideal of A. Then N = K*' is a proper closed right ideal of A.
Since A is an annihilator algebra, there exists a modular maximal
right ideal M such that Nc M. K + N is a dense right ideal of A
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by (b). Assume that x € K**. Then there exists {x,} c N and {y,} C
K such that z, + y,— ®. Then

Ixnlz = |(xn + yn - X, x’n/‘xnlz)l é lxn + Yun — xlz"’o .

Therefore y, — = and since K is closed, x ¢ K. It follows that K =
K+t. Now K'c M, and therefore M* = K. Since M* is a nonzero
right ideal of A, M+ = K. Then every element in K has a left
adjoint by the proof of [8, Th. 4.5, p. 44]. It follows that every
element in S, has a left adjoint, and by a similar proof every ele-
ment in S, has a right adjoint. Then Theorem 4.1 implies that every
minimal left or right ideal of A4 is a Hilbert space in the norm de-
termined by the inner product.

5. Algebras dual in the operator norm. A well known theorem
of Bonsall and Goldie states that an annihilator B*-algebra is dual.
This was generalized by B. Yood who proved that any modular an-
nihilator B*-algebra is dual; see [8, Th. 4.1, p. 42]. In this section
we generalize this result still further. We assume throughout that
A is a modular annihilator algebra with an involution * and a norm
|+] with the property that |u*wl = |u[* for all ue 4 (such a norm
always exists on A when A is a normed algebra and * is proper by
[7, Th. 5.2, p. 358]). We call || the operator norm on A.

THEOREM b.1. Assume that A has the properties given above.
Then 1f every minimal left ideal of A is complete im the operator
norm, A 1s dual.

We prove three lemmas.

LEMMA 5.2. If every minimal left ideal of A 1s complete in
the operator morm, then there is an isometric *-representation u —
T, of A onto a subalgebra B of the compact operators on a Hilbert
space 57 with the following properties:

(1) S# is the Hilbert space direct sum of a set of closed sub-
spaces 57, el where I is some index set.

(2) If TeB, then T is reduced by each 57, acl (i.e.,

T(27) c 57, and T(S£4Y) C SA4°
all ael).
(3) If Te # (7)) and T is reduced by =7, for all acl, then
TeB.
(4) BN .# (&) is dense in B.

Proof. Let {M,|aec I} be the set of minimal two sided ideals of



546 BRUCE A. BARNES

A, I some index set. For each ac I, choose an element h,c HN M,.
Let 22 = Ah,. Ah, is an inner product space in the cannonical
inner product. Also |uh,.|* = |(wha)*(uh,)| = |uh,[;. Therefore |-,
coincides with |-| on Ah,. Therefore 57, is a Hilbert space. Let
57 be the Hilbert space direct sum of the 57, aecl. For each «
we have a *-representation w— Tj)« of A on Ah, = 57. |[Ti| <
|u| for all ue A, «el. Then we define w— T, a representation of
A on 57 in the usual fashion, T,(Sie;Valte) = Diaer Tha(vohy). ©w—
T, is a faithful *-representation of A onto a subalgebra B of <Z(57).
By [1, (1.3), p. 6] |u| = |T,| for all ue A. T, has finite dimensional
range for all we S, by [7, Lemma 5.1, p. 358]. Also the socle of A
is dense in A by the proof of [2, Lemma 2.6, p. 287]. It follows
that 7 (5#) N B must be dense in B and that Bc & (5#). It re-
mains to prove (3). By Theorem 3.2 A is a left annihilator algebra,
and by the proof of that theorem &7 (5£) C {Tlt«|ue M,}. Assume
that Te & (£7), T(5%) C 57, and T(57,*) < 5#4,* for all acI. Then
T(£#) = 0 for all but a finite number of ac I, o, a,, +-+, @,. Then
there exists w,e M,,, 1 < k < n, such that T)z(x) = T(x) for all ze
&%, Let u=u,+ -+ +u, Then T,(x) = T(x) for all x ¢ 5~ This
proves (3).

LEMMA 5.3. Let B be as in Lemma 5.2. Then Te TB and Te
BT for all TeB.

Proof. Assume that Te B. Then T*T is a compact operator on
the Hilbert space 5~ Let {\,} be the sequence of distinct nonzero
eigenvalues of T*T. Let {E,} be the sequence of projections onto
the corresponding eigenspaces. For all a« € I denote by F, the projec-
tion onto the subspace £#,.. By hypothesis F,T*T = T*TF, for all
ael. It follows that FLE, = E,F, for all «eI and all k. By (3) of
Lemma 5.2 E,e Bforall k. Then |T — 3\, TE, | = (T — X3, TE)*
(T -V TE)| = |T*T — - ME,|. Since T*T = Xi= MmE, by the
Spectral Theorem for compact operators, then TV, E,)— T as N—
+co. This proves Te TB. A similar argument using TT* in place
of T*T shows that T e BT.

LEMMA b.4. Assume that 5% is a Hilbert space. Then & ()
18 dual wn the operator morm.

Proof. Assume that M is a closed right ideal of &# (.2¢°), and
let N= M+ L(M)*. N is a right ideal of & (#7). Let

S ={Tu|TeN,uec>}.
As in the proof of Theorem 2.1, _# is a subspace of 220 Ifw 1L_Z
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then for every ue 2% and Te N, (w|w)T(u) = (Tu, w)w = 0. There-
fore (w|w)N = 0. But then (w|w)M = 0 and L(M)(w|w) = 0. There-
fore |w}(w|w) = (w|w)* = 0 so that w = 0. This proves that _# is
dense in 277 Assume v, we 2. Choose {u,} € .2 and {T,} ¢ N such
that T,.(u,) = v, —v. Then T,(w|u,) = (w|v,) — (w]|v) so that (w|v) e
N. Therefore & (7)) = N. Take Te R(L(M)). T = T, + T, where
T.e Mand T,e L(M)*. Then T;T =0 and T¢T, =0. Thus T*T, =
0 which implies 7, = 0. It follows that R(L(M)) = M. If M is a
closed left ideal of & (2¢7), then L(R(M)) = M by taking involutions.
Therefore 7 (2¢7) is dual.

Now we complete the proof of Theorem 5.1. By Lemma 5.2. it
is enough to prove that an algebra B with the properties listed in
that lemma is dual. Let F, be the projection of 2# onto 57, for
all aecl. Set S,={Tes ()| TF,=F, T =T}. By Lemma 5.2
S,c B. Furthermore & (5%, is isometrically isomorphic to S,.
Therefore S, is dual by Lemma 5.4. Also S, is a two sided ideal of
B for each acl, and B is the topological sum of the S,, «cl. By
Lemma 5.3 TeTB and TeBT for all Te B. Then it follows from
the proof of [4, Th. 2.8.29, p. 106] that B is dual.
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