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ALGEBRAS WITH MINIMAL
LEFT IDEALS WHICH ARE HILBERT SPACES

BRUCE A. BARNES

This paper gives a necessary and sufficient condition that
certain topological algebras A (normed algebras and algebras
which are inner product spaces) be left (right) annihilator
algebras. It is assumed that the socle of A is dense in A and
that a proper involution * is defined on the socle. Then the
necessary and sufficient condition is essentially that the mini-
mal left (right) ideals of A be complete in the norm on A and
be a Hubert space in an equivalent norm.

We prove a useful preliminary result in § 2. In § 3 we deal with
the question of when a normed algebra A is a left or right annihilator
algebra. In § 4 we consider this same question when A is a topolo-
gical algebra in a topology defined by an inner product. This section
is motivated by the work of P. Saworotnow and B. Yood on such
algebras (see, for example, [5] and [9]). In the final section we
generalize the well known result of Bonsall and Goldie that B* an-
nihilator algebras are dual.

Notation and terminology. A is always a complex algebra. SA

denotes the socle of A, when this exists. If E is a subset of A,
let L(E) and R(E) denote the left and right annihilator of E re-
spectively (L(E) = {u e AI uv — 0 for all v e E}). A is a left (right)
annihilator algebra if for every proper closed right (left) ideal M of
A L(M) Φ 0(R(M) Φ 0) and L(A) = 0 (R(A) = 0). A left (right) ideal
M of A is a left (right) annihilator ideal if M = L(E) (M = R(E)) for
some subset E of A. If A is semi-simple, A is a modular annihilator
algebra if A/SA is a radical algebra; see [8]. Annihilator and dual
algebras are defined and discussed in [4, pp.96-107].

An involution * defined on A (or SA) is proper if uu* = 0 implies
u = 0. u is a self-adjoint if u = u*. We denote the set of all self-
adjoint minimal idempotents of A by H. If * is proper on SA, then
minimal left (right) ideals of A will have the form Ah (hA), h e H,
by [4, Lemma 4.10.1, p. 261].

Let Sίf be a Hubert space*. &(3(f) is the algebra of all bounded
operators on έ%f, ^{Sίf) is the subalgebra of ^(έ%f) consisting of
all operators which have finite dimensional range, and cέ?(£ίf) is the
algebra of compact operators on Sίf. If Γ e ^ ( ^ ) , we denote the
operator bound of T as \T\. Given u,vz,§ίf, we define an operator
(u\v) on έ%f by (u\v)(w) = (w, u)v for all w e έ%f. More generally
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if X is a normed linear space and X' is the normed dual of X, given
x e X and fe X' we define an operator (f\x) on X by (f\x)(y) = f(y)x
for all i / e l

2* Preliminary results* Let ^g^ be a Hubert space. Assume
that B is a subalgebra of &{2ίf) with ^{§ίf) c 5. Furthermore,
assume that ΰ is a topological linear space with a topology ^~ such
that

( i ) The maps x —> xy and ίc —> 2/α: are continuous on B for all
yeB;

(ii) ^{Sίf) is dense in B in the topology ^ "
(iii) If {un} c < ^ and un — 0 in <^, then (w | un) -> 0 in ^ " for

any w e ̂ ^
For J%Γ a closed subspace of §ίf, define

THEOREM 2.1. Assume i? is as given above. Then B is a left
annihilator algebra. Also every right annihilator ideal of B is of
the form &(<3T) for some closed subspace 3T of Sίf. IfTeTBfor
all Te B, then every closed right ideal of B is a right annihilator
ideal.

Proof. Assume that N is a closed right ideal of B. Let

= {Tu\TeN, u

Assume that w — T{u) + S(v) where u, v e £ίf and T, Se N. Assume
that u Φ 0, and let λ = \uf% (| |2 the norm on £ίf). Then

(l/X)S(u\v)eN

and (T + (l/X)S(u\v))(u) = w. This proves that JF is a subspace of
3lf. Let ^ T = , ^ " The proof of [4, Lemma 2.8.24, p. 104] implies
that R(L(N)) = ^T(JT). If v e JT, then there exists K } c ^ T and
{Γn} c AT such that Γn(wn) = vn-+v in gέf. Then given any w e Sίf,
(wIvΛ) = Tn(w\un)eNfor all n. By (iii) (w|vn) —+{w\v) in the topology
J7~. Thus whenever v e J%Γ and te; e Jg^, (w\v)e N. Using this re-
sult, the proof of [4, Lemma 2.8.26, p. 105] implies that

E(L(N))'BdN.

Therefore if L(N) = 0, B2 c N, and it follows that J^(β^) c N. Then
by (ii) N = B. This proves that J5 is a left annihilator algebra.

If TeTB for all TeB, then whenever TeR(L(N)), TefBcz
R(L(N))-B(zN. Therefore N= R(L(N)), so that N is a right an-
nihilator ideal.
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A theorem similar to Theorem 2.1 can be proved concerning the
left ideals of B. Assume that &~(3(?) aBa &(£(?) and that B
satisfies (i), (ii), and

(iv) If W c ^ and un-+0 in Sίf, then (un\v)-+0 in the to-
pology ^ " o n ΰ for all v e

Define J5* = {T*\TeB}. Topologize £* with the topology

Then j ^ " ( ^ r ) c J3* c &(<%?) and £* satisfies (i) and (ii). But also
by (iv) and the fact that (v\w)* — (w\v) for all v,we£ίf, B* satis-
fies (iii). Then the conclusions of Theorem 2.1 hold for B*. There-
fore £* is a left annihilator algebra and every right annihilator ideal
is of the form {T e £* | T(£l?) c ^Γ} for some closed subspace JίT of
£ίf. Let JV be a proper closed left ideal of B. Then iV* is a proper
closed right ideal of B*. Therefore there exists TeB, T Φ 0, such
that T*iV* = 0. Then .β(JV) =£ 0. Now assume that N is a left an-
nihilator ideal of B. Then iV* is a right annihilator ideal of J3*
which implies that ΛΓ* = {Γe 5* | T(£έ?) c ^T 1} for ^ T some closed
subspace of ^f. Then it is not difficult to verify that

N= {TeB\T(JT) = 0} .

Finally if Teϊ?T for all_TeJ5, then TeTB* for all T e £ * . This
implies that when T e BT for all TeB, then every closed left ideal
of B is a left annihilator ideal (by Theorem 2.1 again).

Combining these remarks and Theorem 2.1 we have the follow-
ing result.

THEOREM 2.2. Assume that ^ ( X ) c 5 c ^ ( ^ ) and that B
satisfies (i)-(iv). Then B is an annihilator algebra. If in addition
Te~TB and TeBT for all TeB, then B is dual.

3. Normed algebras* We assume throughout this section that
A is a semi-simple modular annihilator algebra, that there is a proper
involution * defined on SA, and that A is a normed algebra with
norm || ||. Recall that H denotes the set of self-adjoint minimal
idempotents of A. When he H, we define a functional fh on SA by
the rule fh(u)h = huh. By the proof of [7, Th. 5.2, p. 358] we have
that fh is a positive hermitian functional on SA. We introduce an
inner product on the minimal left ideal Ah by the usual definition,
(uh, vh) = fh((vh)*uh), u, v e A. We call this inner product the can-
nonical inner product on Ah and denote the corresponding norm by
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I |2. We define a ^representation of SA on the inner product space
Ah by u~> T£, ueSA, where T%(vh) = uvh for all veA. As shown
in the proof of [7, Th. 5.2, p. 358], the operators Γ* are bounded on
Ah. Also by [7, Lemma 7.1, p. 358] Ti has finite dimensional range
on Ah for all u e SA. In a similar fashion a cannonical inner product
can be introduced on the minimal right ideal hA, and a ̂ representa-
tion of SA can be constructed into &(hA).

Since SA is a modular annihilator algebra with proper involution
*, then by [1, (1.3), p. 6] there is a unique norm | | on SA with the
property that \uu*\ = \u\2 for all ueSA. We call | | the operator
norm on S i t

THEOREM 3.1. Assume that A is a left (right) annihilator al-
gebra in the norm || ||. Also assume that there exists K > 0 such
that K\\u\\ ̂ \u\ for all ueSA. Then for any heH, Ah (hA) is a
Hilbert space in the cannonical norm | |2, and || || and | |2 are
equivalent on Ah (hA).

Proof. We consider only the case where A is a left annihilator
algebra. Also it is sufficient to prove the theorem when A is primi-
tive. For in the general case given heH, Ah is a minimal left ideal
of some minimal closed two sided ideal M of A. Then M is primitive
and by the proof of [4, Th. 2.8.12, p. 99] If is a left annihilator
algebra. Therefore assume that A is primitive. We shall show that
SΛ is a left annihilator algebra. If N is a proper closed right ideal
of SΛ, then N, the closure of N in A, is a proper closed right ideal
of A. Then L(N) Φ 0, and therefore there exists a minimal idem-
potent e e L(N). Then eeSA and eN = 0. Thus SA is a left an-
nihilator algebra.

Assume heH. Note that \uh\2 = \(uh)*uh\ = |w/&|i|/&| = |wfe|? so
that | | and | |2 coincide on Ah. By hypothesis K\\u\\^\u\ for
all ueSA, and therefore JKΊ|wfe|| ^ |ufe|2 for all ue A. We prove that
|| || and | |2 are equivalent on Ah. Since A is primitive, the re-
presentation u-+ T£ of SA on AΛ is faithful. Let j r = {Γί|weS>J.
By the proof of [4, Lemma 2.8.20, p. 101] ( / |a ; )€^* whenever / is
a continuous linear functional on Ah with respect to || || and x e Ah.
It follows that any such functional / must be continuous on Ah with
respect to | |2. Let V be the normed dual of Ah with respect to
|| ||, and let B be the unit ball in Ah with respect to | |2. For any
fe V, supx6jB \f(x) I < + oo. Then by the Uniform Boundedness Theorem
applied to the set B, sup^supn/n^ \f(x)\ ^ J for some finite number
J. It follows that \\x\\ ^ J\x\2 for all xeAh. Therefore || || and
I |s are equivalent on Ah.

It remains to be shown that Ah is a Hilbert space in the norm
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I |2. Since UL"||M|| ^ \u\ f ° r all ue SA, SA is a left annihilator algebra
with respect to | |. Let £ίf be the Hubert space completion on Ah.
Given weStf, we define f(x) — (x,w) for xeSίf. Choose uheAh
such that \uh\2 = 1. (f\uh)e^ by the proof of [4, Lemma 2.8.20,
p. 101]. Therefore (f\uh)*e^~. For any xeAh,

(a , w) = ((/|wfe)a?, tt/&) = (a?, (f\uh)*uh). Therefore

w = (f\uh)*(uh)eAh.

Thus <^r = Afe.

Using the previous result, we give an example of a norm on
in which Jt~~(£if) is not a left annihilator algebra. Let 2ί?

be an infinite dimensional Hubert space and denote the norm on Sίf
by I |2. Let || || be any norm on Sίf such that | a ? | 2 ^ ||&|| f° r all
x e Z , and | |2 and || || are inequivalent on £{f. If / is any dis-
continuous linear functional on Sίf^ then \\x\\ — | » | 2 + |/(»)| is an
example of such a norm. Every functional on έ%f continuous with
respect to | |2 is continuous with respect to || ||. It follows that
every operator TeJίr(§ίίf) is bounded in the norm

| | Γ | | = s u p HΓa l l .
l l & l l ^ l

We note that there exists K > 0 such that i Γ | | Γ | | ^ | Γ | (| | the
operator norm on ^{^f)) by [4, Th. 2.4.17, p. 69]. Now fix ue ^tf
such that \u\2 — 1. Let N be the minimal left ideal of ^"(^ίf) de-
fined by N = {{u\v)\v e £ίf}. v—+(u\v) is an isometry of βίf in the
norm | |2 onto N in the operator norm since |(w|v)| = |^| 2 |v | 2 = \v\2.
To verify that ^(Sίf) is not a left annihilator algebra in the norm
|| ||, it is sufficient to prove that the map v—• (u\v) is a bicontinuous
map from §ίf in the norm || || onto N in the norm || | |. For then
|| || and | | are inequivalent on N, and therefore Theorem 3.1 gives
the result.

| | ( ΐ φ ) | | = sup 11(̂ 1 v)(x)|| = sup \(x, u)\\\v\\ £ \\v\\ ,

and

This completes the example.

Now we prove a converse of Theorem 3.1.

THEOREM 3.2. Assume that SA is dense in A. Assume that for
every he H Ah (hA) is a Hilbert space in the norm \ |2, and that

and || || are equivalent on Ah (hA). Then A is a left (right)
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annihilator algebra. If in addition u e uA (u e An) for all ue A,
then every closed right (left) ideal of A is a right (left) annihilator
ideal.

Proof. We assume that for every h e H Ah is a Hubert space in
the norm | |2, and that | |2 and || || are equivalent on Ah. First
suppose that A is primitive. Given heH, then u —> T£ is a faithful
^-representation of SA on the Hubert space Ah. Given any u, v,
we A, T*uh){vh) (wh) — (wh, vh)(uh) = (vh\uh)(wh). Therefore all the
operators of the form (vh \ uh) are in the image of the representation
w —• JΓ£. It follows that ^"(Ah) is in the image of this represen-
tation. By [4, Th. 2.4.17, p. 69] there exists K>0 such that
K\\u\\ ^ \T£\ for all ueSA. Then since SA is dense in A, there is
a unique extension of the representation u —> T£ of SA to a representa-
tion %—> Tu of A onto a subalgebra B of &(Ah). Therefore

We consider B normed by || || in the natural way, \\T%\\ = \\u\\ for
ue A. B clearly has properties (i) and (ii) listed previous to Theorem
2.1. If \unh\2—> 0, then by hypothesis \\unh\\--+0, and therefore

\\(wh\ujι)\\ = | |Γ (.,W ( w W | |-*0

for any we A. This proves that B also satisfies (iii). By Theorem
2.1, Bf and hence A, is a left annihilator algebra. If in addition
u e uA for all ueA, then again by Theorem 2.1, every closed right
ideal of A is a right annihilator ideal. This proves the theorem when
A is primitive. In the general case let {Ma\ael} be the set of all
minimal closed two sided ideals of A. Ma is primitive for each a el,
and therefore the theorem holds for each Ma. Since A has dense
socle, A is the topological sum of the Ma, a el. Then by the proof
of [4, Th. 2.8.29, p. 106], the theorem holds for A.

4* Algebras which are inner product spaces* Throughout this
section we assume that A is a semi-simple modular annihilator algebra
which is an inner product space with inner product ( , •)• Also we
assume that the maps x—>xy and x-+yx are continuous on A for
all ye A. An element x has a left (right) adjoint if there exists
we A such that (xy, z) = (y, wz)((yx, z) = (x, zw)) for all y, zeA. If
xeA has a left (right) adjoint, then it is unique. Assume that.every
element ueSA has a left adjoint which we denote by u*. Suppose
that u*u — 0. By [1, (2.2), p. 6] there exists an idempotent e e A
such that u = ue. Then 0 — (u*u, e) = (u, u) so that u = 0. This
verifies that * must be proper on SA. Similarly if every element in
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SA has a right adjoint, then this adjoint must be proper on SA. We
denote the norm determined on A by the inner product by | |2.

THEOREM 4.1. Assume that every element ueSA has a left (right)
adjoint u* and that A is a left (right) annihilator algebra. Then
for every he H, Ah (hA) is a Hilbert space in the norm | |2, and
I |2 and | |2 are equivalent on Ah (hA).

Proof. We prove the "left" part of the theorem only. As in
the proof of Theorem 3.1, it is sufficient to prove the theorem when
A is primitive. Therefore assume A is primitive. Given he H,

(uh, vh) = ((vh)*uh, h) = (uh, vh)\h\

for all Uj v e A. Therefore | |2 and | |2 are equivalent on Ah. u —>
Ύu is a faithful representation of SA on Ah. Let j ^ = {Tt \ueSA}.
By the same argument as in the proof of Theorem 3.1, SA is a left
annihilator algebra with respect to | |2. Then by the proof of [4,
Lemma 2.8.20, p. 101] (f\uh)e^ for all ue A and all functionals /
continuous on Ah with respect to | |2. Then the argument in the
last paragraph of the proof of Theorem 3.1 implies that Ah is a
Hilbert space in the norm | |2.

Now we prove a result in the other direction.

THEOREM 4.2. Assume that every element ue SA has a left (right)
adjoint u*. Assume that A has dense socle in the norm | l2 and
that for every he H, Ah (hA) is a Hilbert space in the norm | |2.
Then A is a left (right) annihilator algebra. If in addition u e uA
(ue Au) for all ue A, then every closed right (left) ideal of A is a
right (left) annihilator ideal.

Proof. We prove the "left" part of the theorem only. It is
sufficient to prove that the theorem holds for each minimal closed
two sided ideal M of A. For then by the proof of [4, Th. 2.8.29,
p. 106] the result follows for A. Therefore assume that I is a
minimal closed two sided ideal of A. Choose he Hf] M. Then u —»
Tl is a faithful representation of M on the Hilbert space Ah. T\
is a bounded operator on Ah since u —> ux is a continuous map on A.
Let B = {T*\ueM}. We norm B by \TΪ\2 = \u\2 for ueM, Given
uh and vh, then T*uh){vh) eB, and

T(Uh)(Vh)*(wh) = (wh, vh)uh = (vh\uh)(wh)

for all wh e Ah. Therefore ^(Ah) aB. B satisfies properties (i)
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and (ii) given previous to Theorem 2.1 by hypothesis. Also as noted
in the proof of Theorem 4.1, \uh\i = \uh\l\h\l for all ue A. There-
fore if \unh\2—> 0, then \unh\2-+0, so that for any v e A, \unh{vh)*\2 —•
0. It follows that \(vh\unh)\2 = \Tknh)(vh)*\2-+0. Therefore B satis-
fies (iii). Then Theorem 2.1 applies and this completes the proof.

We apply the previous theorems to right-modular complemented
algebras as defined by B. Yood [9, p. 261]. Let A be an algebra
with an inner product (•,•)• A is a right-modular complemented
algebra if

(a) the maps x —• xy and x —> yx are continuous for all ye A,
(b) any right or left ideal I for which I1 = {0} is dense in A

(where 7 1 = {x e A \ (x, y) = 0 for all y e /}),
(c) the intersection of the closed modular maximal right ideals

of A is {0}, and M1 is a right ideal for each closed modular maximal
right ideal M.

We prove the following theorem.

THEOREM 4.3. Assume that A is a modular annίhίlator algebra
and a right-modular complemented algebra. Then A is an annihila-
tor algebra if and only if every minimal left or right ideal of A is
a Hilbert space in the norm determined by the inner product.

Proof. First note that A is semi-simple by property (c). Since
A is a modular annihilator algebra, then by [8, Lemma 3.3, p. 38]
every modular maximal right ideal M of A is of the form (1 — e)A
where e is a minimal idempotent of A. Then by (a) M is closed.
Similarly every modular maximal left ideal of A is closed. Also by
[9, Th. 2.1, p. 262] K1 is a right (left) ideal for all right (left) ideals
K of A.

Assume that every minimal left or right ideal of A is a Hilbert
space in the norm determined by the inner product. Given K a
minimal right ideal of A, then N = K1 is a right ideal. Also N + K
is dense by (b). Since K is complete, it follows that N + K = A.
Therefore N is a modular maximal right ideal of A. By the proof
of [8, Th. 4.5, p. 44] every element of N1 = K has a left adjoint.
Since K was an arbitrary minimal right ideal, then every element
in SA has a left adjoint. A similar proof shows that every element
of SA has a right adjoint. A has dense socle by (b). Therefore by
Theorem 4.2, A is an annihilator algebra.

Now assume that A is an annihilator algebra. Take K minimal
right ideal of A. Then N = K1 is a proper closed right ideal of A.
Since A is an annihilator algebra, there exists a modular maximal
right ideal M such that NaM. K + N is a dense right ideal of A
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by (b). Assume that x e KLL. Then there exists {xn} c N and {yn} c
K such that xn + yn —> x. Then

Therefore yn—>x and since K is closed, # eK. It follows that if =
J5Γ11. Now K^aM, and therefore MλciK. Since M 1 is a nonzero
right ideal of A, M1 = K. Then every element in K has a left
adjoint by the proof of [8, Th. 4.5, p. 44], It follows that every
element in SΛ has a left adjoint, and by a similar proof every ele-
ment in SA has a right adjoint. Then Theorem 4.1 implies that every
minimal left or right ideal of A is a Hubert space in the norm de-
termined by the inner product.

5* Algebras dual in the operator norm* A well known theorem
of Bonsall and Goldie states that an annihilator Z?*-algebra is dual.
This was generalized by B. Yood who proved that any modular an-
nihilator J?*-algebra is dual; see [8, Th. 4.1, p. 42]. In this section
we generalize this result still further. We assume throughout that
A is a modular annihilator algebra with an involution * and a norm
| | with the property that \u*u\ = \u\2 for all ueA (such a norm
always exists on A when A is a normed algebra and * is proper by
[7, Th. 5.2, p. 358]). We call | | the operator norm on A.

THEOREM 5.1. Assume that A has the properties given above.
Then if every minimal left ideal of A is complete in the operator
norm, A is dual.

We prove three lemmas.

LEMMA 5.2. If every minimal left ideal of A is complete in
the operator norm, then there is an isometric *-representation u —•*
Tu of A onto a subalgehra B of the compact operators on a Hilbert
space §ίf with the following properties:

(1) Sίf is the Hilbert space direct sum of a set of closed sub-
spaces έ%fa, ae I where I is some index set.

(2) If TeB, then T is reduced by each Sίfa, ael ( i . e . ,

c βίfa and T(^fa

L) c

all ae I).
(3) / / TeJ^(β^) and T is reduced by 3ί?a for all ael, then

TeB.
( 4 ) B Π ^{Sίf) is dense in B.

Proof. Let {Ma\ae 1} be the set of minimal two sided ideals of
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A, I some index set. For each a e /, choose an element hae Hf] Ma.
Let Sίfa — Aha. Aha is an inner product space in the cannonical
inner product. Also \uha\

2 = \{uha)*{uha)\ = \uha\l. Therefore | |2
coincides with | | on Aha. Therefore Sίfa is a Hubert space. Let
^f be the Hubert space direct sum of the 3(?u% a el. For each a
we have a *-representation u —> T%<* of A on Aha = 3ίfa. \ T£« \ S
\u\ for all ue A, a el. Then we define u—> Tu a representation of
A on Sίf in the usual fashion, Tu(^aeIvaha) = Σ«β/ Tϊ«(vaha). u-+
Tu is a faithful *-representation of A onto a subalgebra B of &(%?).
By [1, (1.3), p. 6] |u | = \TU\ for all w e i . Tu has finite dimensional
range for all ueSA by [7, Lemma 5.1, p. 358]. Also the socle of A
is dense in A by the proof of [2, Lemma 2.6, p. 287]. It follows
that ^{Sίf) Π B must be dense in B and that J 5 c ^ ( ^ ) . It re-
mains to prove (3). By Theorem 3.2 A is a left annihilator algebra,
and by the proof of that theorem ^~(<%?a)(z{T£«\ueMa}. Assume
that T e jT-(j^r), T(^0 c ^fa1 and T ( ^ x ) c ^ 1 for all a el. Then
T{£ίfa) = 0 for all but a finite number of α e /, c ,̂ α2, , an. Then
there exists ukeMak, 1 ̂  & <; n, such that Γ*«*(») = Γ(ίc) for all xe
Jg^. Let u = ux + + un. Then Tu(x) = T(x) for all x e 3έf. This
proves (3).

LEMMA 5.3. Let B be as in Lemma 5.2. Then TeΎB and Te
BΊ1 for all TeB.

Proof. Assume that TeB. Then T*T is a compact operator on
the Hubert space βέf. Let {Xk} be the sequence of distinct nonzero
eigenvalues of T*T. Let {Ek} be the sequence of projections onto
the corresponding eigenspaces. For all a e I denote by Fa the projec-
tion onto the subspace βgfa. By hypothesis FaT*T = T*TFa for all
a el. It follows that FaEk = EkFa for all a e I and all k. By (3) of
Lemma 5.2 EkeB for all k. Then | Γ - ΣίU Γ£f4Γ - |(T - Σ L i ϊ 7 ^ ) *
(Γ - Σί=i ΓJSi) I = I Γ*Γ - Σί=i λJSi |. Since Γ*Γ - Σ S λ& f̂e by the
Spectral Theorem for compact operators, then ZXΣίU ^*)—* Γ as iV—>
+ co. This proves 3Γe Γ5. A similar argument using TT* in place
of T*JΓ shows that TeΈT.

LEMMA 5.4. Assume that SίΓ is a Hilbert space. Then
is dual in the operator norm.

Proof. Assume that M is a closed right ideal of ^{SίΓ), and
let N - M + L(M)*. N is a right ideal of ^(JΓ). Let

As in the proof of Theorem 2.1, J? is a subspace of ._%7 If
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then for every u e J T and Te N, (w\w)T(u) = (Tu, w)w = 0. There-
fore (w I w)N = 0. But then (w \ w)M = 0 and L(M)(w \ w) = 0. There-
fore I w |5(w I w) = (w I w)2 = 0 so that w = 0. This proves that ^ is
dense in J?C Assume v,we 3ίΓ. Choose {un} c 3ίΓ and {ΓΛ} c N such
that Γn(uw) = vn-+v. Then Γn(te; | ttn) = (w \ vn) —>(w\v) so that (w\v)e
N. Therefore &~(3ίΓ) = N. Take TeR(L(M)). T = T, + T2 where
TΊe Mand T2eL(ili)*. Then Γ2*Γ = 0 and Γ*^ = 0. Thus Γ2*Γ2 =
0 which implies T2 = 0. It follows that R(L(M)) = M. If If is a
closed left ideal of J^( JT), then L(R(M)) = M by taking involutions.
Therefore J H ^ Π is dual.

Now we complete the proof of Theorem 5.1. By Lemma 5.2. it
is enough to prove that an algebra B with the properties listed in
that lemma is dual. Let Fa be the projection of £ίf onto Sίfa for
all a el. Set Sa - {T e J * ~ ( ^ ) I ?^« = FaT = T). By Lemma 5.2
Sα c £. Furthermore ^{Sίfo) is isometrically isomorphic to Sa.
Therefore Sa is dual by Lemma 5.4. Also Sa is a two sided ideal of
B for each a el, and J5 is the topological sum of the Sa, a el. By
Lemma 5.3 Te~TB and Te~BT for all Γ e ΰ . Then it follows from
the proof of [4, Th. 2.8.29, p. 106] that B is dual.
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