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OPERATORS THAT COMMUTE WITH A
UNILATERAL SHIFT ON AN INVARIANT
SUBSPACE

LAavoN B. PAGE

A co-isometry on a Hilbert space 57 is a bounded opera-
tor having an isometric adjoint, If V is a co-isometry on
&% and _# 1is an invariant subspace for V, then every
bounded operator on ./ that commutes with V on .+ can
be extended to an operator on 57 that commutes with V,
and the extension can be made without increasing the norm
of the operator. This paper is concerned with unilateral
shifts. The questions asked are these: (1) Do shifts enjoy
the above property shared by co-isometries and self-adjoint
operators? (The answer to this question is ‘“‘rarely”.) (2)
Why not? (3) If S is a shift, .#Z is an invariant subspace
fer S, Sy is the restriction of S to _, and T is a bounded
operator on /7 satisfying T'So = SoT, how tame do 7' and
.77 have to be in order that T can be extended (without
increasing the norm) to an operator in the commutant of S?
Extension is possible in a large number of cases.

The result mentioned above for co-isometries is due to Sz.-Nagy
and Foias [8]. (An excellent exposition on the problem is found in
[3]; see Theorem 4 in particular.) For self-adjoint operators the state-
ment is trivial for the simple reason that every invariant subspace is
then reducing and any commuting operator on a subspace can be ex-
tended by simply requiring it to be zero on the orthogonal complement
of the subspace.

Recall that a unilateral shift S is an isometry having the pro-
perty that N3, S"5# = {0}. The Hilbert space dimension of the
subspace (S27)t is called the multiplicity of S. Within the class of
partial isometries on £ the unilateral shifts are in a sense as far
removed as possible from the co-isometries and the self-adjoint partial
isometries. For shifts have no self-adjoint part, and far from being
co-isometric if S is a shift S** goes strongly to zero. (These and
other simple properties of shifts may be deduced from problem 118
and the surrounding material in Halmos [5].)

II. We begin with a complex Hilbert space .52 (not necessarily
separable) and a unilateral shift S on 577 It is well known that shifts.
decompose the underlying Hilbert space in the following way:

57 = @i S"z where « = (S27)*,
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(See for example Halmos [5], problem 118).

We also fix an invariant subspace .~ of S. By S, we denote
the restriction of S to .7, S, = S|_.#. The commutant of S is the
algebra of bounded operators on 57 which commute with S and is
denoted by .o7%.

The invariant subspaces of S are known to the following extent.
Every invariant subspace of S is the range of a partial isometry in
%% whose initial space reduces S. (This well known result appears
in many forms. The particular form cited here appears in [7], see
proof of Theorem 1.) Particularly when a funection space model is
used these operators are often referred to as inner functions or rigid
functions.

Finally we will fix a bounded operator 7 on ..Z which commutes
with S,. As indicated earlier the problem being considered is that of
extending T to an operator on 5 lying in .%% and having norm
equal to || T||.

THEOREM 2.1. If S is the simple shift, t.e., if dim <& =1, then
T has an extension in .57 whose norm 1is equal to || T||.

Proof. This theorem will follow from a later result. (See Remark
2.4 below.) The simple shift can be represented as the usual shift on
the Hardy space H? of complex valued functions on the unit circle
(Helson [6], chapter 1). It is instructive to sketch a proof in this
setting where .~ = BH*® with B an inner function in H® Also Be
_+, and T:B— Bg for some g in H?. The fact that 7'S, = S,T allows
one to argue that T: Bf — Bfg for all fe H=, and finally using stand-
ard techniques one shows that ge H=, that T is multiplication by ¢
on _+, and hence that T has an obvious extension to an operator on
H? which commutes with S. The extension does not increase the
norm.

ExAMPLE 2.2. T does not mnecessarily have a bounded extension
which commutes with S if S is a shift of multiplicity two, t.e., if
dim & = 2.

Proof. Here we let 57 = H* H*. Vectors in &7 will be written
as ordered pairs (f, g). Let x be the identity function on the unit
circle, y(e*) = e*, and then the shift S of multiplicity two on 57# is
S:(f, 9) — (0 f, 19)-

Let _# be the subspace of 57 consisting of all vectors of the
form (f, y9) where f,ge H*. Clearly S.# < _#. Define T on _#
by T: (f, 9) — (%g, 0), the bar denoting complex conjugate. It is trivial
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to verify that T is a bounded operator mapping _# into _#, and
that TS = ST on _#. But it is equally easy to see that 7 can have
no extension in .. For if 1" is an extension of 7 to 57, then we
must have 7"S: (0, 1) — (1, 0), whereas everything in the range of ST”
must be orthogonal to (1, 0).

It becomes apparent in the discussion which follows that the re-
ason we obtain different answers in the case of the simple shift as
opposed to nonsimple shifts is that the simple shift is the only shift
having an abelian commutant. Recall that _~ = BS# where B is a
partial isometry in .9% and B*S5# reduces S. Let A, be the operator
on 57 defined by

A, = B*TB.
Since BB* is the orthogonal projection onto _# we have
BB*TBS = TBS = STB = SBB*TB = BSB*TB,,

or BA,S = BSA,. Now the range of A, is contained in the range of
B* which is a reducing subspace for S. Since B is isometric on the
range of B* we can infer from the last equation that A,S = SA4,.
Thus A, satisfies the three conditions

(i) Ared;

(ii) TB = BA,

(i) (A = IT]-
Clearly an operator 4 in .o% is an extension of 7 if and only if
AB = TB. Thus it follows that 7T has an extension in .o/ if and only
if there exists an operator A ¢ .o% such that AB = BA,, i.e., the pro-
blem is now one of solving the operator equation AB = BA, for Ae
7. (B and A, are already in .%%.)

A hyperinvariant subspace for S is a subspace which is invariant
under every operator which commutes with S.

ProrositioN 2.3. If _#Z 1s a hyperinvariant subspace of S, then
T has an extension in o7 whose norm is || T||.

Proof. The fact that _# is hyperinvariant guarantees that B
can be chosen so as to have the additional property that B commutes
with every operator in .o%. (Douglas and Pearcy [2], Theorem 5).
Thus A,B = BA,, and T possesses the desired extension by the re-
marks above.

REMARK 2.4. Since every invariant subspace for the simple shift
is hyperinvariant, the above proposition contains Theorem 2.1.
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There is a relationship between T having an extension in .27 and
a factorization of a familiar type. From the definition of A, it is
clear that range A} = range B*. Thus by a standard factorization
result (Douglas [1]) there exists a bounded operator D on S# such
that A, = DB.

ProrosITION 2.5. If A, = DB where De %%, then T has an ex-
tension in V.

Proof. Suppose De . %% and A, = DB. Then BA, = BDB. Sett-
ing A = BD it follows from the remarks made preceeding Proposition
2.3 that T has an extension in .o%.

III. In order that an operator A on 5% commute with the shift
S it is necessary that every subspace S"57(n = 0) be invariant under
A. The proposition below is a slight generalization of this statement.
For =0, let P, =1— S"S*", the orthogonal projection onto the
orthogonal complement of S*5#

ProrosiTioN 3.1. If Ae . o7, then there is a comstant « such that
|P,Af|| < all|P,f || for every n =0 and every fe S~ In fact a can
be chosen to be ||All.

Proof. If n =0 and fe 5~ write f= S"g + h where g = S*f
and h = P,f. Then since S*S" =1 and P,A* = P,A*P,, | P,Af|| =
| P AR < [|AlIR] = [[A I PL S

With T defined initially on _# Proposition 3.1 indicates that it
is fruitless to look for an extension of 7 in .o unless T initially
satisfies a similar condition on _# Henceforth we assume that there
exists a constant a such that

(*) | P.If|| < al| P.f|
for all fe _# and n = 0.

It is easy now to see that in Example 2.2 T could have no ex-
tension in .97 because condition (*) is not satisfied. If in that example
we take f = (0, ), then [|P,f|| =0 but ||P,Tf|| = 1 when » = 1.

Whether condition (*) is sufficient to guarantee that 7T has an
extension in A; we have been unable to determine (see Remark 3.6).
We have been able to show, Example 3.5 below, that such an extension
cannot always be made without increasing the norm.

The next theorem indicates the existence of a certain subspace
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%~ between _~ and 57 and also invariant under S to which 7, if
T satisfies condition (*), can always be extended without increasing
the norm and so as to commute with S. Two corollaries indicate that
frequently <7 is all of 2~

If feor, leto(f, 2)=inf{||f— gll: g€ #}.

THEOREM 3.2. Let 27" be the set of all fe 57 such that
0(S"f, o) — 0

as n— . Then 27 1is a (closed) subspace of 57 which is invariant
under S, and if T satisfies condition (*) on _~ then T has an ex-
temsion to an operator T' on 27~ satisfying T'S = ST’ on 9~ and
N =TI

Proof. It is easy to verify that $7° is a linear manifold and that
So7~ < 7. To see that 97 is closed, suppose that f is in the closure
of 2#°. Then for ge <7,

o(S"f, AZ) = |8 — S"gll + 0(S"g, AZ) .

By choosing ¢ sufficiently near to f and n sufficiently large, the two
terms on the right can be made as small as desired.

We next describe the manner in which 7 extends to 97 Sup-
pose fis in 977 Let {g,} be a sequence in _7Z such that lim ||.S"f —
9.1l =0, and set A, = S*f — ¢g,. Now if m = n,

|S*"Tg, — 8*"Tg,|| = [|S*"TS" " g, — S*"Tq..|]
= ITHIS™"gn — gull = TN S™ "y — hul|
= 1T Ball + TRl

and the last expression goes to zero as m, m — . Thus we have
shown that the sequence {S*"Ty,} is a Cauchy sequence. To extend
T to 97, if fe 77~ we select a sequence {g,} in .2 such that

IS"f — gull —0

as n— co and set T'f = lim S**T¢,. In light of the earlier remarks
in this paragraph it is easy to see that the way in which 7'f is de-
fined here is independent of the sequence {g,} chosen and coincides
with the original operator T in case fe _~. It is also clear that the
extension does not increase the norm.

To see that 7’9/~ = %7, we assume fe %7. Let {g,} be a sequ-
ence in . such that ||S*f — ¢,||— 0. Now making use of the fact
that T satisfies condition (*) we have ||P,Ty,|| < «al|P,g.|l, and the
right-hand side here goes to zero. Furthermore,
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o(S*T'f, #) = ||S*T'f — S*S** Ty, || + 0(S*S** Ty, 7).

The first term on the right goes to zero by the definition of T"f, and
the second goes to zero because Tg,€._-7 and ||P,Tg,.||— 0. Thus
T'fe .

Finally we show that 7'S = ST’ on 7. If fe 777 let {g,} be
a sequence in _# such that |[|S"f — g,.||— 0. Then

| T'Sf — ST'f|| £ lim sup ||S*"TSg, — SS**Tg, ||
= lim sup || S**" Ty, — SS**Tg,||
< lim sup |[S*™S** ™ Tg, — Tg,|| +limsup || T'g, — S"S*" Ty, ||
< « limsup || P,_.9,|| + a lim sup || P,g.]l = 0 .

Frequently the subspace 7~ of Theorem 3.2 will be all of 5£
The two corollaries below give examples of this occurrence.

COROLLARY 3.3. If dim _#* < o, and if T satisfies (*), then T
has an extension in . whose norm s || T||.

Proof. Let 27”7 be the subspace of Theorem 3.2. Assume that
2 is an eigenvector for the operator on 27 ‘- obtained by compressing
S to 7+, the operator (I — P)S|2%# "+ where P is the orthogonal
projection of 57 onto %. Let A be the corresponding eigenvalue,
so M =1 and Sz = ¥y + Mz where y = PSx.

Then S*x = Sy + ASx = (Sy + \y) + \2x. In general

Sty =y, + "%

where y,e¢ 2. Now if |A] = 1 then [|Sz|]? = ||y|? + ||z|]* implying
that y = 0 since S is a contraction. But this would imply that \ is
an eigenvalue of S, and since S is a shift S has no eigenvalues.

Thus |[A| < 1, and A" — 0 as # — oo, implying that s € 977 This
too is a contradiction and we have shown that in fact (I — P)S|Z ™+
can have no eigenvalues and hence since %77+ is finite demensional we
must have dim %7+ = 0. The proof is now complete in light of
Theorem 3.2.

There is a special type of invariant subspace for nonsimple shifts
which is encountered frequently in the literature. Such subspaces are
the ones which, in the Hardy space model (Helson [6], chapter 6),
correspond to operator valued analytic functions on the unit disk as-
suming unitary values on the boundary. For a general invariant
subspace the corresponding rigid function (see Halmos, [4]) can be
required only to assume partially isometric values.

There is an equivalent abstract formulation of the condition that
an invariant subspace correspond to a unitary valued function. First
of all it is evident that the minimal unitary extension of a unilateral
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shift is a bilateral shift of the same multiplicity. If we continue to
let S and £# denote respectively a unilateral shift and the space on
which it acts and now let U and .27 denote respectively the minimal
unitary extension of S and the space 2 on which U acts, then for
each subspace .# of £~ invariant under S it is clear that _«# is
invariant under U as well. It can be shown without great difficulty
that in the Hardy space model _# corresponds to a unitary function
if and only if the smallest reducing subspace for U containing _./ is
¢ itself.

COROLLARY 3.4. If the smallest reducing swbspace for U which
contains 7 s 5 (where U and 57 are as in the preceeding par-
agraph) then every operator T on _# satisfying (*) has an extension
m 5 whose norm s || T||.

Proof. Recall that _# = BS# where B is a partial isometry in
. From the folklore of the field we know that B has a unique
extension to an operator on .27, call it B’, which commutes with U.
(This also can be deduced from the lifting theorem of Sz-Nagy and
Foias, Theorem 4 of [3].) Now the range of B’ reduces U and con-
tains _#. Hence by assumption B' 27" = 2

Let fe &~ Since the subspaces U*"27, n = 0, span .9, for each
€ > 0 there is an integer » = 0 and a ge U*".5#~ such that

1B’y —fll <e.

We have U"B'g = B'U*ge Bs# = _#, and ||S"f — U"B'g|| < e. Thus
we have shown that %~ = 52 in Theorem 3.2 and therefore that 7
has the desired extension.

Our final task will be to show that in general condition (*) on T
and _.# is not sufficient to guarantee an extension in .97 with norm
equal to || T'||. Because the condition is sufficient in the rather inclusive
instances already considered, it is not surprising that some care must
be exercised in constructing the following example.

ExaMPLE 3.5. We take S to be a shift of multiplicity 7 on £
Let {¢;}7-, be an orthonormal basis for (S2#°)*. We take the subspace
# of 27 to be the smallest invariant subspace for S containing the
following vectors:

U, = €, + Sey, uy = € + Se,, Uy = €5 + Seg, Uy, = €5 + Se; «

The operator 7' is defined on a dense linear manifold in .Z by
requiring that
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Tw, = uy, T, = u,, and Tu, = Tu,=0

and by requiring that T'S = ST. (The linear manifold referred to is
the linear span of the vectors P(S)u,, k =1, 2, 3, 4, where P(S) is a
polynomial in S.) .

Some elementary calculations show that T is in fact bounded on
this linear manifold, and that moreover ||T|| <13/ 2. Further-
more it can be shown that T on _#Z satisfies condition (*) where the
constant « can be taken to be 1 2.

Finally one shows that any extension of 7 to 5% which is to
commute with Son 5% must map e, + e to 2¢, and must hence have
norm not less than 1" 2. Thus 7T cannot be extended to an operator
which commutes with S on £# without increasing the norm.

REMARK 3.6. It is peculiar in the above example that we could
show only that any extension of 7 to an operator in .97 must have
norm not less than a where « is the constant in (*). This leads
naturally to the following conjecture.

CONJECTURE. If T on _# satisfies (*) then T has an extension
in .o having norm less than or equal to a.
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