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ON NONNEGATIVE MATRICES

M. LEWIN

The following characterisation of totally indecomposable
nonnegative ^-square matrices is introduced: A nonnegative
^-square matrix is totally indecomposable if and only if it
diminishes the number of zeros of every ^-dimensional non-
negative vector which is neither positive nor zero. From
this characterisation it follows quite easily that:

I. The class of totally indecomposable nonnegative n-
square matrices is closed with respect to matrix multiplica-
tion.

II. The in — l)-st power of a matrix of that class is
positive.

A very short proof of two equivalent versions of the
Kόnig-Frobenius duality theorem on (0, l)-matrices is supplied
at the end.

A matrix is called nonnegative or positive according as all its
elements are nonnegative or positive respectively. An ^-square matrix
A is said to be decomposable if there exists a permutation matrix P

such that PAPT = \ r ph where B and D are square matrices;
otherwise it is indecomposable. A is said to be partly decomposable
if there exist permutation matrices P, Q such that

[B 0Ί
PAQ = , where B and D are square

matrices; otherwise it is totally indecomposable.
Whereas the notion of indecomposable matrices first appeared in

1912 in a paper by Frobenius [2] dealing with the spectral properties
of nonnegative matrices, totally indecomposable matrices were intro-
duced fairly recently apparently by Marcus and Mine [10]. Their
properties have been studied in several papers on inequalities for the
permanent function.

In [11] Mine gives the following characterisation of totally in-
decomposable matrices:

A nonnegative ^-square matrix A, n ^ 2, is totally indecomposable
if and only if every (n — l)-square submatrix of A has a positive
permanent.

A well-known theorem states:

THEOREM 1. If A is an indecomposable nonnegative n-square
matrix then
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(A + If~ι > 0 [3], [9] .

An indecomposable matrix is primitive if its characteristic value
of maximum modulus is unique.

Wielandt [15] states (without proof) that for primitive w-square
matrices we have

By using solely the properties of total indecomposability we
establish a different characterisation for totally indecomposable matrices
from the one given by Mine. Using part of the characterisation we
show that if A is a totally indecomposable nonnegative ^-square
matrix then An~x > 0. This result is best possible as for every n
there exist totally indecomposable n-square matrices A for which
An~2 y> 0. Theorem 1 then follows as a corollary of the latter result.

We should like to point out that Theorem 2 is by no means
essential for the proof of Theorem 3. Two independent proofs of
Theorem 3 are given in § 4. It seems justified however to present
Theorem 2 on its own merit.

We conclude with a very short proof of two equivalent versions
of Konig's theorem on matrices.

2* Preliminaries* | S | denotes the number of elements of a
given set S. Let Mn be the set of all nonnegative %-square matrices,
let Dn be the subset of Mn of indecomposable matrices and let Tn be
the subset of Dn of totally indecomposable matrices. Let A e Mn and
let p and q be nonempty subsets of N= {1, •••,?&}. Then A[p|g],
A(p I q) is the \p\ x \q\ submatrix of A consisting precisely of those
elements ai5 of A for which iep and je q, ί&p and jί q respectively.
A[p I q) and A(p \ q] are defined accordingly. We can now formulate
equivalent definitions for matrices in Dn and Tn:

D . I . A e Dn if A[p \ N — p] Φ 0 for every nonempty pc N.
D. 2. Ae Tn if A[p \ q] Φ 0 for any nonempty subsets p and q

of N such that \ p \ + I q | = n.
Let us now establish some connections between indecomposable

and totally indecomposable matrices.

LEMMA 1. IfAe (Dn — Tn) then A has a zero on its main diagonal.2

Proof. Since A& Tn there exists a zero-submatrix A[p \ q] with
I p I + I q I — n; but since A e Dn1 pf] q Φ 0 , which means that A has

1 A proof is supplied in [5].
2 Lemma 1 is part of Lemma 2.3 in [1] but the shortness of our proof seems to

justify its presentation.
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a zero on its main diagonal.

COROLLARY 1. If AeDn then A + IeTn.

Proof obvious.

3* The main results* Let A — (ai0) G Mn and let v denote an
^-dimensional vector with at(v) its ίth entry.

Define: Jk = {j: akj = 0}, Ik = {i: aik = 0},

70(v) - {i: c φ ) - 0} , I+(v) = {i: β φ ) > 0} .

Let Rn denote the space of %-tuples of real numbers.
Let Xn be the set of all nonnegative vectors in Rn which are

neither positive nor zero. We then have the following

THEOREM 2. A nonnegative n-square matrix A is totally in-
decomposable if and only if | I0(Ax) | < | IQ(x) \ for every x e Xn.

Proof. Let Ae Tn and xe Xn. A necessary and sufficient condi-
tion for aio(Ax) = 0 for some i0 is

( 1 ) J+(&) c JiQ .

If I0(Ax) = 0, then there is nothing to prove, so we may assume

( 2 ) I0(Ax) Φ 0 .

xe Xn implies

( 3 ) I+(χ) Φ 0 .

(1), (2) and (3) imply that A[IQ(Ax)\I+(x)] is a zero-submatrix of A.
Since Ae Tn by assumption, we have (by D. 2.)

\I0(Ax)\ + \I+(x)\<n=\I0(x)\ + |I+(s)|

and hence | I0(Ax) | < | I0(x) \ which proves the first part of the theorem.
(It is not generally true however that I*(Ax) c IQ(x) as it may happen
that <ii(x) > 0 and a^Ax) = 0, a situation which differs somewhat
from that in the similar case for indecomposable matrices (5.2.2
in [9])).

Let now A$ Tn. Then A contains a zero-submatrix A[I\ J] such
that I, J Φ 0 and \I\ + \J\ = n. Choose now xe Rn such that

( 4 ) I+(x) = J.

Then clearly xeXn. We have I0(x) = N - I+(x) = N - /, and hence
I IQ(x) I = 17|. For iel we have /,- Ώ J, and hence by (4) I+(x) c J^,
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so that for i e I according to (1) a^Ax) = 0 and hence I0(Ax) Ώ. I.
Then I I0(Ax) | ^ 11\ = \ I0(x) |. This completes the proof.

Xn in Theorem 2 may of course be replaced by its subset Yn

consisting of the 2" — 2 zero-one vectors.
Theorem 2 admits of two simple corollaries which we present as

Theorems 3 and 4.

THEOREM 3. If A is a totally indecomposable nonnegative n-square
matrix then

An~ι > 0

Proof. If for some j0 we had | IJQ | ^ n — 1 then A would be
partly decomposable and hence | IJQ | ^ n — 2 for j e N and the rest
follows.

Theorem 1 follows from Theorem 3 as an immediate consequence
of Corollary 1. For A — I + P where P is the ^-square permutation
matrix with ones in the superdiagonal, so that ai3 = 1 if i = j or
i = j — 1, anl = 1 and ai5 — 0 otherwise, it is easy to show that
An~2 > 0, which shows that our result is best possible.

THEOREM 4. The product of any finite number of totally in-
decomposable nonnegative nsquare matrices is totally indecomposable.

Proof. It is clearly sufficient to prove the statement for two
matrices. Let therefore A, Be Tn. Choose an arbitrary element x
of Xn. We then have

(5) \UABx)\£\UBx)\<\Ux)\

by Theorem 2. Since x was arbitrary, (5) applies to all elements of
Xn. Again by Theorem 2 it follows that AB is totally indecompo-
sable, which proves the theorem.

4* Independent proofs of Theorem 3* A lemma of Gantmacher
[3] states that if AeDn and x e Xn, then I0[(A + I)x] c I0(x).

The following proof of Theorem 3 assuming the lemma has been
suggested by London3: Let Ae Tn. Using the fact that a matrix in
Tn possesses a positive diagonal d, put

A, = ~PT(A - aP) = — PTA - / where 0 < a < min aiό{ai5 e d)
a a

3 D. London, oral communication.
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and P = (pij) is an ti-square permutation matrix such that pi3 = 1 if
and only if ai3- e d. Then A e Tn implies Ax e Tn.

We have A = aP(Aι + I); since AιeDn we obtain

J0(Aa?) - UPiA, + I)x] = U(A1 + I)x] c I0(s) ,

for xeXn. Then /O(AW-^) = 0 , and A""1 > 0.
Another proof has been kindly suggested by the referee of this

paper: We show that if A is totally indecomposable, then if x e Xn,
then

\UAx)\<\I0(x)\.

The theorem then follows immediately.
Suppose I IQ(Ay) | ;> | IQ(y) | for some yeXn.
Put I I0(y) I = s. There are permutation matrices P and Q such

that

PAy =
0

u
and Qτy =

0

v

where u is an (n — s)-dimensional nonnegative victor and v is an
(n — s)-dimensional positive vector: The 0's represent s zero components
in each case.

[ A A~\
"71 j : 2 where Ax is s x s, A2 is s x (n — s),

A, is (n-s)xs and A4 is (w-8)x(w-β). Then Γ^1 ^ 2][^1 [ J l
and so A2V — 0. Thus A2 = 0 and hence Ag Tw, a contradiction.

5* Kόnig's Theorem* Let A be an m x n matrix. A covering
of A is a set of lines (rows or columns) containing all the positive
elements of A. A covering of A is a minimal covering of A if
there does not exist a covering of A consisting of fewer lines. Let
M{A) denote the number of lines in a minimal covering of A. A
basis of A is a positive subdiagonal of A of maximal length. m{A)
denotes the length of a basis of A. The ith column of A is essential
to A if M(A(0J)) < M(A).

We now give the two versions of Konig's Theorem and their
proofs:

K. T. 1. If A is an m x n matrix, then m(A) — M{A).
K. T. 2. If A is an n-square matrix, then A has k zeros on

every diagonal (k > 0) if and only if A contains an s x t zero-
submatrix with s + t = n + k.
This is a generalized version of a theorem of Frobenius. The follow-
ing theorem appears in [8] (we reproduce it here in a hypothetical
form).
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E. T.: If A is an m x n matrix and K. T. I. holds for A, then
there exists a minimal covering of A (called essential covering) contain-
ing precisely the essential columns of A (and may be some rows).

Proof of K. T. 1. m(A) ^ M(A) holds trivially. The theorem is
clearly true for 1 x n matrices for all n. Assume that the theorem
is true for all μ x n matrices, μ < m and all n. Let A be an m x n
matrix. Consider A' = A({m}\N]. A! is an (m — 1) x n matrix so
that K. T. 1, holds for A' and hence E. T. holds for Af. Let Q be
the essential covering of A'.

Case 1. Q is a covering of A. Then m(A) ^ m(A') = M{A') ^
M{A).

Case 2. Q is not a covering of A. Then there exists j 0 e N for
which amjo > 0 which is not covered by Q and hence the i o th column
is not essential to A'. Then clearly there exists a basis V of A'
without elements in the i o th column. Then 6 — V U {a<mj0} is a sub-
diagonal of A and hence M(A) ^ M{A') + 1 = m{A') + 1 ^ m(A). This
proves K. T. 1.

Proof of K. T. 2. Necessity. If A has k zeros on every diagonal
then m(A) <* n — k. By K. T. 1, M(A) ^ n — k. Apply a minimal
covering to A. Then there remains a n s x ί zero-matrix of A which
is not covered, with s + t Ξ> 2n — ikf(A) ^ w + k.

Sufficiency. Let A contain a n s x ί zero-submatrix with s + t —
n + k. Then there are positive elements on at most 2n — (n + &) =
w — & lines, meaning that there are at least k zero-rows, which
proves the sufficiency.
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