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QUASI REGULAR GROUPS OF FINITE
COMMUTATIVE NILPOTENT ALGEBRAS

N. H. EGGERT

Let J be a finite commutative nilpotent algebra over a
field F of characteristic p. J forms an abelian group under
the "circle" operation, defined by a o b = a + b + abβ This
group is called the quasi regular group of J.

Our main purpose is to investigate the relationship be-
tween the structure of J as an algebra, and the structure of
its quasi regular group.

In particular, the structure of the quasi regular group is described
in terms of certain subalgebras of J. These subalgebras are, for
fixed j , the pj powers of elements in J". They are denoted by JU).

It is conjectured that the dimension of J{j) is greater than or
equal to p times the dimension of J ( i + 1 ). If this is true, then
Theorems 1.1 and 2.1 completely describe the possibilities for the
quasi regular group of J. Paragraph 2 considers some special cases
of the conjecture.

1* The quasi regular group of J* Let J be a finite commutative
nilpotent algebra over a field F with pu elements. Denote by J ( i )

the set of pjth powers of elements in J, j = 0, 1, . The Jij) form
a descending chain of subalgebras of J". If t is the minimum exponent
such that x** = 0 for all xeJ then J{t~ι) Φ (0) and J{t) = (0). The
constant t will be called the height of J. Let the dimension of JU)

be Tj and set sh — τh^t + rh+1 — 2rh, h = 1, , t.

We denote by G(p, u; sl9 , st) the group which is the direct
sum of ush, h = 1, •••, t, copies of the cyclic group of order ph.

THEOREM 1.1. The quasi regular group of J is isomorphie to
G{p, u;su •••, st).

Proof. Since the pth power oί xeJ with respect to the operation
"o" is x9, the number of cyclic summands of order greater than ph

is the dimension of the quotient group J{k)/J{h+1) over the integers
modulo p, that is u(rh — rh+1) [1, page 27]. Hence the number of
cyclic summands of order ph in the quasi regular group J is
u(rh^ + rh+1 - 2rh), h = 1, , t.

2. The possibilities for the quasi regular group of J* Given
certain p-groups, finite commutative nilpotent algebras can be con-
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structed with these groups as their quasi regular groups.

THEOREM 2.1. Let ai be arbitrary nonnegative integers for
i = 1, , t, at Φ 0. Then there exists a finite commutative nilpotent
algebra J over a field F of order pw where:

( i ) rt = 0 and r^x = p^ + au i = 1, , t.
(ii) the quasi regular group of J is G(p, u; slf •• ,s ί) where

sh = rΛ_x + rh+1 - 2rh.

Proof. Let Jό be the Jacobson radical of F[X]/(Xn), where
n = p3'-1 + 1. If x = X + (Xn) then a basis for J3 over F is
{x, x2, , x"-1}. Thus the dimension of Jf is p3'~ι~ι for ΐ < j . Let
J be the direct sum of a$ copies of Jά for j» — 1, , t. Then r{ = dim
jw = ΣJ.=ί+1 ajP3'-*"1, i <tj rt = dim J(<) = 0. A simple calculation gives
r,-! — 2>rf = a{. By using Theorem 1.1, the proof is complete.

The author conjectures that the converse of the above theorem
is also true, that is:

(C) If J" is a finite commutative nilpotent algebra over F then
dim J{i~ι) - p dim J(i) = n_ t - pr{ ^ 0.

This is immediate for algebras of height one, height two and
dim J(1) = 1, and height two and p = 2. The following theorem
establishes (C) for algebras of height two and dim Ja) — 2.

THEOREM 2.2. Let J be a commutative nilpotent algebra over a
perfect field F of characteristic p. Let x, y be elements of J and
suppose xp and yp are linearly independent over F. Then the dimen-
sion of J is greater than or equal to 2p.

Proof. Suppose the theorem is false. That is, assume there is
a finite commutative nilpotent algebra J over F and:

( i ) x, y eJ and xp, yp are independent over F,
(ii) d i m J < 2 p .

We assume J is an algebra of least dimension over F which satisfies
(i) and (ii). It then follows that:

(iii) J is generated by x and y, and
(iv) If / is an ideal of J and an algebra over F then I = (0) or

for some a,beF, 0 Φ axp + byp e I.
If (iv) were false then J/I would satisfy (i) and (ii) and the dimension
of J/I would be less than the dimension of J.

We may assume xp is in the annihilator of J. This follows since,
by (iv), there are elements α, b in F where axp + byp Φ 0 is in the
annilhilator. By replacing x by xf = a'x + b'y, where a'p = a and
brp = 6, conditions (i) through (iv) hold and xfp is in the annihilator.

Let & be the cartesian product of the nonnegative integers with
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themselves less (0, 0). Let the total ordering -< be defined in <& by:
( s , t) < (i, j ) i f s + t < i + j o ΐ s + t ^ i + j a n d s < i .

LEMMA. // xψ Φ 0 then i + j ^ p.

Proof. Let (n, m(0)) be the maximum element in <£*, with
respect to •<, such that xnym{0) Φ 0. Suppose that n + m(0) > p.

Since xp is in the annihilator of J, n <L p and m(0) > 0, thus if
n > 0 then J ^ = {(ί, fte&Ί i ^ n, and j" g m(0)} has more than 2p
elements. The monomials xιy\ {%, j) e j ^ , are dependent, thus a
nontrivial relation.

Σai3xψ = z = 0, (i, j) e

exists. Let (s, t) be minimum such that ast Φ 0. Consider

For (s, t) < (ί, j) it follows that (n, m(0)) < (i + % - s, i + m(0) - ί)
Έy the definition of (n, m(0)) we obtain 0 = astx

nym{0). This is a
contradiction; thus w = 0.

Now define m(i) to be the maximum integer such that xιym{i) Φ 0,
i = 0, , p. Since x, , xp, y, , yp are dependent, let

(1) z = Σ α^* + Σ 6*2/* - 0 ,

where ah Φ 0 and 6ί ^ 0. There is at least one nonzero a3- since
y, •• ,yp are independent. Likewise at least one b{ is nonzero. Thus
considering xp~hz and ym{0)-ιz we find xp~hyι Φ 0 and χhym(Q)-1 φ 0.

We will now show that, for k = 0, , h, if i ^ A; and a?V" ^ 0
then (i, j) ^ (&, m(k)). Suppose this has been shown for 0, , k — 1.
Since (i + 1, m(ί + 1)) -< (i, m(i)) for i < k, we see that m(0) ^ m(i) + 2i.
From xhym{0)-1 Φ 0 and h < k — 1 we have

(Λ, m(0) - Z) -< (k - 1, m(A - 1)) .

Therefore h + m(0) - I < k ~ 1 + m(7b - 1) and I - h^k. Now let
(w, v) be maximum such that u ^ k and $M?/V Φ 0. Since xp~hyι Φ 0
and p — h^l — h^ k it follows that ^ + ^ ^ p — h + l^ p + k. If
v = 0 then u ~ p and & = 0. Since for k ~ 0 our result is established,
we consider v > 0. If u > k then the set S^ = {(i, i) e ^ : k ^ i ^ u,
0 ^ i ^ v) contains (u — k + ΐ) (v + 1) ^ 2(u — k + v) ^ 2p elements.
Thus there is a nontrivial relation among the xιyύ, (i, j) e sf. As
before, let (s, t) be minimum such that the coefficient, ast1 of xryt is
nonzero. On multiplying the relation by xu~syv~t we obtain 0 = astx

uyv

which is contradictory. Therefore u — k and v — m(k). By the
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definition of (u, v), i f i ^ u — k and xιy5 Φ 0 then (i, j) < (&, m(k)).
We now have the inequality, m(0) ̂  2A: + m(/c), for fc = 0, •••,/&.

Since a;V ( 0 ) -' ^ 0, m(fe) ̂  m(0) - L T h a t is £ ̂  2/ι.
Let bh + c = p where 0 ̂  c < h. Returning to equation (1) we

obtain:

0 Φ a{xp = x^ΣidiX*)* = xc{~- Σfi^f = *τVzΓ, where Γ is a poly-
nominal in y.

Hence α V ' ^ 0. This implies ra(0) - 2c ̂  m(c) ^ 6Z ̂  26ft. There-
fore m(0) ^ 2̂ 9 and ?/, **, y2p are independent. This is a contradiction
and the lemma is established.

Next we show that if m + n = p and n Φ p then xmyn — cnx
p

where cn e F. Suppose this holds for the powers of y being
0, •••,% — 1. If xmyn = 0 then the result is established. Thus
suppose $m^% ^ 0. There are (m + 1) (n + 1) ̂  2p monomials of the
form xp or xιy\ i ^ m, j ^ n. Thus there is a nontrivial relation

X 1 /γ iγΐnii _L_ /-fΛ»P f\

Let (s, ί) be minimum such that the coefficient of xsyι is nonzero.
By multiplying the relation by xm~syn~t we obtain:

Σ

Since xp is in the annihilator of J, ̂ +™-y- ί is α;p or 0. Therefore
xmyn = cnx

p.
Similarly we obtain: if m + n = p and m Φ p, then xmyn — bmyp*

Since xp and /̂p are independent, if m + n = p, m Φ 0, p then .τw?/% — 0.
From equation (1) we may obtain, as before, xv~hyι Φ 0 and

xhyp~l Φ 0 where 0 < h, I ̂  p. Assuming, without loss of generality,
h ^ I we have h + (p — I) ̂  P and by the lemma we have equality,
that is, h = I. Since χhyp-h Φ 0 we have, by the above paragraph,.
h = I = p. Equation (1) becomes 0 = apx

p + δ ^ for nonzero ap and
6P, a contradiction. This completes the proof of Theorem 2.2.
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