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QUASI-COMPACTNESS AND DECOMPOSITIONS
FOR ARBITRARY RELATIONS

STANLEY WERTHEIMER

If T is a relation, X the set of first elements and Y a
get containing all the second elements, T(x) = {yc Y| (x, y) e T}
and T (y)={xeX|(@,ye T} If T(x)n T(y) is nonempty
implies that T(x) = T(y), the relation 7T is semi-single-valued
(ssv). Every ssv surjection defines a decomposition of X into
point inverses and a decomposition of Y into point images.
G. T. Whyburn has analyzed the ssv surjection 7 on X to Y
in terms of these decomposition spaces and the natural map-
pings onto these spaces. He discusses quasi-compactness for
ssv relations, It is the purpose of this paper to extend
Whyburn’s analysis to include all relations.

2. Decompositions. Let P(X) denote the power set of X.

DerFINITION 2.1. Let T on X to Y be a relation. Define 4T on
P(X) to P(Y) by 4T(A) = T(A) N T(X — A), 4* the collection of non-
empty subsets of X for which 4T(A4) is empty, and 4 the collection
of all minimal members of 4* with respect to the partial ordering
defined by set inclusion.

The elements of 4* are the nonempty subsets A4 of X having the
property that if 7-'(y) N A is nonempty then T-'(y) is contained in A.

THEOREM 2.2. Let T on X to Y be a relation, I an indeving set
and A, A; in 4* for all iel. Then (a) X — Aec d* if A is not X,
(b) T7'T(A) = 4, (c) T(X — 4) = T(X) — T(4), (d) N4:ed* if NA;
s not empty, () UA; e d*, and (f) A — A, e 4* if A — A, is not empty.

Proof. (a) Since Ae 4*, 4T(X — A) = T(A) N T(X — A) = 4T(A)
which is empty; thus X — A e 4*.

(b) Let wxe T-'T(A); then T(x) N T(A) is not empty and, since
TA)YNT(X — A) = @ (the empty set), x¢ X — A4; i.e.,, xc A. Thus
T'T(A) c A. The reverse inclusion is always true, proving (b).

(¢) Since A e 4%,

TX-4)={eY|T"NX-A) = 2}
=TX) —{ye Y|T7(y) c 4} = T(X) — T(4) .

(d) Suppose that B =) A4;¢ 4*; then for some xe X — B, T(2)N
T(B) = @. Also xe X — A; for some jeI and so
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T@x) N T(B) € T(X — A;) N T(4;) = 4T(4,) ,

since T(B) c T(A;) for all te I. This contradicts the fact that 4, e 4*.
(¢) Let C=UUA4; and ye T(C). Then ye T(A,) for some kel
and hence y¢ T(X — A,) since 4T(A,) = @. Therefore y¢ T(X — C),
since T(X — C) c T(X — 4,), and 4T(C) = O.
(f) Since both A and A;e4* sois AN(X — 4;) = A — A, from
(d) and (a).

THEOREM 2.3. 4 is a decomposition of X.

Proof. For A’ A"edq* if A’NA"+ ©,A NA"ed* and also
contained in A’ and A”. By the minimality of A’ and A”, A’ = A'N
A" = A"”. It is now necessary to show that U4 =X. LetzxeX
and A be the intersection of all members of 4* which contain x; then
Ae 4* from (2.2) (d). Let Bed*. If xeB,ACB; if xeX—- B AC
X —Band ANB= @. Thus A is minimal and hence in 4.

REMARK 2.4. If T is ssv the elements of 4 are point inverses,
which are the members of the natural decomposition for such relations.

DEeFINITION 2.5. 4 will be called the natural decomposition of X
induced by 7. Let X’ = {D e 4} have the quotient topology and P be
the projection of X onto X"’.

It is well known [4, p. 345] that the decomposition 4 is upper
semicontinuous (usc) if and only if the mapping P is closed. For the
ssv case an equivalent condition for the decomposition to be wusc is
that T be reflexive closed, i.e., T—'T{C) is closed for all closed sets
C in X [2, p. 690]. This is not true for arbitrary relations, as is
shown in the following example.

ExampLE 2.6. Let {x;} be any sequence of distinct real numbers
converging to the real number p, and let X = Y = [J«; U {p}. Define
Ton X to Y by T(x;) = {x;, x;1,} for all © = 1,2, --- and T(p) = ».
Let C be a closed subset of X; then C is finite, or infinite containing
p and T—'T(C) is then finite, or infinite containing p so that T is re-
flexive closed. However, 4 = {U z;, {p}} and, for any 4, P7'P(x;) =
X — p, which is not closed, so that 4 is not usc.

It will be shown that there is an analogous condition which re-
duces to that of being reflexive closed in the ssv case. Some prelim-
inary ideas must be considered before stating the condition.

The relation 7' on T(X) to X defines sets corresponding to A*
and 4, say ©* and w. It turns out, as one would expect by consider-
ing the ssv case, that
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THEOREM 2.7. If T on X to Z is a relation, then w* = T(4*)
and © = T(4).

Proof. Let Y = T(X). Since U4 covers X and T on X to Y
is a surjection, U T(4) covers Y. Now

AT (TA) = T7'TA N T (Y — T(4) = An (X — T7'T(A4))
=ANX-4) =0

for A € 4%, where the necessary algebra comes from (2.2); thus T(4)
n*. Now let 4T'(B) be empty and A = T-'(B); then T(4) N T(X —
A =TT B NTX—-T'(B)=BnNn(Y—-B) =g, so that Ae4*.
Also T(A) = TT'(B) = B, and T(4*) = &*.

Now let B = T(A), Aec 4; it will be shown that B is minimal.
Let B'ern*. Then B’ = T(A’) for some A’e 4*. If

BNB =@, TANTA)+ @ .

Let ye T(A) N T(A’); then T-'(y) c AN A’ and, by the minimality of
A AcCc A" and B=T(A) c T(4A") = B

To see that any Berw is the image of something in 4, let A =
T-*(B), then T(A) = TT(B) = B from (2.2) (b) applied to T~'. Since
Bern* Aed* from the previous paragraphs. Let A’e4* and AN
A"+ @; then T(A)N T(A) # @ and, by the minimality of T(A),
T(A) c T(A) and A= T'T(A) c T'T(A’) = A’. Therefore Ac 4,
proving the theorem.

DerFINITION 2.8. Let T be a relation on X to Y. For any
x e X, the order of z, O(z), is the smallest positive integer % so that
(TT)"'T(x) € . If there is no such integer then O(z) is infinite.

The order of T, O(T) is the smallest positive integer » so that
O(z) < n for all xe X. If there is no such integer then the order of
T is infinite.

THEOREM 2.9. Let T on X to Y be a relation and A a nonempty
subset of X. Then A is in 4* if and only if T'T(A) = A.

Proof. If Aed* T7T(A) = A, from (2.2)(b). Now suppose
T'T(A) = A. Then T7'T(AANX - A) =ANX - A) = @; but

T-TA) N (X — A) =
if and only if T(A)NT(X — A) = @, and so 4T(A) = @; thus Ae 4*.

COROLLARY 2.10. If p s in X and B = (TTH)"'T(p), B=
TT-(B) if and only if O(p) < m.
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An immediate consequence of the definition is that a relation T
is ssv if and only if O(T) = 1. The corollary to the next theorem
gives a condition which ensures that the decomposition 4 is wusc.

THEOREM 2.11. Let T on X to Y be a relation and O(T) = n.
Then 4 is usc ©f and only if S = (T*T)" is closed.

Proof. For any xe X, (TT )" *T{x) e = since O(T) = »n and thus,
by (2.7), S"(x) = T-(TT )" 'T(x) e 4. Also, for any Ae 4 and subset
C of X so that AnNC= @, for xeANC, A=S(x)cS(ANnC)cC
S"(4) = A; i.e.,, A= 8" (ANC)=S"(A). Therefore

S"(C) = S"[U{ANCl|Aed, AnC = @}
=U{S"ANC)|Aed, AnC =+ 2}
=U{A4|Ae4, AnC= p}=PPC),

where P is the projection mapping.
Thus, if 4 is use, P~'P(C) is closed for C closed and hence S" is
closed. If S is closed then P~'P(C) is closed for C closed and 4 is usc.

Note that in Example (2.6), O(T) is infinite since for any x; and
any n, (TT")~'T(x;) is not equal to X — »p.

3. Quasi-compact relations. A ssv relation is quasi-compact if
and only if the image of any closed inverse set is closed. This is
equivalent to requiring that the image of any open inverse set be
open for such relations, a situation which is not true in general for
relations which are not ssv, as in shown by the next example.

ExaMpLE 3.1. Let X = Y = [0, 1] with the usual topology; let
p,¢,7re(0,1),p<qg<r. Define Ton X to Y by Tx) =Y — q for
r# q and T(9) = (p, r). For ge Y, T-'(¢) = ¢, which is closed, while
TT(g) = (p, ) which is not closed. The only open inverse sets are
X and X — ¢ and the image of both of these sets is open.

The next definition extends the concept of quasi-compactness to
all relations in such a way as to be consistent with the definition for
ssv relations. In addition, all of Whyburn’s results relating to de-
compositions for ssv relations [4] remain valid for arbitrary relations
with the extended concept of a natural decomposition as discussed in
the previous section.

DEFINITION 8.2. The relation 7 on X to Y is quasi-compact if
and only if T(A) is closed in T(X) for each closed A in 4*.
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THEOREM 3.3. The relation T is quasi-compact 1f and only if
T(A) is open in T(X) for each open A in A*.

Proof. Suppose T is quasi-compact and A4 (not X) in 4* is open;
then X — Ae 4* by (2.2) (a) and X — A is closed. Thus T(X — A4) =
T(X) — T(A) from (2.2) (¢). Since T(X — A) is closed in T(X), T(A)
is open in T(X).

To prove the converse replace open with closed and closed with
open in the above.

DEFINITION 3.4. Let T on X to Y be a relation, z € X, and A(x)
the element in 4 containing 2. The relation ¢t on X to Y is defined
by t(z) = T(A(x)).

Note that T(X) = t(X), T(A) = t{A) for A in 4, and, if T is ssv,
T=t.

THEOREM 3.5. For any subset A of X, A is a member of A* if
and only if it is the union of the members of some subset of 4. In
particular, 1f A is in 4*, A is the union of all members of 4 which
intersect A mon-vacuously.

Proof. Suppose A e 4*; then for each xe A, xe A(x) C A by the
minimality of A(x). Therefore A Cc |J{De4|AND = @} The re-
verse inclusion is always true by the minimality condition. If A is
the union of the members of some subset of 4, Ae 4* by (2.2) (e).

THEOREM 3.6. Let T on X to Y be a relation. Then t is ssv,
and T is quasi-compact 1f and only if t is quast-compact.

Proof. Letz, o’ € X; then t7't(x), t7't(x’) € 4. Since 4 is a decom-
position either t(x) = t(x’) or t(x) N t{x’) = @; i.e., t is ssv.

Since ¢ is ssv, the natural decomposition of X induced by ¢ is
0 = {t7't(x)|xe X}. To prove the second assertion it will be shown
that 0 coincides with 4 and hence, from (3.5), ¢* will equal 4*. It
will then be shown that #(4) = T(4) for Ac 4* and thus for any
closed A e 4%,

Note that for p, ge X, if T(A(p)) = T(A(g)) then

A(p) = T7'T(A(p)) = T T(A(g)) = A(9) -
Then

t7't(p) = {ge X |t(p) N tg) # @} = {ge X |t(p) = t(q)}
={ge X|T(A(p)) = T(A(@)} = {ge X | A(p) = A(@)} = A(D) ,
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S0 0 = 4.

Since #(A) = T(A) for every Ac 4 and every member of 4* is the
union of a subset of the elements of 4, t(A’) = T(A’) for every A’e 4*.
This proves the assertion.

For two topological spaces, X and Y, let R(X, Y) be the collec-
tion of all relations on X to Y and S(X, Y) € R(X, Y) be the set of
all ssv relations on X to Y. Then p on R to S defined by o(T) =t
is a surjection. The function p thus defines an equivalence relation
on the set of all relations given by T ~ T' if and only if o(T) = o(T").
From the last theorem either all of the members of any equivalence
class are quasi-compact or they are all not quasi-compact, depending
upon their representative in S. The function p is itself quasi-compact
since it is a retraction [4, Theorem (4.5), p. 346].

Now Pon X to X’ and @ on Y to Y’ are the natural mappings
for the decompositions of X and Y induced by the surjection T. Define
h on X' to Y’ by D) = QtP(D),g on X to Y’ by g(x) = hP(x),
and s on Y to X’ by s(y) = h'Q(y); then P, Q, h, g, and s are onto
functions, as pointed out by Whyburn [4]. The following theorem is
a direct analogue of Theorem (6.1) in [4]; here the requirement that
T be ssv is not needed. The proof is exactly the same since T is
quasi-compact if and only if ¢ is quasi-compact.

The following commutative diagram is useful for understanding
the functions %, g, and s and the theorem following.

x- Ll .y
AN

THEOREM 3.7. Let T on X to Y be a surjection. Then

(a) h is injective. Also h(h™') is quasi-compact when T{(T™') s
quasi-compact.

(b) & is a homeomorphism if and only if T arnd T7' are quasi-
compact.

(¢) g is quasi-compact when T is quast-compact and continuous
when T is quasi-compact.

(d) s is quast-compact when T~ is quasi-compact and continuous
when T is quasi-compact.

The following theorem of Whyburn [4, Theorem (6.2), p. 348]
analyzes the ssv representative ¢ of 7. A doubly quasi-compact rela-
tion is one for which both it and its inverse are quasi-compact. A
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relation is usc (Ise) if the inverse of every closed (open) set in its
range is closed (open).

THEOREM 3.8. For any ssv doubly quasi-compact surjection t on
X to Y there is a topological space Z and a pair of continuous quasi-
compact single-valued surjections P on X to Z and Q on Y to Z
satisfying t = Q@ 'P and t™ = P™'Q. Thus t is closed (open) if and
only ©f P 1is closed (open); equivalently, t is usc (Isc) if and only if
Q 1s closed (opem).

Conversely, any pair of quasi-compact single-valued continuous
surjections P on X to Z and Q on Y to Z define a ssv doubly quasi-
compact relation under the definition t(x) = Q'P(x), x in X, which in
turn generate a pair P’ and Q' equivalent to P and Q.

Theorems (3.9), (3.10), and (8.11) are generalizations of Theorems
(4.2), (4.4), and (4.5) in [4]. In every case Whyburn’s results require
that the relations be ssv.

THEOREM 3.9. FEwvery usc compact-valued relation T on X to Y 1s
quasi-compact, for X compact and Y Hausdorf.

Proof. Let C be closed in X; then C is compact and T(C) is
compact since compactness is invariant under usc compact-valued re-
lations [3, Corollary A,, p. 1497]. Since Y is Hausdorff, T(C) is closed
and hence T is closed and so quasi-compact.

For any surjection T'on X to Y, a set S X is a cross-section
for T if T(S) = Y.

THEOREM 3.10. If T on X to Y 1is a surjection so that T|S is
quasi-compact for some cross-section S for T, then T 1is quasi-compact.

Proof. Since S is a cross-section for T, S is a cross-section for ¢
since T(S) c t(S). Thus ¢ is quasi-compact on S by (3.6) and hence on
X by Whyburn’s theorem. Again by (8.6), T is quasi-compact on X.

A surjection T'on X to Y X is retracting if y is in T(y) for
each y in Y.

THEOREM 3.11. Let T on X to Y = X be retracting; then T is
quasi-compact.

Proof. If T is retracting, ¢ is retracting since T(y) C t{y) for
every ye Y. Thus ¢ is quasi-compact, from Whyburn, and hence T
is quasi-compact from (3.6).
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4. Local 4-connectedness. It is well known that every quotient
space of a locally connected space is locally connected [1, Proposition
12, p. 112]. Whyburn [4] defines a space Y to be locally connected
relative to the surjection T on X to Y provided that components of
open image sets in Y are open; he then proves that if T is a ssv
doubly-quasi-compact surjection which preserves connectedness, Y is
locally connected relative to T if X is locally connected relative to
T-'. Since every quotient mapping is quasi-compact, this theorem
contains the result in the first line of the section. It is the purpose
of this section to extend the known results to arbitrary relations; in
so doing, a theorem stronger than Whyburn’s will be obtained for
ssv relations.

DEFINITION 4.1. Let X be a space, 4 a decomposition of X, and
A4* the collection of subsets of X which are the union of the elements
of some subset of 4. Then X is locally 4-connected if the components
of open 4* sets are open.

LEMMA 4.2. Let X be a topological space, 4 a decomposition of
X, X’ the quotient space of X relative to 4, and P the natural pro-
jection. If D, D" are subsets of X' so that D is a component of D',
then P~'(D) is the union of components of P~(D’).

Proof. 1t is sufficient to show that any component of P~(D’)
intersecting P~'(D) is contained in P~'(D). Let xe P~'(D) and C be
the component of P~'(D’) containing z; then P(C) is connected and
hence P{(C) < D since P(x)e D. Therefore C — P7'P(C) C P(D).

LEmmA 4.3. [1, Proposition 7, p. 110] Let X be a topological
space, 4 a decomposition of X, and X' the quotient space of X relative
to 4. If each element of A i3 connected, then X 1is connected when
X' 1s connected.

The following theorem was suggested by Professor G. L. Cain, Jr.

THEOREM 4.4. Let X be a topological space, 4 a decomposition
of X with connected elements, and X' the quotient space of X relative
to 4. Then X s locally d-conmected 1f and only if X' is locally
connected.

Proof. Suppose that X is locally d-connected. Let D' < X’ be
open and D be a component of D’. Since D’ is open, P~*(D)) is open;
also, from (4.2), P7*(D) is the union of components of P~'(D’), each
of which is open since X is locally d-connected. Thus P~(D) is open
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and hence D is open, i.e., X’ is locally connected.

Now suppose that X'’ is locally connected. Let A’ be an open 4*
set and A a component of A’. Since P is continuous P(A) is con-
nected; let B’ be the component of P(A’) containing P(A).

Let the subspace B= P~'(B’) of X be decomposed by 4 restricted
to B; then the subspace B’ of X' is the quotient space of B relative
to 4 restricted to B. Since B’ is connected, B is connected, by (4.3).
Also, since P(A) ¢ B, A c P'P(A) c P(B') = B. However, A is a
component of A’ and B is connected, so B — A; thus 4 = B.

Now B’ is open since X'’ is locally connected, so P~(B’) = A is
open; i.e., X is locally 4-connected.

THEOREM 4.5. Let T on X to Y be a doubly quasi-compact sur-
jection, where ™ has connected elements. If X is locally 4-connected,
Y s locally m-commected.

Proof. The function ¢ in the diagram in § 3 is a quasi-compact
mapping, by (3.7). From Theorem (5.1) in [4], Y’ is locally connected
relative to ¢ since ¢ is a doubly quasi-compact function which pre-
serves connectedness and X is locally connected relative to g, since
X is locally 4-connected. Since ¢ is single-valued, Y’ is locally con-
nected and hence, by (4.4), Y is locally m-connected.

THEOREM 4.6. Let T on X to Y be a relation. If T has con-
nected point images, ™ has connected elements.

Proof. Let Gew and G = AU B, where AN cl(B) = BN cl(4) =
@. Now let ye TT'(4) and x € T~'(y) N T~'(A4); then T(x) is contained
wholly in A since T{(x) is connected and, since ye T(x), yc 4; i.e.,
TT-(A) c A. The reverse inclusion is always true so that 77-'(4) = 4
and hence Aem, by (2.9). But AC G, so A =G and B = ¢, proving
that G is connected.

COROLLARY 4.7. Let T on X to Y be a doubly quasi-compact
surjection with connected point images. If X is locally 4-conmnected,
Y s locally m-conmnected.

REMARK 4.8. (4.7) includes Theorem (5.1) in [4]. Also included
are the cases where T has connected point images and is (open, Ilsc),
(open, wusc), (closed, lsc), or (closed, wsc); in particular, the corollary
includes the cases when T is an open, closed, or quotient mapping.
Since any locally connected space is locally 4-connected for any 4, the
known results that local connectedness is preserved by open, closed,
retracting, or quotient mappings are also included in (4.7).
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5. Reflexive closed and reflexive compact relations. A relation
T on X to Y is reflexive closed (compact) if T'T(C) is closed (com-
pact) for every closed (compact) subset C of X. X is a k-space if a
subset A of X is closed when its intersection with every closed com-
pact set in X is closed. Theorems (5.1) and (5.5) are generalizations
of Theorems 1, 2, 3, and 5 of E. Duda [2]. Duda’s results are stated
as corollaries to (5.1) and (5.5). Note that there are no continuity
conditions in the hypotheses of the theorems while the functions in
the corollaries are all assumed to be continuous.

THEOREM 5.1. Let X be a Hausdorff space and T on X to Y a
relation so that T 'T(x) is compact for each x in X. Then (a) tmplies
(b); ©f X s a k-space (b) implies (a); ©f O(T) is finite (a) implies (c);
of X is a k-space and O(T) is finite (b) implies (c); if X is a k-space
and T s ssv, (a), (b), and (c) are equivalent.

(a) T 1is reflexive closed.

(b) T s reflexive compact.

(¢) The natural decomposition of X 1is usec.

Proof. (a) — (b): Define S on X to X by S(x) = T'T{x). Then
ze S(y) if and only if T(x) N T(y) # @ if and only if ye S(x); i.e.,
S7'(x) = {ye X|zeSH)} ={ye X|yeS)} = S(x), and so any property
of S is also a property of S™'. Since T is reflexive closed, S is closed
and hence usc; S has compact point images and therefore [3, Corollary
A,, p. 1497] S preserves compactness and is thus compact.

(b) — (a): The relation S now preserves compactness and is thus
compact; S(x) is closed for all xe X and so from Corollary C, on p.
1499 of [3] which states that if X and Y are Hausdorff and Y is a
k-space, any compact relation with closed point values is closed, S is
closed.

(a) — (¢): This follows from (2.12).

(b) — (¢): This follows from (b) — (a) and (a) — (c).

COROLLARY 5.2. Let X be a Hausdorff k-space and f a mapping
of X onto Y. If f is reflexive compact then f generates an upper
semicontinuous decomposition.

COROLLARY 5.3. Let f be a mapping with compact point inverses
of a Hausdorff space X onto a spaze Y. If f generates an usc de-
composition then f 1is reflexive compact.

COROLLARY 5.4. Let f be a mapping with compact point tnverses
of a Hausdorff k-space into a space Y. The mapping f generates an
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upper semicontinuous decomposition if and only if f 1s reflexive
compact.

A relation T on X to Y is semi-closed if the image of every
compact set in X is closed in Y; thus, any continuous function onto
a Hausdorff space is semi-closed with a semi-closed inverse.

THEOREM 5.5. If X is a Hausdorff k-space and T on X to Y 1is
a quasi-compact reflexive compact surjection of fimite order with T
semi-closed, then T is compact.

Proof. All relations referred to are those in the diagram pre-
ceding (3.7). Since T is reflexive compact, the decomposition 4 of
X is wuse, by (5.1). From (3.7) (d), s is continuous since T is quasi-
compact, and thus s preserves compactness.

For Ae X', zec A, P7'(x) = (T'T)*(x) for some = since O(T) is
finite; since T is reflexive compact P has compact point inverses.
Moreover 4 is usc and so P is closed and hence compact [3, Corollary
A,, p. 1497]. Thus t*(K) is compact for any compact subset K of ¥
since ¢t = P's.

Since T is semi-closed, T '(K) is closed; therefore T'(K) is a
closed subset of the compact set ¢™*(K) and is thus compact. This
proves the theorem.

COROLLARY 5.6. Let f on X to Y be an onto mapping, where
X 1s a Hausdorff k-space. If f is quasi-compact and reflexive com-
pact, then f is compact.
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