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MULTIPLIERS AND UNCONDITIONAL CONVERGENCE
OF BIORTHOGONAL EXPANSIONS

W. J. DAVIS, D. W. DEAN AND I. SINGER

We solve in the affirmative a problem raised by B. S.
Mityagin in 1961, namely, we prove that if (xn, fn) is a bior-
thogonal system for a Banach space E with (fn) total over
E, such that the set of multipliers M(E, (xn, /«)) contains all
sequences (e, ) with ε» = ±1 for each i, then (xn) is an uncon-
ditional basis for E.

Let E be a Banach space, and let (xn, fn) be a biorthogonal system
for E (i.e., (xn)aE, (fn)czE* and fn(xm) = δnm) which has (Λ) total
over E (i.e., /n(&) = 0 for all n implies x = 0). A scalar sequence
(7») is called a multiplier of an element a; in £7 with respect to (xn, fn)
(write (τn) € M(&, (a?n, /n))) if there is an element y of E such that
/n(l/) = Ύnfn(x) for all % (call this element £ ( ? v ) . The set of multi-
pliers for E with respect to (xn, fn) is

M(E, (x%, / J ) - Π {M(x, (xn, /.)) I x e £7}.

Here we consider the following two problems:

P I : (Mityagin [6], Kadec-Pelczynski [4], Pelczynski [7]). Let
E be separable and suppose that M(E, {xni fn)) contains all sequences
(Si) with βi = ± 1 for each i. Is (xn) an unconditional basis for El

P 2: (Kadec-Pelczynski [4]). Let E be separable and suppose
M(x, (xnjfn)) contains all sequences (ε*) with ε̂  = ± 1 for each i. Does
the formal expansion ^nfn(x)xn converge unconditionally to xi

Problem 2 (and hence also problem 1) is known to have an affirma-
tive answer in the following cases [4]:

1°. M(x, (xn,fn))i)m (the space of bounded sequences).
2°. E contains no subspace isomorphic to c0 (the space of sequences

converging to 0) and M(x, (xn, fn)) z> c0.
3°. sp(fn) ( = linear span of (fn)) is norming (i.e.,

\x\ = sup{\f(x)\\fesp(fn),\\f\\^l}

defines a norm on E equivalent to the original norm on E).
Problem 1 is known to have an affirmative answer in the case

when [xn] = E? where [xn] denotes the closed linear span of {xn} ([5];
see also [1], Theorem 3.4, implication (4) => (3)).

In the present paper we give an affirmative solution for problem
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1. Our method also provides a more elementary proof of 3° than that
given in [4].

THEOREM 1. Let E be a separable Banach space and let (xnifn)
be a biorthogonal system for E with (fn) total over E. If M{E, (xn, fn))
contains all sequences (ε̂ ) with et = ± 1 for each i, then (xn) is an
unconditional basis for E.

If the hypothesis [xn] = E is added then a much simpler proof
of the theorem is obtained (see the Remark following Lemma 3 below).

LEMMA 1. M(E, (xn, fn)) z> {(e*) | εt = ± 1 for all i] if and only if

M(E, (& ,Λ)) =>{&)! ε, = 0 or 1 for all i}.

Proof. Obvious.

LEMMA 2. Suppose (Si)eM(E, (&»,/«)), where e< = 0 or 1 for all
i and define SiH) = Έ-+E by

( 1 ) SiH)(x) = xiH) (xeE).

Then SiH) is a continuous linear mapping.

Lemma 2 is well known (see e.g. [8]).

In the particular case when ε, = 1 for i = 1, , n and ε< = 0
i = n + 1, n + 2, we shall use for SίH) the notation SΛ. Obviously,

( 2 ) SUx) = Σ / Λ φ J i (α; 6 ^ , n = 1, 2, •)

If σ is a subset of the positive integers, we define the mapping
Sσ: E-^Ehγ
( 3 ) Sσ = S ( e ΐ ),

where ε̂  == 1 for ΐ e σ and ε̂  = 0 for ΐ ί σ.

LEMMA 3. Let (xn, fn) be a biorthogonal system for E {not neces-
sarily separable), with (fn) total over E. If M(E,(xn,fn)) contains
all sequences (ε*) with ε€ = ± 1 for all i, then (\\Sn\\) is bounded.

Consequently, (xn) is an unconditional basic sequence (i.e., an
unconditional basis of its closed linear span [xn\) and hence, if [xn] = E,
then (xn) is an unconditional basis of E.

Proof. Assume that (|[SU|) is unbounded. Let (nk) be an increas-
ing sequence of integers such that \\Snk\\ ^ 2k + ||Snfc_J|, whence
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\\Snjt — SnΛ_JI —• °° Let (Mp; p = 1, 2, •) be a countable collection
of pairwise disjoint, infinite subsets of the positive integers, Ik —
{%_! + 1, , nk}9 and σp = Ufcejfp i*. The projection £ ^ is continuous
by Lemma 2. Moreover, if k is in Mp and a? is in E, we have

i ι = Σ

where
S.kJSβfx\\ ^ \\Snk - S.t_1I

= 0 if jtσ,}.

It follows that || Snjc — S ^ J I ^ is unbounded as k runs through ilί^.
Choose up e Xp, kp e Mp such 'that || up \\ S 2~p and \\(Snkp ~ Snk-ι)up\\ ^ 1.
Let σ = \Jp=ιIkp. Now σf)σp = Ikp so that if ypeXp then Pfi(Sσyp) =

for all i, whence - Snk-i)yp. Thus

converges while Sσ(Σ,P uP) = ΈP Sσ(up) = Σ ^ (S»Λp - Snk~i)up doesn't
converge, contradicting Lemma 2, that Sσ is continuous. Thus (xn) is
[2] a basic sequence. Since the same argument remains valid for
every permutation (xp{n)) of (xn), it follows that (xn) is an unconditional
basic sequence, which completes the proof.

REMARK. One can give a much simpler proof of the fact that
under the hypotheses of Lemma 3 we have

(4) supHSJ^IK - >

whence (xn) is an unconditional basic sequence (and, if [xn] = E, then
[xn) is an unconditional basis of E). Indeed, if (4) does not hold,
then there exist increasing sequences of positive integers (pn), (qn)
with pn_t + 1 <̂  qn_γ + 1 ^ pn (n = 1, 2, po= q0 — 0) and a sequence
( O with une[xQn_1+1, -•, xqj (n = 1, 2, •••) such that | | S ^ J | = 1,
j | tt Λ | | ^ 1/2* (n = 1, 2, •••)» whence (Σ*=i ^i) i s convergent, but for
σ = {1, , ply q, + 1, , p2, •} the sequence (Sσ(Σ;=i%)) = (Σ?=iSP j%)
is not convergent. Thus, Sσ is not continuous, which contradicts
Lemma 2, completing the proof.

Proof of Theorem 1. We prove that Snx —> # for each x in i?.
This will prove the theorem by noting that the same proof works to
show that each permutation of (xn) is a basis for E, so that (xn) is
an unconditional basis for E. Choose x in E such that (Snx) does not
converge (if it converges, its limit must be x by totality of the sequence
(/„)). Let (nk), (mk) be sequences of integers such that mk + 1 g
nk ^ mk+1 for all & and such that there is ε > 0 with ε < \\Snk — Smj)x\\
for all k. Let uk = (SnA - S m λ > = Σ?ίmfc+i/»(»)»*• For each sequence
(jji) such that rji = 1 or 0 for each ΐ there is an element of E, denoted



38 W. J. DAVIS, D. W. DEAN AND I. SINGER

here by I%ui9 such t h a t (Snjc — Smfc)(2
r37<%<) = ηknk for every

is x{£j) where ε3- = ηk for mk + 1 ^ j <L nk1 k = 1, 2, and 0 for the
other j). Since E is separable, and since the set {Ση^ % = 1 or 0}
in E is uncountable, there is a sequence (yn)~ with #n = Ση^Ui such
that yn ^ ym if n Φ m and yn—+yo = Ση^Ui. Let if be a bound on
||(Snj fc — Smjfe)|| as guaranteed by Lemma 3. Then for p large, and all
fc, IKS., - SWJfc)(i/p - yo)\\ ^K\\yp - yo\\ < ε, but

(S%k - Smk)(yp - yQ) = ( ^ - ? ? ! 0 ) K ,
whence

ίO if 71{v) = 7?
(0)

- Vl]\ = l l^l l otherwise.

Since yp Φ y0 for all p Φ 0, there is a & = fc( p) for which

\\(Snk~Smk)(yp-y0)\\ = | | ^ | | > ε ,

which is impossible for large p. Therefore Snx —* x, which completes
the proof of Theorem 1.

REMARK. Using the same method, one can also give a more
elementary proof of the result 3° mentioned in the Introduction (ac-
tually, of a slightly more general result), than that given in [4].
As above, it is sufficient to show that (Snx) converges. If not, let
(nk), (mk), ε > 0 and (uk) be as in the above proof. Since sp(fn) is
norming, by a technique of [3], or, equivalently, by [4], p. 311,
lemma and p. 317, Lemma 5, we may assume (dropping to subsequen-
ces of (nk) and (mk) if necessary) that the natural projection Pk of
[&i, •• , S n J Θ [ / i , •• ,/mfc+1]i onto [xt1 ••-,&«*] is of norm \\Pk\\^C,
where C > 1 is a constant independent of k (actually, only this pro-
jection property is used in the sequel and therefore we obtain a
slightly more general result than 3°). As in the above proof of
Theorem 1 there is an element of E, denoted by ΣηiUi9 which is in
each of the subspaces [x19 , xn]c] 0 [fu , /TOA+1L, such that
(Pk — Pk^iΣrjiUi) = 7]kuk. The proof is completed in precisely the same
manner as before, where now Pk — Pk_γ take the role of Snjc — STOfc.

Note. After this work had been completed, we have learned of
the recent paper of G. F. Bachelis and H. P. Rosenthal 'On uncondi-
tionally converging series and biorthogonal systems in a Banach space"
(to appear in Pacific J. Math), where Problem 2 (and hence also
Problem 1) is solved, even with the hypothesis "Let E be separable"
replaced by the weaker hypothesis "Let E contain no subspace iso-
morphic to m " . However, our methods are completely different and
use more elementary tools.
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