MULTIPLIERS AND UNCONDITIONAL CONVERGENCE OF BIORTHOGONAL EXPANSIONS

W. J. DAVIS, D. W. DEAN AND I. SINGER

We solve in the affirmative a problem raised by B. S. Mityagin in 1961, namely, we prove that if (x_n, f_n) is a biorthogonal system for a Banach space E with (f_n) total over E, such that the set of multipliers $M(E, (x_n, f_n))$ contains all sequences (ε_i) with $\varepsilon_i = \pm 1$ for each i, then (x_n) is an unconditional basis for E.

Let E be a Banach space, and let (x_n, f_n) be a biorthogonal system for E (i.e., $(x_n) \subset E$, $(f_n) \subset E^*$ and $f_n(x_m) = \delta_{nm}$) which has (f_n) total over E (i.e., $f_n(x) = 0$ for all n implies x = 0). A scalar sequence (γ_n) is called a multiplier of an element x in E with respect to (x_n, f_n) (write $(\gamma_n) \in M(x, (x_n, f_n))$) if there is an element x of x such that x is an element x of x such that x is an element x is an eleme

$$M(E, (x_n, f_n)) = \bigcap \{M(x, (x_n, f_n)) | x \in E\}$$
.

Here we consider the following two problems:

P1: (Mityagin [6], Kadec-Pelczynski [4], Pelczynski [7]). Let E be separable and suppose that $M(E, (x_n, f_n))$ contains all sequences (ε_i) with $\varepsilon_i = \pm 1$ for each i. Is (x_n) an unconditional basis for E?

P 2: (Kadec-Pelczynski [4]). Let E be separable and suppose $M(x, (x_n, f_n))$ contains all sequences (ε_i) with $\varepsilon_i = \pm 1$ for each i. Does the formal expansion $\sum_n f_n(x)x_n$ converge unconditionally to x?

Problem 2 (and hence also problem 1) is known to have an affirmative answer in the following cases [4]:

- 1°. $M(x, (x_n, f_n)) \supset m$ (the space of bounded sequences).
- 2° . E contains no subspace isomorphic to c_0 (the space of sequences converging to 0) and $M(x, (x_n, f_n)) \supset c_0$.
 - 3°. $sp(f_n)$ (= linear span of (f_n)) is norming (i.e.,

$$|x| = \sup\{|f(x)| | f \in sp(f_n), ||f|| \le 1\}$$

defines a norm on E equivalent to the original norm on E).

Problem 1 is known to have an affirmative answer in the case when $[x_n] = E$, where $[x_n]$ denotes the closed linear span of $\{x_n\}$ ([5]; see also [1], Theorem 3.4, implication $(4) \Rightarrow (3)$).

In the present paper we give an affirmative solution for problem

1. Our method also provides a more elementary proof of 3° than that given in [4].

THEOREM 1. Let E be a separable Banach space and let (x_n, f_n) be a biorthogonal system for E with (f_n) total over E. If $M(E, (x_n, f_n))$ contains all sequences (ε_i) with $\varepsilon_i = \pm 1$ for each i, then (x_n) is an unconditional basis for E.

If the hypothesis $[x_n] = E$ is added then a much simpler proof of the theorem is obtained (see the Remark following Lemma 3 below).

LEMMA 1. $M(E, (x_n, f_n)) \supset \{(\varepsilon_i) | \varepsilon_i = \pm 1 \text{ for all } i\} \text{ if and only if } M(E, (x_n, f_n)) \supset \{(\varepsilon_i) | \varepsilon_i = 0 \text{ or } 1 \text{ for all } i\}.$

Proof. Obvious.

LEMMA 2. Suppose $(\varepsilon_i) \in M(E, (x_n, f_n))$, where $\varepsilon_i = 0$ or 1 for all i and define $S_{(\varepsilon_i)} = E \rightarrow E$ by

$$(1) S_{(\varepsilon_i)}(x) = x_{(\varepsilon_i)} (x \in E).$$

Then $S_{(\varepsilon_i)}$ is a continuous linear mapping.

Lemma 2 is well known (see e.g. [8]).

In the particular case when $\varepsilon_i=1$ for $i=1,\dots,n$ and $\varepsilon_i=0$ $i=n+1,\,n+2,\,\dots$ we shall use for $S_{(\varepsilon_i)}$ the notation S_n . Obviously,

(2)
$$S_n(x) = \sum_{i=1}^n f_i(x) x_i \quad (x \in E, n = 1, 2, \dots).$$

If σ is a subset of the positive integers, we define the mapping S_{σ} : $E \to E$ by

$$(\,3\,) \hspace{3cm} S_{\sigma} = S_{\scriptscriptstyle(\varepsilon_{i})},$$

where $\varepsilon_i=1$ for $i\in\sigma$ and $\varepsilon_i=0$ for $i\notin\sigma$.

LEMMA 3. Let (x_n, f_n) be a biorthogonal system for E (not necessarily separable), with (f_n) total over E. If $M(E, (x_n, f_n))$ contains all sequences (ε_i) with $\varepsilon_i = \pm 1$ for all i, then $(||S_n||)$ is bounded.

Consequently, (x_n) is an unconditional basic sequence (i.e., an unconditional basis of its closed linear span $[x_n]$) and hence, if $[x_n] = E$, then (x_n) is an unconditional basis of E.

Proof. Assume that $(||S_n||)$ is unbounded. Let (n_k) be an increasing sequence of integers such that $||S_{n_k}|| \ge 2^k + ||S_{n_{k-1}}||$, whence

 $||S_{n_k} - S_{n_{k-1}}|| \to \infty$. Let $(M_p; p = 1, 2, \cdots)$ be a countable collection of pairwise disjoint, infinite subsets of the positive integers, $I_k = \{n_{k-1} + 1, \cdots, n_k\}$, and $\sigma_p = \bigcup_{k \in M_p} I_k$. The projection S_{σ_p} is continuous by Lemma 2. Moreover, if k is in M_p and x is in E, we have

$$\begin{aligned} ||(S_{n_k} - S_{n_{k-1}})x|| &= \left\| \sum_{i=n_{k-1}+1}^{n_k} f_i(x)x_i \right\| = \left\| \sum_{i=n_{k-1}+1}^{n_k} f_i(S_{\sigma_p}x)x_i \right\| \\ &= ||S_{n_k} - S_{n_{k-1}})S_{\sigma_p}x|| \leq ||S_{n_k} - S_{n_{k-1}}||_{X_p} ||S_{\sigma_p}|| ||x|| \end{aligned}$$

where

$$X_p = \{x \in E \mid f_j(x) = 0 \quad \text{if} \quad j \notin \sigma_p\}$$
.

It follows that $||S_{n_k} - S_{n_{k-1}}||_{X_p}$ is unbounded as k runs through M_p . Choose $u_p \in X_p$, $k_p \in M_p$ such that $||u_p|| \leq 2^{-p}$ and $||(S_{n_{k_p}} - S_{n_{k_p^{-1}}})u_p|| \geq 1$. Let $\sigma = \bigcup_{p=1}^{\infty} I_{k_p}$. Now $\sigma \cap \sigma_p = I_{k_p}$ so that if $y_p \in X_p$ then $f_i(S_\sigma y_p) = f_i[(S_{n_{k_p}} - S_{n_{k_p^{-1}}})y_p]$ for all i, whence $S_\sigma y_p = (S_{n_{k_p}} - S_{n_{k_p^{-1}}})y_p$. Thus $\sum_p u_p$ converges while $S_\sigma(\sum_p u_p) = \sum_p S_\sigma(u_p) = \sum_p (S_{n_{k_p}} - S_{n_{k_p^{-1}}})u_p$ doesn't converge, contradicting Lemma 2, that S_σ is continuous. Thus (x_n) is [2] a basic sequence. Since the same argument remains valid for every permutation $(x_{\rho(n)})$ of (x_n) , it follows that (x_n) is an unconditional basic sequence, which completes the proof.

REMARK. One can give a much simpler proof of the fact that under the hypotheses of Lemma 3 we have

$$\sup_{x}||S_{n}|_{[x_{j}]}||<\infty \ ,$$

whence (x_n) is an unconditional basic sequence (and, if $[x_n] = E$, then (x_n) is an unconditional basis of E). Indeed, if (4) does not hold, then there exist increasing sequences of positive integers (p_n) , (q_n) with $p_{n-1} + 1 \leq q_{n-1} + 1 \leq p_n$ $(n = 1, 2, \dots; p_0 = q_0 = 0)$ and a sequence (u_n) with $u_n \in [x_{q_{n-1}+1}, \dots, x_{q_n}]$ $(n = 1, 2, \dots)$ such that $||S_{p_n}u_n|| = 1$, $||u_n|| \leq 1/2^n$ $(n = 1, 2, \dots)$, whence $(\sum_{j=1}^n u_j)$ is convergent, but for $\sigma = \{1, \dots, p_1, q_1 + 1, \dots, p_2, \dots\}$ the sequence $(S_{\sigma}(\sum_{j=1}^n u_j)) = (\sum_{j=1}^n S_{p_j}u_j)$ is not convergent. Thus, S_{σ} is not continuous, which contradicts Lemma 2, completing the proof.

Proof of Theorem 1. We prove that $S_n x \to x$ for each x in E. This will prove the theorem by noting that the same proof works to show that each permutation of (x_n) is a basis for E, so that (x_n) is an unconditional basis for E. Choose x in E such that $(S_n x)$ does not converge (if it converges, its limit must be x by totality of the sequence (f_n)). Let (n_k) , (m_k) be sequences of integers such that $m_k + 1 \le n_k \le m_{k+1}$ for all k and such that there is $\varepsilon > 0$ with $\varepsilon < ||S_{n_k} - S_{m_k})x||$ for all k. Let $u_k = (S_{n_k} - S_{m_k})x = \sum_{i=m_k+1}^{n_k} f_i(x)x_i$. For each sequence (η_i) such that $\eta_i = 1$ or 0 for each i there is an element of E, denoted

here by $\Sigma \eta_i u_i$, such that $(S_{n_k} - S_{m_k})(\Sigma \eta_i u_i) = \eta_k u_k$ for every $k(\Sigma \eta_i u_i)$ is $x_{(\varepsilon_j)}$ where $\varepsilon_j = \eta_k$ for $m_k + 1 \leq j \leq n_k$, $k = 1, 2, \cdots$ and 0 for the other j). Since E is separable, and since the set $\{\Sigma \eta_i u_i | \eta_i = 1 \text{ or } 0\}$ in E is uncountable, there is a sequence $(y_n)_0^\infty$ with $y_n = \Sigma \eta_i^{(n)} u_i$ such that $y_n \neq y_m$ if $n \neq m$ and $y_n \to y_0 = \Sigma \eta_i^{(0)} u_i$. Let K be a bound on $\|(S_{n_k} - S_{m_k})\|$ as guaranteed by Lemma 3. Then for p large, and all k, $\|(S_{n_k} - S_{m_k})(y_p - y_0)\| \leq K \|y_p - y_0\| < \varepsilon$, but

$$(S_{n_k}-S_{m_k})(y_{_{\cal P}}-y_{_0})=(\eta_k^{_{({\cal P})}}-\eta_k^{_{(0)}})u_{_k}$$
 ,

whence

$$||(S_{n_k}-S_{m_k})({y}_p-{y}_0)||=egin{cases} 0 & ext{if} \quad \eta_k^{(p)}=\eta_k^{(0)} \ ||u_k|| \, ||\eta_k^{(p)}-\eta_k^{(0)}|=||u_k|| \ ext{otherwise.} \end{cases}$$

Since $y_{p} \neq y_{0}$ for all $p \neq 0$, there is a k = k(p) for which

$$||(S_{n_k} - S_{m_k})(y_p - y_0)|| = ||u_k|| > \varepsilon$$
 ,

which is impossible for large p. Therefore $S_n x \to x$, which completes the proof of Theorem 1.

REMARK. Using the same method, one can also give a more elementary proof of the result 3° mentioned in the Introduction (actually, of a slightly more general result), than that given in [4]. As above, it is sufficient to show that $(S_n x)$ converges. If not, let $(n_k), (m_k), \varepsilon > 0$ and (u_k) be as in the above proof. Since $sp(f_n)$ is norming, by a technique of [3], or, equivalently, by [4], p. 311, lemma and p. 317, Lemma 5, we may assume (dropping to subsequences of (n_k) and (m_k) if necessary) that the natural projection P_k of $[x_1, \cdots, x_{n_k}] \oplus [f_1, \cdots, f_{m_{k+1}}]_{\perp}$ onto $[x_1, \cdots, x_{n_k}]$ is of norm $||P_k|| \leq C$, where C > 1 is a constant independent of k (actually, only this projection property is used in the sequel and therefore we obtain a slightly more general result than 3°). As in the above proof of Theorem 1 there is an element of E, denoted by $\Sigma \eta_i u_i$, which is in each of the subspaces $[x_1, \dots, x_{n_k}] \oplus [f_1, \dots, f_{m_{k+1}}]_{\perp}$, such that $(P_k - P_{k-1})(\Sigma \eta_i u_i) = \eta_k u_k$. The proof is completed in precisely the same manner as before, where now $P_k - P_{k-1}$ take the role of $S_{n_k} - S_{m_k}$.

Note. After this work had been completed, we have learned of the recent paper of G. F. Bachelis and H. P. Rosenthal "On unconditionally converging series and biorthogonal systems in a Banach space" (to appear in Pacific J. Math), where Problem 2 (and hence also Problem 1) is solved, even with the hypothesis "Let E be separable" replaced by the weaker hypothesis "Let E contain no subspace isomorphic to E". However, our methods are completely different and use more elementary tools.

REFERENCES

- 1. G. F. Bachelis, Homomorphisms of annihilator Banach algebras, Pacific J. Math., 25 (1968), 229-247.
- 2. M. M. Day, Normed Linear Spaces, Springer-Verlag, 1962.
- 3. ———, On the basis problem in normed spaces, Proc. Amer. Math. Soc., 13 (1962), 655-658.
- 4. M. I. Kadec and A. Pelczynski, Basic sequences, biorthogonal systems and norming sets in Banach and Frechet spaces, Studia Math. 25 (1965), 297-323 (Russian).
- 5. E. R. Lorch, Bicontinuous linear transformations in certain vector spaces, Bull. Amer. Math. Soc., 45 (1939), 564-569.
- 6. B. S. Mityagin, Approximative dimension and bases in nuclear spaces, Uspehi Matem. Nauk. 16, 4(100) (1961), 63-132 (Russian).
- 7. A. Pelczynski, Some problems in functional analysis, Lecture notes, L.S.U. (1966).
- 8. S. Yamazaki, Normed rings and unconditional bases in Banach spaces, Sci. Pap. Coll. Gen. Educ. Univ. Tokyo, 14 (1964), 1-10.

Received April 3, 1970. The first two authors were supported in part by NSF grants GP-14021 and GP-6023, respectively. The third author was on leave from the Institute of Mathematics of the Romanian Academy of Sciences, Bucharest.

OHIO STATE UNIVERSITY

AND

INSTITUTE OF MATHEMATICS OF THE ACADEMY, BUCHAREST