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ON UNCONDITIONALLY CONVERGING SERIES AND
BIORTHOGONAL SYSTEMS IN A BANACH SPACE

GREGORY F. BACHELIS AND HASKELL P. ROSENTHAL

Our main result is as follows: Let B be a Banach space
containing no subspace isomorphic (linearly homeomorphic)
to Zoo, and let {(bn,βn)} be a biorthogonal sequence in B such
that (βn) is total. If xeB then Σn=i βn(x)bn converges
unconditionally to x if and only if for every sequence (an)
of O's and Γs there exists y e B with βn(y) = anβn(x) for all
n. This theorem improves previous results of Kadec and
Pelczynski.

Similar results are obtained in the context of bior-
thogonal decompositions of a Banach space into separable
subspaces.

1* Preliminaries* We follow the notation of [2] for the most
part, and we also refer the reader to [2] for various results concern-
ing unconditional convergence. We recall that a sequence of pairs
{(bn, βn)} is called a biorthogonal sequence in the Banach space B if
for all m and n, bmeB, βneB*, and βm(bn) = δmn; (βn) is said to be
total (in B) if given xeB with βn(x) = 0 for all n, then x = 0.
Finally, we denote the space of all bounded scalar-valued sequences
by L.

2* The Main Result* We first need the following lemma, due
to Seever [8]:

LEMMA 1. Let X be a Banach space and T: -X"—>L be a bounded
linear map such that for every α e L with an = 0 or 1 for all n,
there exists x e X with Tx = a. Then T(X) = L.

Proof. Our hypotheses imply that T has dense range; thus it is
enough to show that T has closed range. If not, then T* does not
have closed range, so there exists a sequence (7n) in It with
| | 7 j | -> oo and | |Γ*(71 I)| | = 1 for all n. But if α e L and an = 0 or 1
for all n, then choosing xeX with To; = α, we have that

sup|7Λ(α)| = sup|T*7%(^)| ^ ||α;|| < oo .
n n

Thus identifying L with C(βN) (the space of continuous scalar-valued
functions on the rStone-Cech compactification of N) and each 7n with
a complex regular Borel measure on βN, we have by a theorem of
Dieudonne [3] (c.f. also the Correction, pp. 311-313 of [7]) that
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sup w | |T n | | < oo, a contradiction.

THEOREM 1. Let B be a Banazh spate containing no subspace
isomorphic to L, and let {(bn, βn)} be a biorthogonal sequence in B
such that (βn) is total. Let xe B. Then

( 1 ) Σ«=i βn{%)bn converges unconditionally to x
if and only if

( 2 ) Given α e L with an = 0 or 1 for all n, there exists y e B
such that βn(y) = anβn{x) for all n.

Proof. Let xeB. If Σ βn(%)bn converges unconditionally, then
it is subseries convergent; thus "(1) ==> (2)" is immediate. Now suppose
that (2) holds. We shall prove that Σβn(x)bn converges unconditionally.
Since (βn) is total in B it then follows that the limit is x.

Let M be the set of all α e L, such that there exists y e B with
βn{y) = anβn{%) for all n. Given such an α, there is a unique y
satisfying the above. We then define | | α | | = | |α | |«>+| |2/ | | . It is easily
verified that M is a Banach space under this norm. Thus the inclusion
map T: M—>L> is continuous and satisfies the hypotheses of Lemma 1.
Hence M = L, so T~ι is continuous. Thus the mapping U given by
βn{ U{a)) = anβn{x) for all n, is a continuous linear mapping of L into
the Banach space B, which by hypothesis contains no subspace isomor-
phic to Zoo. Hence by [7, Cor. 1.4], U is weakly compact.

Given a subseries Σ& βnk(%)Kki let a be the characteristic function
of (nk). If a subsequence of the partial sums of this subseries, (Sk),
converges weakly to z e B, then βn(z) = l i m ^ βn(Sk) = anβn(x) for all
n; thus U(a) = z. Since the partial sums of this subseries are
contained in a weakly sequentially compact set (the image under U
of the unit ball of Zoo), it follows that the subseries itself converges
weakly to U(a). Hence Σβn(x)bn is weakly subseries convergent, so
by the Orlicz-Pettis Theorem it is unconditionally convergent.

REMARKS. (I) If B is separable, then B contains no subspace
isomorphic to the (nonseparable) space L, so Theorem 1 holds. In
this case one can apply a theorem of Grothendieck [5, p. 138] in the
proof, rather than the generalization given by [7> Cor. 1.4].

(II) Suppose that B is separable. Kadec and Pelczynski proved
the equivalence of (1) and (2) under the above hypotheses together
with the added assumption that the norm ||ίc|| = sup{|.τ*(&)|} (the
supremum taken over x* in the linear span of (βn) with \\x*\\ ̂  1),
is equivalent to the original norm of B. They also proved that
Σβn(x)bn converges unconditionally to x if for all α e l there exists
yeB such that βn(y) = anβn(x) for all n, [6, Thms. 4 and 5, resp.]

(III) An earlier version for Theorem 1 contained the unnecessary
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hypothesis that (bn) be fundamental in B. The authors are indebted
to Professor Ivan Singer for pointing this out.

(IV) It is crucial that B contain no subspace isomorphic to L,
since if B equals l^ itself, then the obvious biorthogonal system
satisfies (2) for all xeB. The assumption that the biorthogonal set
of pairs be denumerable, however, is irrelevant; see Remark (I) at
the end of the paper. It is also crucial that (βn) be total, for consider
the following biorthogonal sequence {(bn, βn)} in a separable Hubert
space H:

Let (en) be a complete orthonormal sequence in H; let (yn) be a
sequence such that for each n there are infinitely many indices m
such that ym = ynJ such that y2 = y2j for all j , and such that
{yn: n = 1, 2, •} = {β2%_1: n = 1, 2, •}; put bn = e2n + yn and βn = e*n

for all n (where efn{x) = (x, e2ny, x e H). Now let x = Σ~= 1 (1/n) e4n.
Then the span of (bn) is dense in H, yet

( i ) for every α e L there exists y e H with βn(y) = anβn(x) for
all n, and

(ii) Umn^\\ΣUβAΦj\\ = °°.
(V) If B satisfies the hypotheses of Theorem 1 and (2) holds

for all x e B, then by Theorem 1 (bn) is an unconditional basis for B,
and in particular B is separable. This result, for B separable, has
been announced by William J. Davis, David W. Dean, and Ivan
Singer [A.M.S. Notices 17 (1970), 437].

(VI) The argument of the second paragraph of Theorem 1, in
the context of Harmonic Analysis, is due to Figa-Talamanca (see [4],
p. 347).

3* Biorthogonal Decompositions. We wish now to state a
similar result concerning biorthogonal decompositions; first some
preliminaries:

Given a Banach space B and a collection {Ma, Pa}aeA we say that
{Ma, P J is a biorthogonal decomposition in B if for each a e A, Ma is
a closed linear subspace of B and Pa is a bounded linear projection
of B onto Ma with Pn(x) = 0 whenever x e Mβ and β Φ a. We say
that {Ma, Pa} is complete if the linear span of {Ma} is dense in B and
if Pa(x) = 0 for all a implies x = 0.

Let now the Banach space B and {Ma}aeA, a collection of closed
linear subspaces of B, be given. For A1 £ A, let S(A^) denote the
closed linear span of {Ma}aeAl. We have:

PROPOSITION. Assume S(A) — B. There is a complete biorthogonal
decomposition {Ma, Pa}aeA of B, corresponding to {Ma}aeA if and only
if both of the following conditions hold:
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( 1 ) S ( A ) Π S(A ~ A J = (0) for all A, £ A.

( 2) S({a}) + S(A ~ {a}) = £ /or αϊϊ aeA.

Proof. The "only i f part is trivial. Suppose now that (1) and
(2) hold. Then fixing aeA, (1) and (2) imply that

Thus letting Pa be the projection onto S({a}) with kernel S(A ~ {a}),
Pa is bounded by the Closed Graph Theorem, whence {Ma, Pa}aeA is a
biorthogonal decomposition of B.

Now suppose that xeB 'and Pβ(a?) = 0 for all a. There exist
finite subsets An ^ A and elements xn e S(An) such that xn —> x. Since
lim %_co Pα(&Λ) = Pa(x) = 0 for all aeA, we claim that one can choose
a subsequence (nk), subsets Bk^A%k and elements ykeS(Bk) such
that j?*. Π Bj — 0 for fc even and j odd, and such that yk-+x. To
see this, assume (as we may) that An C AΛ+1 for all n. Put ^ 0 = 1;
having chosen nk, let m — # AWA; and choose % + 1 > ^& such that n ^ % + 1

and aeA%k implies \\Pa(xn)\\ < (m(k-\-I))"1. This defines (nk); now
put 5 f c = Anu - ^ . ^ and ?//c = xnk - Σ « e ^ f c _ 1 P«fe / f) for fc = 1, 2, .

Let A1 = U Γ=i 52ifc. Then τ/2A; —> a?, τ/2A;+1 —>», so

x e SiAJ Π S(A - Ax) = (0) .

REMARK: If each Ma is finite-dimensional and S(A) = B then (2)
is automatically satisfied. Thus a sequence {bn}neN in B corresponds
to a complete biorthogonal sequence {(&„, /S%)} in B if and only if
S(N) = B and SiNjnSiN* Nx) = (0) for all JVi S iSΓ.

THEOREM 2. Lei B 6β α Banach space and let {Ma}aeA be a
collection of closed separable subspaces with dense span such that

( 1 ) S(A0 Π S(A - Ax) = (0) /or αM Ax S A.
( 2 ) S({α-}) + S(A - {«}) = B for all a e A.

Then {x | ̂ xa e Ma such that Σxa converges unconditionally to x] =

Proof. By the preceding proposition, {Λία, Pα}«6^ is a complete
biorthogonal decomposition of B, where Pa is the projection onto
S({a}) with kernel S(A - {α}). Since S(A) = B, iΐxeBwe have that
Pα(&) = 0 for all but a countable number of cr's, say {an}. If
α;6 n{S(A:) + S(A - AOIΛ c A}, then given α e l , αΛ = 0 or 1, by
letting Ax = {α:w | an = 1} we have that there exists yeB such that
Pan{v) = anPan{

χ) ^oτ aH n ^^ Pa(v) = 0, «?{«,}. All such τ/'s are
contained in the separable Banach space S({an}). With this observa-
tion, the proof is similar to the proof of Theorem 1, with (βn) replaced
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% {P.}.
We conclude with several remarks:
( 1 ) Assume that B contains no subspace isomorphic to L>. Then

Theorem 2 admits the following generalization: Let {Ma, Pa}aeA be a
biorthogonal decomposition of B such that xe B and Pa(x) = 0 for all
a implies x = 0, and let xeB be such that for every function
a: A —* {0, 1} with ^ { l } countable, there exists y e B with Pa(y) =
•a(a)Pa{x) for all ae A. Then Pa{x) = 0 for all but countably many
a's, and ΣPa{x) converges unconditionally to x. The proof proceeds
as in the proof of Theorem 1; one deduces that for each countable
subset Ao of A, Σ α e i / « W converges unconditionally in norm, from
which the conclusion easily follows.

(2) For the special case in which SiAJ + S(A ~ AJ = B for all
Aι <Ξ A, Theorem 2 was proven in [I]*

(3) Theorem 2 applies to the Banach space LP(G), 1 ^ p < oo,
where G is a compact topological group and each Ma is the finite-
dimensional subspace generated by the character of an irreducible
unitary representation of G. If G is abelian, a direct proof is available,
using the existence of approximate identities for Lp which are bounded
in the Li-norm.
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