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ON UNCONDITIONALLY CONVERGING SERIES AND
BIORTHOGONAL SYSTEMS IN A BANACH SPACE

GREGORY F. BACHELIS AND HASKELL P. ROSENTHAL

Our main result is as follows: Let B be a Banach space
containing no subspace isomorphic (linearly homeomorphic)
to l., and let {(b,,5.)} be a biorthogonal sequence in B such
that (8. is total, If xe€B then >, B.(2)b, converges
unconditionally to x if and only if for every sequence (a.)
of 0’'s and I’s there exists y€ B with 8.(y) = a.8.(x) for all
n. This theorem improves previous results of Kadec and
Pelezynski.

Similar results are obtained in the context of bior-
thogonal decompositions of a Banach space into separable
subspaces.

1. Preliminaries, We follow the notation of [2] for the most
part, and we also refer the reader to [2] for various results concern-
ing unconditional convergence. We recall that a sequence of pairs
{(b., B.)} is called a biorthogonal sequence in the Banach space B if
for all m and =, b,€ B, B,c B*, and B,(b,) = 0..; (8.) is said to be
total (in B) if given xe B with g.(x) =0 for all n, then x =0.
Finally, we denote the space of all bounded scalar-valued sequences
by ..

2. The Main Result. We first need the following lemma, due
to Seever [8]:

LemMA 1. Let X be a Banach space and T: X — 1. be a bounded
linear map such that for every acl. with a, =0 or 1 for all =,
there exists x€ X with Tx = a. Then T(X) = l..

Proof. Our hypotheses imply that T has dense range; thus it is
enough to show that 7 has closed range. If not, then 7* does not
have closed range, so there exists a sequence (7v,) in % with
7|l = e and || T*(7,)|| = 1 for all ». But if acl. and a, =0 or 1
for all n, then choosing xe X with Tx = a, we have that

sup | 7,(a)| = sup [T*7,(2)] = |lw]] < e .
Thus identifying [.. with C(8N) (the space of continuous scalar-valued
functions on the Stone-Céch compactification of N) and each 7, with
a complex regular Borel measure on SN, we have by a theorem of
Dieudonne [3] (c.f. also the Correztion, pp. 811-313 of [7]) that
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sup, || V.|| < e, a contradiction.

THEOREM 1. Let B be a Banazh space containing mo subspace
isomorphic to l., and let {(b,, B.)} be a biorthogonal sequence in B
such that (B,) is total. Let xe B. Then

(1) >z, Bu(x)b, converges unzonditionally to x

if and only if

(2) Given acle with a, =0 or 1 for all n, there exists ye B

such that B,.(y) = a,B.(x) for all n.

Proof. Let xzeB. If 3 B.(x)b, converges unconditionally, then
it is subseries convergent; thus “(1) = (2)” is immediate. Now suppose
that (2) holds. We shall prove that 3g,(x)b, converges unconditionally.
Since (B,) is total in B it then follows that the limit is x.

Let M be the set of all ael. such that there exists ye B with
Bn(y) = a,B,(x) for all n. Given such an a, there is a unique y
satisfying the above. We then define ||a|| = ||a|l. + ||¥]]. It is easily
verified that M is a Banach space under this norm. Thus the inclusion
map T: M — . is continuous and satisfies the hypotheses of Lemma 1.
Hence M = 1., so T~ is continuous. Thus the mapping U given by
B.(U(a)) = a,8,(x) for all n, is a continuous linear mapping of l.. into
the Banach space B, which by hypothesis contains no subspace isomor-
phic to l.. Hence by [7, Cor. 1.4], U is weakly compact.

Given a subseries >} 3,,(#)b,,, let a be the characteristic function
of (m,). If a subsequence of the partial sums of this subseries, (S,),
converges weakly to ze B, then £,(z) = lim,_.. 8.(S,) = @,8.(x) for all
n; thus U(a) = 2. Since the partial sums of this subseries are
contained in a weakly sequentially compact set (the image under U
of the unit ball of [..), it follows that the subseries itself converges
weakly to U(a). Hence Xpg,(x)b, is weakly subseries convergent, so
by the Orlicz-Pettis Theorem it is unconditionally convergent.

REMARKS. (I) If B is separable, then B contains no subspace
isomorphic to the (nonseparable) space [l.., so Theorem 1 holds. In
this case one can apply a theorem of Grothendieck {5, p. 188} in the
proof, rather than the generalization given by [7, Cor. 1.4].

(II) Suppose that B is separable. Kadec and Pelczynski proved
the equivalence of (1) and (2) under the above hypotheses together
with the added assumption that the norm |[|z|| = sup{|le*(®)|} (the
supremum taken over z* in the linear span of (g,) with [[z*| < 1),
is equivalent to the original norm of B. They also proved that
38,(x)b, converges unconditionally to x if for all ael. there exists
y € B such that B.(y) = a,8,(x) for all », [6, Thms. 4 and 5, resp.]

(III) An earlier version for Theorem 1 contained the unnecessary
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hypothesis that (b,) be fundamental in B. The authors are indebted
to Professor Ivan Singer for pointing this out.

(IV) It is crucial that B contain no subspace isomorphic to I,
since if B equals [. itself, then the obvious biorthogonal system
satisfies (2) for all xe B. The assumption that the biorthogonal set
of pairs be denumerable, however, is irrelevant; see Remark (I) at
the end of the paper. It is also crucial that (g8,) be total, for consider
the following biorthogonal sequence {(b., 8.)} in a separable Hilbert
space H:

Let (e,) be a complete orthonormal sequence in H; let (y,) be a
sequence such that for each 7 there are infinitely many indices m
such that vy, = v,, such that y, =y, for all j, and such that
Win=1,2 e} ={ty,:n=12,---}; put b, = &, + vy, and B, = e,
for all n (where e (x) =<2, e,), xe H). Now let x = 37, (1/n) e,.
Then the span of (b,) is dense in H, yet

(i) for every ael. there exists y e H with B,(y) = a,B.(x) for
all n, and

(ii) lim, || 37 Bi{@)b;|| = oo

(V) If B satisfies the hypotheses of Theorem 1 and (2) holds
for all € B, then by Theorem 1 (b,) is an unconditional basis for B,
and in particular B is separable. This result, for B separable, has
been announced by William J. Davis, David W. Dean, and Ivan
Singer [A.M.S. Notices 17 (1970), 437].

(VI) The argument of the second paragraph of Theorem 1, in
the context of Harmonic Analysis, is due to Figa-Talamanca (see [4],
p. 347).

3. Biorthogonal Decompositions., We wish now to state a
similar result concerning biorthogonal decompositions; first some
preliminaries:

Given a Banach space B and a collection {M,, P,}... we say that
{M,, P.} is a biorthogonal decomposition in B if for each e A, M, is
a closed linear subspace of B and P, is a bounded linear projection
of B onto M, with P/(x) = 0 whenever xc M, and B+ «. We say
that {M,, P,} is complete if the linear span of {M,} is dense in B and
if P(x) =0 for all & implies # = 0.

Let now the Banach space B and {M,},.,, a collection of closed
linear subspaces of B, be given. For A, & A, let S(A4,) denote the
closed linear span of {M.}..,. We have:

PrROPOSITION. Assume S(A) = B. There is a complete biorthogonal
decomposition {M,, P.}.., of B, corresponding to {M,}... tf and only
if both of the following conditions hold:
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(1) S(A) N S(A ~ A) = (0) for all A, S A.
(2) S(a}) + S(A ~ {a}) = B for all ac A.

Proof. The “only if” part is trivial. Suppose now that (1) and
(2) hold. Then fixing ae A4, (1) and (2) imply that

B = S({a}) @ S(4 ~ {a}) .

Thus letting P, be the projection onto S({a}) with kernel S(4 ~ {a}),
P, is bounded by the Closed Graph Theorem, whence {M,, P.},., is a
biorthogonal decomposition of B.

Now suppose that xe B 'and P,(x) =0 for all «. There exist
finite subsets 4, & A and elements z, € S(4,) such that x, — 2. Since
lim, .. P(z,) = P (x) = 0 for all «c A, we claim that one can choose
a subsequence (m), subsets B, < A, and elements y,e€ S(B:) such
that B,N B, = ¢ for k even and j odd, and such that y,—x. To
see this, assume (as we may) that 4, & A4,., for all n. Put =n, =1;
having chosen 7, let m = # A, and choose 7., > mn,; such that n = n,,
and ae A,, implies ||P(x,)|| < (m(k + 1))~*. This defines (n;); now
put B, = A, ~ A, _, and y, =2, — Zaefw—l P(x,) for k =1,2, ---.

Let A, = Ui, By. Then yy, — @, Yus — @, SO

reS(4,)N S(4 ~ 4,) = (0) .

REMARK: If each M, is finite-dimensional and S(A) = B then (2)
is automatically satisfied. Thus a sequence {b,}..y in B corresponds
to a complete biorthogonal sequence {(b,, 8,)} in B if and only if
S(N) = B and S(N,)NS(N ~ N,) = (0) for all N, = N.

THEOREM 2. Let B be a Banach space and let {M}... be a
collection of closed separable subspaces with dense span such that

(1) S(A)NS(A ~ A) = (0) for all A, = A.

(2) S{a}) + S(A ~{a}) = B for all cce A.
Then {x|3x,e M, such that Xz, converges unconditionally to xz} =
N{S(4,) + S(A ~ A)|A, = A}.

Proof. By the preceding proposition, {M,, P.}... is a complete
biorthogonal decomposition of B, where P, is the projection onto
S({ce}) with kernel S(A ~ {a}). Since S(4) = B, if x € B we have that
P, (x) =0 for all but a countable number of a’s, say {«,}. If
xe N{S(4,) + S(A ~ A)|A, < A}, then given acl., a, =0 or 1, by
letting A4, = {a,|a, = 1} we have that there exists y € B such that
P.(y) = a,P, (x) for all » and P.,(y) =0, a¢{x,}. All such y's are
contained in the separable Banach space S({c,}). With this observa-
tion, the proof is similar to the proof of Theorem 1, with (g,) replaced
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by {P.}.

We conclude with several remarks:

(1) Assume that B contains no subspace isomorphic to /.. Then
Theorem 2 admits the following generalization: Let {M,, P}.cs be a
biorthogonal decomposition of B such that x€ B and Pyx) = 0 for all
a 1mplies € =0, and let xec B be such that for every function
a: A—{0, 1} with a™*{1} countable, there exists ye B with PJy) =
a{e)P(x) for all a«e A. Then Px) =0 for all but countably many
a's, and ZP(x) converges unconditionally to x. The proof proceeds
as in the proof of Theorem 1; one deduces that for each countable
subset A4, of A, >\..,,P.Jx) converges unconditionally in norm, from
which the conclusion easily follows.

(2) For the special case in which S(4,) + S(A ~ A4,) = B for all
A, < A, Theorem 2 was proven in [1].

(8) Theorem 2 applies to the Banach space L,(G), 1 < p < <o,
where G is a compact topological group and each M, is the finite-
dimensional subspace generated by the character of an irreducible
unitary representation of G. If G is abelian, a direct proof is available,
using the existence of approximate identities for L, which are bounded
in the L,-norm.
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