ON UNCONDITIONALLY CONVERGING SERIES AND BIORTHOGONAL SYSTEMS IN A BANACH SPACE

GREGORY F. BACHELIS AND HASKELL P. ROSENTHAL

Our main result is as follows: Let B be a Banach space containing no subspace isomorphic (linearly homeomorphic) to l_{∞} , and let $\{(b_n,\beta_n)\}$ be a biorthogonal sequence in B such that (β_n) is total. If $x\in B$ then $\sum_{n=1}^{\infty}\beta_n(x)b_n$ converges unconditionally to x if and only if for every sequence (a_n) of 0's and 1's there exists $y\in B$ with $\beta_n(y)=a_n\beta_n(x)$ for all n. This theorem improves previous results of Kadec and Pelczynski.

Similar results are obtained in the context of biorthogonal decompositions of a Banach space into separable subspaces.

- 1. Preliminaries. We follow the notation of [2] for the most part, and we also refer the reader to [2] for various results concerning unconditional convergence. We recall that a sequence of pairs $\{(b_n, \beta_n)\}$ is called a biorthogonal sequence in the Banach space B if for all m and n, $b_m \in B$, $\beta_n \in B^*$, and $\beta_m(b_n) = \delta_{mn}$; (β_n) is said to be total (in B) if given $x \in B$ with $\beta_n(x) = 0$ for all n, then x = 0. Finally, we denote the space of all bounded scalar-valued sequences by l_{∞} .
- 2. The Main Result. We first need the following lemma, due to Seever [8]:

LEMMA 1. Let X be a Banach space and T: $X \to l_{\infty}$ be a bounded linear map such that for every $a \in l_{\infty}$ with $a_n = 0$ or 1 for all n, there exists $x \in X$ with Tx = a. Then $T(X) = l_{\infty}$.

Proof. Our hypotheses imply that T has dense range; thus it is enough to show that T has closed range. If not, then T^* does not have closed range, so there exists a sequence (γ_n) in l_{∞}^* with $||\gamma_n|| \to \infty$ and $||T^*(\gamma_n)|| = 1$ for all n. But if $a \in l_{\infty}$ and $a_n = 0$ or 1 for all n, then choosing $x \in X$ with Tx = a, we have that

$$\sup_{n} |\gamma_{n}(a)| = \sup_{n} |T^{*}\gamma_{n}(x)| \leq ||x|| < \infty.$$

Thus identifying l_{∞} with $C(\beta N)$ (the space of continuous scalar-valued functions on the Stone-Cech compactification of N) and each γ_n with a complex regular Borel measure on βN , we have by a theorem of Dieudonne [3] (c.f. also the *Correction*, pp. 311-313 of [7]) that

 $\sup_n ||\gamma_n|| < \infty$, a contradiction.

THEOREM 1. Let B be a Banach space containing no subspace isomorphic to l_{∞} , and let $\{(b_n, \beta_n)\}$ be a biorthogonal sequence in B such that (β_n) is total. Let $x \in B$. Then

- (1) $\sum_{n=1}^{\infty} \beta_n(x)b_n$ converges unconditionally to x if and only if
- (2) Given $a \in l_{\infty}$ with $a_n = 0$ or 1 for all n, there exists $y \in B$ such that $\beta_n(y) = a_n \beta_n(x)$ for all n.

Proof. Let $x \in B$. If $\sum \beta_n(x)b_n$ converges unconditionally, then it is subseries convergent; thus "(1) \Rightarrow (2)" is immediate. Now suppose that (2) holds. We shall prove that $\sum \beta_n(x)b_n$ converges unconditionally. Since (β_n) is total in B it then follows that the limit is x.

Let M be the set of all $a \in l_{\infty}$ such that there exists $y \in B$ with $\beta_n(y) = a_n \beta_n(x)$ for all n. Given such an a, there is a unique y satisfying the above. We then define $||a|| = ||a||_{\infty} + ||y||$. It is easily verified that M is a Banach space under this norm. Thus the inclusion map $T: M \to l_{\infty}$ is continuous and satisfies the hypotheses of Lemma 1. Hence $M = l_{\infty}$, so T^{-1} is continuous. Thus the mapping U given by $\beta_n(U(a)) = a_n \beta_n(x)$ for all n, is a continuous linear mapping of l_{∞} into the Banach space B, which by hypothesis contains no subspace isomorphic to l_{∞} . Hence by [7, Cor. 1.4], U is weakly compact.

Given a subseries $\sum_k \beta_{n_k}(x)b_{n_k}$, let a be the characteristic function of (n_k) . If a subsequence of the partial sums of this subseries, (S_k) , converges weakly to $z \in B$, then $\beta_n(z) = \lim_{k \to \infty} \beta_n(S_k) = \alpha_n \beta_n(x)$ for all n; thus U(a) = z. Since the partial sums of this subseries are contained in a weakly sequentially compact set (the image under U of the unit ball of l_{∞}), it follows that the subseries itself converges weakly to U(a). Hence $\Sigma \beta_n(x)b_n$ is weakly subseries convergent, so by the Orlicz-Pettis Theorem it is unconditionally convergent.

REMARKS. (I) If B is separable, then B contains no subspace isomorphic to the (nonseparable) space l_{∞} , so Theorem 1 holds. In this case one can apply a theorem of Grothendieck [5, p. 168] in the proof, rather than the generalization given by [7, Cor. 1.4].

- (II) Suppose that B is separable. Kadec and Pelczynski proved the equivalence of (1) and (2) under the above hypotheses together with the added assumption that the norm $||x|| = \sup\{|x^*(x)|\}$ (the supremum taken over x^* in the linear span of (β_n) with $||x^*|| \leq 1$), is equivalent to the original norm of B. They also proved that $\Sigma \beta_n(x)b_n$ converges unconditionally to x if for all $a \in l_\infty$ there exists $y \in B$ such that $\beta_n(y) = a_n\beta_n(x)$ for all n, [6, Thms. 4 and 5, resp.]
 - (III) An earlier version for Theorem 1 contained the unnecessary

hypothesis that (b_n) be fundamental in B. The authors are indebted to Professor Ivan Singer for pointing this out.

- (IV) It is crucial that B contain no subspace isomorphic to l_{∞} , since if B equals l_{∞} itself, then the obvious biorthogonal system satisfies (2) for all $x \in B$. The assumption that the biorthogonal set of pairs be denumerable, however, is irrelevant; see Remark (I) at the end of the paper. It is also crucial that (β_n) be total, for consider the following biorthogonal sequence $\{(b_n, \beta_n)\}$ in a separable Hilbert space H:
- Let (e_n) be a complete orthonormal sequence in H; let (y_n) be a sequence such that for each n there are infinitely many indices m such that $y_n = y_n$, such that $y_2 = y_{2j}$ for all j, and such that $\{y_n \colon n = 1, 2, \dots\} = \{e_{2n-1} \colon n = 1, 2, \dots\}$; put $b_n = e_{2n} + y_n$ and $\beta_n = e_{2n}^*$ for all n (where $e_{2n}^*(x) = \langle x, e_{2n} \rangle, x \in H$). Now let $x = \sum_{n=1}^{\infty} (1/n) e_{4n}$. Then the span of (b_n) is dense in H, yet
- (i) for every $a \in l_{\infty}$ there exists $y \in H$ with $\beta_n(y) = a_n \beta_n(x)$ for all n, and
 - (ii) $\lim_{n\to\infty} ||\sum_{j=1}^n \beta_j(x)b_j|| = \infty$.
- (V) If B satisfies the hypotheses of Theorem 1 and (2) holds for all $x \in B$, then by Theorem 1 (b_n) is an unconditional basis for B, and in particular B is separable. This result, for B separable, has been announced by William J. Davis, David W. Dean, and Ivan Singer [A.M.S. Notices 17 (1970), 437].
- (VI) The argument of the second paragraph of Theorem 1, in the context of Harmonic Analysis, is due to Figá-Talamanca (see [4], p. 347).
- 3. Biorthogonal Decompositions. We wish now to state a similar result concerning biorthogonal decompositions; first some preliminaries:

Given a Banach space B and a collection $\{M_{\alpha}, P_{\alpha}\}_{\alpha \in A}$ we say that $\{M_{\alpha}, P_{\alpha}\}$ is a biorthogonal decomposition in B if for each $\alpha \in A$, M_{α} is a closed linear subspace of B and P_{α} is a bounded linear projection of B onto M_{α} with $P_{\alpha}(x) = 0$ whenever $x \in M_{\beta}$ and $\beta \neq \alpha$. We say that $\{M_{\alpha}, P_{\alpha}\}$ is complete if the linear span of $\{M_{\alpha}\}$ is dense in B and if $P_{\alpha}(x) = 0$ for all α implies x = 0.

Let now the Banach space B and $\{M_{\alpha}\}_{\alpha \in A}$, a collection of closed linear subspaces of B, be given. For $A_1 \subseteq A$, let $S(A_1)$ denote the closed linear span of $\{M_{\alpha}\}_{\alpha \in A_1}$. We have:

PROPOSITION. Assume S(A) = B. There is a complete biorthogonal decomposition $\{M_{\alpha}, P_{\alpha}\}_{\alpha \in A}$ of B, corresponding to $\{M_{\alpha}\}_{\alpha \in A}$ if and only if both of the following conditions hold:

- (1) $S(A_1) \cap S(A \sim A_1) = (0)$ for all $A_1 \subseteq A$.
- (2) $S(\{\alpha\}) + S(A \sim \{\alpha\}) = B \text{ for all } \alpha \in A.$

Proof. The "only if" part is trivial. Suppose now that (1) and (2) hold. Then fixing $\alpha \in A$, (1) and (2) imply that

$$B = S(\{\alpha\}) \bigoplus S(A \sim \{\alpha\})$$
.

Thus letting P_{α} be the projection onto $S(\{\alpha\})$ with kernel $S(A \sim \{\alpha\})$, P_{α} is bounded by the Closed Graph Theorem, whence $\{M_{\alpha}, P_{\alpha}\}_{\alpha \in A}$ is a biorthogonal decomposition of B.

Now suppose that $x \in B$ and $P_{\alpha}(x) = 0$ for all α . There exist finite subsets $A_n \subseteq A$ and elements $x_n \in S(A_n)$ such that $x_n \to x$. Since $\lim_{n \to \infty} P_{\alpha}(x_n) = P_{\alpha}(x) = 0$ for all $\alpha \in A$, we claim that one can choose a subsequence (n_k) , subsets $B_k \subseteq A_{n_k}$ and elements $y_k \in S(B_k)$ such that $B_k \cap B_j = \emptyset$ for k even and j odd, and such that $y_k \to x$. To see this, assume (as we may) that $A_n \subseteq A_{n+1}$ for all n. Put $n_o = 1$; having chosen n_k , let $m = \sharp A_{n_k}$ and choose $n_{k+1} > n_k$ such that $n \ge n_{k+1}$ and $n \in A_{n_k}$ implies $||P_{\alpha}(x_n)|| < (m(k+1))^{-1}$. This defines n_k , now put $n_k = n_k = n_k$ and $n_k = n_k = n_k$ and $n_k = n_k = n_k$ for $n_k = n_k$ for $n_k = n_k$.

Let $A_1 = \bigcup_{k=1}^{\infty} B_{2k}$. Then $y_{2k} \to x$, $y_{2k+1} \to x$, so

$$x \in S(A_{\scriptscriptstyle 1}) \cap S(A \sim A_{\scriptscriptstyle 1}) = (0)$$
 .

REMARK: If each M_{α} is finite-dimensional and S(A)=B then (2) is automatically satisfied. Thus a sequence $\{b_n\}_{n\in N}$ in B corresponds to a complete biorthogonal sequence $\{(b_n,\beta_n)\}$ in B if and only if S(N)=B and $S(N_1)\cap S(N\sim N_1)=(0)$ for all $N_1\subseteq N$.

THEOREM 2. Let B be a Banach space and let $\{M_{\alpha}\}_{{\alpha}\in A}$ be a collection of closed separable subspaces with dense span such that

- (1) $S(A_1) \cap S(A \sim A_1) = (0)$ for all $A_1 \subseteq A$.
- (2) $S(\{\alpha\}) + S(A \sim \{\alpha\}) = B \text{ for all } \alpha \in A.$

Then $\{x \mid \exists x_{\alpha} \in M_{\alpha} \text{ such that } \Sigma x_{\alpha} \text{ converges unconditionally to } x\} = \bigcap \{S(A_1) + S(A \sim A_1) \mid A_1 \subseteq A\}.$

Proof. By the preceding proposition, $\{M_{\alpha}, P_{\alpha}\}_{\alpha \in A}$ is a complete biorthogonal decomposition of B, where P_{α} is the projection onto $S(\{\alpha\})$ with kernel $S(A \sim \{\alpha\})$. Since S(A) = B, if $x \in B$ we have that $P_{\alpha}(x) = 0$ for all but a countable number of α 's, say $\{\alpha_n\}$. If $x \in \bigcap \{S(A_1) + S(A \sim A_1) | A_1 \subseteq A\}$, then given $\alpha \in l_{\infty}$, $\alpha_n = 0$ or 1, by letting $A_1 = \{\alpha_n | \alpha_n = 1\}$ we have that there exists $y \in B$ such that $P_{\alpha_n}(y) = \alpha_n P_{\alpha_n}(x)$ for all n and $P_{\alpha}(y) = 0$, $\alpha \notin \{\alpha_n\}$. All such y's are contained in the separable Banach space $S(\{\alpha_n\})$. With this observation, the proof is similar to the proof of Theorem 1, with (β_n) replaced

by $\{P_{\alpha}\}$.

We conclude with several remarks:

- Theorem 2 admits the following generalization: Let $\{M_{\alpha}, P_{\alpha}\}_{\alpha \in A}$ be a biorthogonal decomposition of B such that $x \in B$ and $P_{\alpha}(x) = 0$ for all α implies x = 0, and let $x \in B$ be such that for every function $a: A \to \{0, 1\}$ with $a^{-1}\{1\}$ countable, there exists $y \in B$ with $P_{\alpha}(y) = a(\alpha)P_{\alpha}(x)$ for all $\alpha \in A$. Then $P_{\alpha}(x) = 0$ for all but countably many α 's, and $\Sigma P_{\alpha}(x)$ converges unconditionally to x. The proof proceeds as in the proof of Theorem 1; one deduces that for each countable subset A_{α} of A, $\sum_{\alpha \in A_{\alpha}} P_{\alpha}(x)$ converges unconditionally in norm, from which the conclusion easily follows.
- (2) For the special case in which $S(A_1) + S(A \sim A_1) = B$ for all $A_1 \subseteq A$, Theorem 2 was proven in [1].
- (3) Theorem 2 applies to the Banach space $L_p(G)$, $1 \leq p < \infty$, where G is a compact topological group and each M_α is the finite-dimensional subspace generated by the character of an irreducible unitary representation of G. If G is abelian, a direct proof is available, using the existence of approximate identities for L_p which are bounded in the L_1 -norm.

References

- 1. G. F. Bachelis, Homomorphisms of annihilator Banach algebras, Pacific J. Math., 25 (1968), 229-247.
- 2. M. M. Day, Normed Linear Spaces, Springer-Verlag, Berlin, 1958.
- 3. J. Dieudonné, Sur la convergence des suites de mesures de Radon, Anais. Acad. Brasil. Ci., 23 (1951), 21-38, 277-282.
- A. Figá-Talamanca, Apparteneza a L^p delle series di Fourier aleatorie su gruppi non commutativi, Rend. Sem. Mat. Univ. Padova, 39 (1967), 330-348.
- 5. A. Grothendieck, Sur les applications lineaires faiblement compactes d'espaces du type C(K), Canad. J. Math., 5 (1953), 129-173.
- 6. M. Kadec and A. Pelczynski, Basic sequences, biorthogonal sequences and norming sets in Banach and Frechet spaces, Studia Math., 25 (1965), 297-323 (in Russian).
- 7. H. P. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math., 37 (1971), 13-36, 311-313.
- 8. G. Seever, Measures on F-Spaces, Trans. Amer. Math. Soc., 133 (1968), 267-280.

Received February 5, 1970, and in revised form July 17, 1970. The research for the second named author was partially supported by NSF Grant GP-12997.

STATE UNIVERSITY OF NEW YORK AT STONY BROOK AND UNIVERSITY OF CALIFORNIA, BERKELEY