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MUTUALLY APOSYNDETIC PRODUCTS OF
CHAINABLE CONTINUA

LELAND E. ROGERS

In this paper it is proved that the Cartesian product of
two compact metric chainable continua is mutually aposyndetic
if and only if each of the two factors is an arc, Also some
relationships are shown between indecomposability and a
strong form of non-mutual aposyndesis.

1. In [5], C. L. Hagopian developed the notion of mutual
aposyndesis, a “Hausdorff” version of F. B. Jones’ aposyndesis [6].
Mutual aposyndesis is stronger than aposyndesis but in general
weaker than local connectedness. However, Theorem 1 of this paper
shows that mutual aposyndesis and local connectedness are equivalent
in a certain case.

Jones showed [7] that if a continuum is not aposyndetic at any
point with respect to any other point, then it is indecomposable. A
similar notion for mutual aposyndesis, called strict nonmutual aposyn-
desis by Hagopian, is closely related to indecomposability [5]. The
author extends mutual aposyndesis to the notion of #-mutual aposyn-
desis and shows a relationship between strict non-n-mutual aposyndesis
and #n-indecomposability.

2. Definitions and notation. All spaces considered in this paper
are compact and metric. A continuum is a nondegenerate closed con-
nected set. The continuum M is aposyndetic at a point x with respect
to a point y if there is a subcontinuum in M — y containing 2 in its
interior [6]. We shall say that M is semi-aposyndetic at {x, y} if M
is aposyndetic either at x with respect to y or at y with respect to
2. If n =2 and A is an n-point set, we say that M is n-mutually
aposyndetic at A if there are » disjoint subcontinua of M, each con-
taining a point of A in its interior. If M is m-mutually aposyndetic
at each n-point set, then M is said to be n-mutually aposyndetic.
If M is n-mutually aposyndetic at no n-point set, then M is strictly
non-n-mutually aposyndetic. For m = 2 we obtain the notions of
mutual aposyndesis and strict nonmutual aposyndesis [5]. For each
point x in M, L, denotes the set of all points y such that M is not
aposyndetic at y with respect to =, and K, denotes the set of all
points ¥ such that M is not aposyndetic at x with respect to y. If
D, q, and r are distinct points of M, p cuts ¢ from 7 if each continuum
in M .containing both ¢ and » also contains p. (“Cut weakly” is some-
times used; this is not the same as to “separate”.)

805



806 LELAND E. ROGERS

A chain is a finite collection {E,, ---, E,} of open sets such that
E.NE;=+ @ if and only if |7 — j| < 1. The elements of a chain are
called links. For ¢ > 0 an e-chain is a chain in which each link has
diameter less than . A continuum is chainable if for each ¢ > 0, it
can be covered by an e-chain. An e-map on a continuum M will
denote a continuous function f from M onto [0, 1] such that for each
re [0, 1], diam f~'(r) < e. A chainable continuum M is also charac-
terized by the property that for each ¢ > 0, there is an ¢-map on M.
An endpoint of a chainable continuum is a point p such that for each
¢ > 0, p is in the first link of some e-chain covering M.

A continuum irreducible between two points is of type A [10] if
there is a monotone upper semi-continuous decomposition of M onto
an arc. A continuum M is of type A’ [10] if M is of type A and
has a decomposition in which no element has interior.

A subcontinuum 7 of the continuum M is terminal [4] if for
each pair of subcontinua A, B which intersect T, either ACBU T
or BCAUT. If pis a point of an indecomposable subcontinuum K
of M, p is an tnaccessible point of K [4] if for each subcontinuum R
of M which contains p, either R K or K C R.

REMARK. If ¢ >0 and T is a terminal subcontinuum of a chain-
able continuum M, then there is an e-map f on M such that f(T) is
an initial segment of [0, 1]. (This can be shown using Lemma 1 of
[4].)

A continuum M is the finished sum [9] of subcontinua A4,, ---, A4,
if M= A; and for each j, A; & U.»; 4A;. The continuum M is n-
indecomposable [9; 2] if M is the finished sum of %, but not of n + 1,
subcontinua.

It is well-known [1] that chainable continua are atriodic, here-
ditarily unicoherent, irreducible between two points, and that each
subcontinuum is chainable also. For definitions of other terms see
[7] and [8].

3. Mutually aposyndetic products.

LEMMA 1. Suppose the semi-aposyndetic continuum M s trredu-
cible between two points. Then M is an arc.

Proof. By [3, p. 116], M is aposyndetic. But every aposyndetic
irreducible continuum is an are [11, p. 738].

LEMMA 2. Suppose that
(1) M is a chainable continuum of type A',
(2) M s not semi-aposyndetic at {x, y},
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(3) T=K.nK,
(4) q s a point of a continuum N,
(5) H is a continuum tm M X N containing the point (x, q) in
its interior, and
(6) D denotes the (x, q)-component of H N (T x N).
Then (D) = T. (m; is the projection map onto the jth factor space.)

Proof. By [10, p. 8], there is a minimal (with respect to refine-
ment) monotone upper semi-continuous decomposition & of M onto
[0,1]. Let f be the associated quotient map.

For each ze€ M, L. is a continuum in M [7, p. 405]. Since M is
irreducible, each K, = L, [3, p. 116]. Hence T = L, N L,, a continuum
(by unicoherence). And by the definition of K, we have

(*) For each continuum R containing either x or ¥ in its interior,
TcCR.

Suppose the lemma fails. Let se T — m(D). By [10, p. 25] there
is a point re [0, 1] such that T < f~'(r). In order to prove (**) below,
we temporarily assume that 0 < < 1. Let A4, B, and C denote the
sets 7[00, 7)), f'((r, 1]), and f'(r) respectively. Since C cannot have
interior, M = C1 AU Cl B (Cl denotes closure). Using this fact and
(*), it can be shown that either C1 A or C1 B must contain all three
of the points #, ¥, and s. We shall assume that {z, y, s;cCl A. By
[10, p. 10] &2 NCl1 A is a monotone upper semi-continuous descompo-
sition of C1 A onto [0, 1], and it is easily seen to be minimal. By
[10, p. 30] we have

(**) If peA and q,te CNCLA, then ¢ cuts p from ¢ (in the
continuum C1 A4).

Note that (**) holds also in the case that » is an end point of
[0, 1], so that (**) holds for each »e [0, 1].

If CNCLA = T, then there is a point ¢cc CNClLA — T, hence
(by definition of K, and K,) a subcontinuum L c M — ¢ containing 2,
say, in its interior. But then L NCl A is a subcontinuum (by uni-
coherence) of C1 A which contains x and L°N A but not the point e,
contrary to (**). Thus CNClA = T.

For each ¢ > 0 define H. = H N [CL f((r — ¢, 7)) X N]. Suppose
that for each ¢ > 0 there is a continuum in H. intersecting both s x N
and D. The lim sup of such continua would then intersect both s x N
and D, and would be contained in T x N, hence in D by the definition
of D. Since this contradicts the choice of s, there must exist an ¢ >0
such that no continuum in H. intersects both s x N and D. By [8,
p. 15] there are closed disjoint sets &, and E), such that H, = E, U E},
(sx NyNH.Cc E,, and Dc E,. Letz,z, --- be a sequence of points
in E, N H°— T x N which converges to the point (x, ¢). For each ¢,
let F'; = z,-component of H N [f((r — ¢, r)) X N]. By [8, p. 18] each
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F'; has a limit point (relative to H) in either T x N or in f7(r —¢) X
N. If some F'; has a limit point in 7 x N, then C1 F; is a continuum
in E, from z; to T x N, whereupon its projection onto M would con-
tradict (**). Hence each F’; has a limit point in f~'(r —¢) x N. Then
lim sup F; is a continuum in E, from f~(r — ¢) X N to (=, ¢), where-
upon its projection is a continuum in Cl A containing x and a point
of A, but not containing s, contrary to (**).

LEMMA 3. Suppose that

(1) M is a chainable continuum containing an indecomposable
subcontinuum T,

(2) q is a point of a continuum N,

(3) =« is an inaccessible point of T,

(4) H s a continuum in M X N containing (x, ¢) vn its interior,
and

(5) D denotes the (x, ¢)-component of HN (T X N).
Then (D)= T.

Proof. Assume that T == M; otherwise 7,(D) = T clearly. Sup-
pose se T — w (D). For each ¢ > 0 define H, = HN[CLN.(T) X N]
where N.(T) denotes the e-neighborhood of 7. As in the proof of
Lemma 2, there exists an ¢ > 0 and disjoint closed sets £, and E,
such that H.= E,U E,, (s x NN H.C E,, and DC E,. The closure
of the (x, g)-component of H N [N.(T) x N] is then a continuum in E,
from (2, ¢) to the boundary of N.(T') x N, whereupon its projection
(onto M) is a subcontinuum of M containing both z and a point of
M — T, but not s, contrary to the fact that x is an inaccessible point
of T.

THEOREM 1. Let M and N be chainable continua. Then M x N
1s mutually aposyndetic if and only if M = N = [0, 1].

Proof. Clearly [0,1]* is mutually aposyndetic. To prove the
other implication, we consider two cases.

Case I. At least one of M and N has an end point.

Suppose ¢ is an end point of N, and M is not semi-aposyndetic.
In order to define sets D, and D,, we consider the following two cases:

Case 1. The continuum M is of type A’.

Let x and y be points of M such that M is not semi-aposyndetic
at {z,y}, and let T = K, N K,. By mutual aposyndesis of M x N,
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there are disjoint subcontinua H, and H, such that (z, q) € H? and
(¥, q) € H). Then for ze{x, y}, let D, be the (2, ¢)-component of H,N
(T x N), whereupon 7,(D,) = T by Lemma 2.

Case 2. The continuum M is not of type A’.

By [10, p. 15], M contains an indecomposable subcontinuum T
with interior. Suppose that A, B, and C are disjoint subcontinua of
M, each of which intersects T but is not contained in T. Then
AUBUCUT is a triod, contrary to the fact that M is chainable.
Hence there are at most two composants of T which intersect subcon-
tinua like A, B, and C above. Consequently, all the other composants
of T contain inaccessible points of T. Let x and y be distinet inac-
cessible points of 7. By mutual aposyndesis, there are disjoint sub-
continua H, and H, such that (z,q) € H; and (y, ¢) € H). Defining D,
and D, as in Case 1, it follows from Lemma 3 that both D, and D,
project onto T.

Choose ¢ > 0 such that D, and D, are at least 2¢ apart. Let f
be an e-map on T and let g be an e-map on N such that g(q) = 0.
Define the continuous function 2 from T x N to [0, 1]* by k(a, b) =
((f(a), g(b)). Both A(zx, q) and h(y, ¢) meet [0, 1] x {0}. Since both D,
and D, project onto T, both continua A(D,) and A(D,) must intersect
both {0} x [0, 1] and {1} x [0,1]. But by [8, p. 158], &(D,) and A(D,)
must intersect, contradicting the choice of ¢. Consequently, our as-
sumption that M was not semi-aposyndetic must be false. Then by
Lemma 1, M is an arc, and hence has an end point. Now assume
that N is not semi-aposyndetic, and use the same argument (inter-
changing the roles of M and N) to establish that N also must be
semi-aposyndetic, hence an arc.

Case II. Neither M nor N has an end point.

By [4, p. 385], there are indecomposable terminal subcontinua L,
and L, of M and N respectively. Let ¢ be an inaccessible point of
Ly, and let z and y be distinet inaccessible points of L,. By mutual
aposyndesis, there are disjoint subcontinua H, and H, of M x N such
that (x,9)e H and (y,q)c H!. Let ¢ > 0 such that H, and H, are
at least 2¢ apart. Let f be an ¢-map on L, and let g be an c-map
on N such that g(Ly) = [0, ¢] for some ¢ < 1. Define h: L,, x N—][0,1]*
by h(a, b) = (f(a), g(b)). For ze{x, y}, let D, and D, denote the (z, q)-
components of H, N (L, x N) and H,N (M x L,) respectively. By
Lemma 3, m(D,) = n(D,) = L, and m,(D,) = n(D,) = Ly. By the
choice of ¢, W(D,) N k(D,) = @. Since ¢ is an inaccessible point of L,
for each ze {x, y} either w(D,) C Ly or L, C 7, (D,).
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Suppose that Ly C rw(D,). Then h(D,) intersects both [0, 1] x {0}
and [0, 1] x {e}.

Case 1. m(D,) C L,.

Then D,C L, x L,. Let B be a subcontinuum of 4(D,) irreducible
from [0, 1] x {0} to [0, 1] x {¢}. Since =, (D,) = Ly, K(D,) intersects
both {0} x [0, 1] and {1} x [0, 1]. By [8, p. 158], the continua B and
nMD,) must intersect, contrary to the fact that a(D,) N k(D,) = @&.

Case 2. LycCwi(D,).

For ze{x, y}, let d, denote the maximum of the numbers b€ [0, 1]
such that the point (0, b)e k(D,). If d, >d,, then h(D,) intersects
both [0, 1] x {0} and the point (0, d,), and A(D,) intersects both {0} x
[0,1] and {1} x [0, 1]. Hence h(D,) and h(D,) must intersect [8, p.
158]. A similar contradiction is reached in case d, > d,.

Since the supposition that L, C m,(D,) results in a contradiction,
we have that 7,(D,) C L.

In a similar manner (by interchanging the roles of L, and L,,
and of D, and D,, and making the other obvious modifications) it
can be shown that =, (D)) c L,. Hence both D, and D, are contained
in L, x Ly. Let ¢’ be an e-map on Ly, and define A": L, x L,— [0, 1]*
by W'(a, b) = (f(a), g’'(b)). By the choice of ¢, '(D,) N kK'(D,) = @. But
since h'(D,) intersects both {0} x [0, 1] and {1} x [0, 1], and since 2'(D))
intersects both [0, 1] x {0} and [0, 1] x {1}, the continua #&'(D,) and
KW'(D}) must intersect [8, p. 158]. This contradiction concludes Case
II, and hence the proof of the theorem.

The chainability requirement in the hypothesis of Theorem 1 can-
not be replaced by the the requirement that the continua be of type
A':

ExAaMPLE. A nonchainable planar continuum M of type A’ such
that M? is mutually aposyndetic. Let M be the union of two disjoint
circles plus an open ray (copy of (0,1)) which spirals down on one
circle at one end and on the other circle at the other end. The minimal
decomposition of M would have only the two circles as nondegenerate
elements. Since M contains a circle, it is clearly not chainable. How-
ever, it can be shown that M?® is mutually aposyndetic.

4, Strict non-#-mutual aposyndesis. Hagopian has shown [5,
p. 621] that the product of two chainable continua is strictly non-
mutually aposyndetic if and only if each of the two continua is in-
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decomposable. [Hagopian actually showed it for the case when the
two factors are the same continuum; however it is clear that with
slight modifications his proof will prove this more general result.]
One direction of implication generalizes easily to n-mutual aposyndesis:

THEOREM 2. Let n = 2. Suppose M, and M, are continua, and
M, x M, 1is strictly non-n-mutually aposyndetic. Then for each 1%
(i =1, 2), M, is r;-indecomposable for some integer r; < n.

Proof. Suppose M, is the finished sum of » subcontinua 4,, ---, 4,.
Then for each j < » there is a point p;e 4; — Uir; 4, In M, let
U, ---, U, be open sets with disjoint closures. Then for each j < #,
let H; = (4; x C1 U;) U (p; X M,), clearly a continuum with interior.
Since the H;’s are disjoint, M, x M, is not strictly non-n-mutually
aposyndetic. This contradiction implies that M, is the finished sum
of at most » — 1 subcontinua, and the proof is complete.

The other direction of implication in Hagopian’s result is repre-
sented by

(***) Suppose M is an m-indecomposable chainable continuum and
N is an n-indecomposable chainable continuum. Then M x N is strictly
non-(mn + 1)-mutually aposyndetic.

Question. Is (***) true for all values of m and %?

By the above remarks, (***) holds for m = n = 1. The next
theorem shows that m =2 and n =1 are also values for which (***)
is true.

THEOREM 3. Suppose that M, and M, are chainable continua,
and M, is indecomposable. Then M, x M, is strictly non-3-mutually
aposyndetic if and only if M, is either indecomposable or 2-indecom-
posable.

Proof. If M, x M, is strictly non-3-mutually aposyndetic, then
the conclusion follows from Theorem 2.

Conversely, suppose that M, is either indecomposable or 2-inde-
composable. In case M, is indecomposable, then M, x M, is strictly
nonmutually aposyndetic, hence strictly non-3-mutually aposyndetic.
So we assume that M, is 2-indecomposable.

Suppose that there are three disjoint continua H,, H,, and H, with
interior in M, x M,. By [9, p. 649], M, = A U B where A and B are
proper indecomposable subcontinua. One of A x M, and B x M, (say
A x M,) must contain interior points of at least two of the three H,’s
(say H, and H,). Since M, is indecomposable, 7,(H,)) = m,(H,) = M,.
Similarly for ¢ =1, 2, m,(H,) D A; otherwise 7,(H;) N A would be a pro-
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per subcontinuum of A with interior, contrary to the fact that A4 is
indecomposable.

Let ¢ > 0 such that H, is of distance at least 2¢ from H,. Let
g be an e-map on M, and let f be an e-map on M, such that f(4) is
an initial segment of [0, 1]. Define the continuous function # from
M, x M, to [0,1]* by Az, y) = (f(x), 9(y)). By the choice of ¢, the
continua i(H,) and h(H,) are disjoint. For ¢ = 1, 2, h(H;) meets both
y =0 and y =1 since 7,(H;) = M,. And for ¢ =1, 2, since 7, (H;)DA,
h(H;) projects onto f(A). Let a, be the left-most point (i.e., smallest
first coordinate) of R(H,) on the top edge (y = 1), and let a, be the
corresponding point for H,. We shall assume, without loss of gener-
ality, that a, lies to the left of a,. Since A(H,) intersects ¥ = 0 and
h(H,) intersects x = 0, the continua h(H,) and h(H,) must intersect
[8, p. 158]. This contradiction concludes the proof.

Question. For what values of m and n does (***) hold without
the requirement that M and N be chainable [ef. 5, p. 622]7
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