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ON THE OTHER SET OF THE BIORTHOGONAL
POLYNOMIALS SUGGESTED BY THE

LAGUERRE POLYNOMIALS

TILAK RAJ PRABHAKAR

Recently Konhauser considered the biorthogonal pair of
polynomial sets {Zl(x; k)} and {Yi(x\ k)} over (0, oo) with respect
to the weight function xae~x and the basic polynomials xk and
x. For the polynomials YZ(x; k), a generating function, some
integral representations, two finite sum formulae, an infinite
series and a generalized Rodrigues formula are obtained in
this paper.

Biorthogonality and some other properties of Zl{x\ k) and Yn(%', k)
for any positive integer k were discussed by Konhauser ([1], [2]). For
k = 2, the polynomials were discussed earlier by Preiser [4]. For
k = 1, the polynomials Y£(x; ft), as also Z%(x; k), reduce to the gene-
ralized Laguerre polynomials Ll(x).

In a recent paper [3], we obtained generating functions and other
results for the polynomials Z%{x\ k) in xk. The present paper is con-
cerned only with the polynomials F*(x; k) in x which form the other
set of the biorthogonal pair. The results of the paper reduce, when
k = 1, to some standard properties of La

n{x). Simplicity of the proce-
dure for deriving the generating relation (2.1) which may be regarded
as our principal result, seems to be of some passing interest.

2* A generating function for Y£(x; ft)* We begin with the
contour integral representation [2, (26)]

(2.1) Y;(x; ft) = (ft/2τri) ( e~xt(t + l)"+k*[(t + l)k - 1]"(ΫI+1) dt
JC

where we take C as a closed contour enclosing t = 0 and lying within
[ίI < 1. If we make the substitution u — 1 — (t + ϊ)~k, we get another
integral representation for Y"(x; k), viz.

(2.2) Y;(x; k) - (27a)"1 ί (1 - u)-{a+1)lk exp [x{l - (1 - uΓιlk}]vr»-1 du
JC"

C" being a circle with centre u = 0 and a small radius. By standard
arguments of complex analysis we obtain the generating relation

(2.3) Σ Y:(x; k)un = (1 - u)-{a+ί)lk exp [x{l - (1 - u)~ίίk}]

for Re (a + 1) > 0, \u\ < 1 and positive integers ft.
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Since the generating relation (2.3) is of the form

A(u) exp [xH(u)] = Σ YS(
0

it at once follows ([6], [5]) that the set {Y;(x; k)} is of Sheffer A-type
zero. One of the several immediate consequences of this fact [5,
Theorems 73-76] is that there exists a sequence {hj independent of
x and n such that

(2.4) D Y;(x; k) = £ hm Y^^(x; k).
m—0

In (2.2) putting s = xk(l — u)~\ we are led to still another inte-
gral representation

(2.5) Y:(x; k) = (2πi)-1exxk-a-1 \ s

n-1+{a+1)lk exp(-s 1 / A :)(s -
Jσ

ds

where σ denotes the circle | s — xk \ = r with small r. Evidently σ
may be any small closed contour encircling s = xk.

Evaluating the integral in (2.5) by the residue theorem, we obtain
a generalized Rodrigues formula:

(2.6) γ;(x; k) = {n\)-ιexxk-a-ι[Dnsn-ι+{a+ι)lk exp (-sllk)]s=xk.

For k — 1, it reduces to the Rodrigues formula for L%x).

3. Applications* In this section we apply the generating rela-
tion of the previous section to obtain two finite sum formulae for
Yn(x; k) and also to prove a result involving an infinite series of these
polynomials.

a* Two finite sums involving YZ(x; &)• From the generating
relation (2.3) and the simple relation

(1 - u)-{a+1)lk = (1 - u)-^+1)lk Σ {m\)~ι(a~ β\ um ,
m=0 \ k ' m

if follows that

(3.1) Y;(x; k) = Σ {m\r(^-^) YLJx\ k)

where a and β are arbitrary.
Also from (2.3), on using

- (1 - u)~ιίk}\

- (1 - u)-ιlk}\ . (1 -

x exp [y{l - (1 - u)-llk}]

we get that
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(3.2)
m—Q

for arbitrary a and β.

b. A series of polynomials Y%(x; k). We show that

Σ (-^ψ Y:UX; k)u«
»=o n\ ml

( 3 ' 8 ) = (1 - «)-<«+•*+"'* exp [x{l - (1 - n)-llk}] YZ(x(l - u)~1!k; k).

Using the obvious result

l - u - v = ( l - u){l - v(l - u)-1}

we have that

F(u, v) = ( l - u - v)-la+1)lk exp [x{l - (1 - u - v)-llk}]

= (1 - u)-{a+1)lk exp [x{l - (1 - u)~llk}] (1 - v(l - w)- 1 )- '^" '*

• exp

applying (2.3). But using (2.3), we also find that

= Σ
o
Σ

o

= Σ Σ {^ψ Y:U*; k)u«v~.

Comparing the coefficients of vm in the two expansions obtained for
F(u, v), we obtain (3.3).

This result is analogous to a property possessed by almost all the
classical orthogonal polynomials [5; 95(7), 111(1), 120(9), 144(23)] except
possibly by the Jacobi polynomials.
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