PACIFIC JOURNAL OF MATHEMATICS
Vol, 37, No. 3, 1971

VARIETIES OF IMPLICATIVE SEMILATTICES

W. NEMITZ AND T. WHALEY

The main purpose of this paper is to investigate pro-
perties of the lattice of subvarieties of the variety of im-
plicative semilattices, Also the distinct compositions of the
operators of taking homomorphic images, subalgebras, and
products of classes of implicative semilattices are determined.

A class K of similar universal algebras [2, pp. 33-84] is called a
variety provided K consists of all the algebras which satisfy some
set of identities. If K is a variety and K’ & K, then K’ is called a
subvariety of K provided K’ is itself a variety. The subvarieties of
a given variety form a lattice when ordered by inclusion. A basic
theorem of Birkhoff [1] states that a class of algebras K is a variety
if and only if K is closed under the taking of homomorphic images,
subalgebras, and direct products.

An implicative semilattice is an algebra {L; A, x> where {L; A\
is a semilattice, and = is a binary operation such that « Ay <z if
and only if x < y=+z (here w <% means w A u = w). Every impli-
cative semilattice has a largest element which we denote by 1.
Monteiro [4] has given a set of equational axioms for implicative
semilattices thus showing that the class of implicative semilattices is
a variety. In this paper we consider the lattice of subvarieties of
this variety. We shall denote the variety of all implicative semi-
lattices by I.

An ideal K of an implicative semilattice L is a subset of L such
that v € K whenever ¢ < yc K. A filter J of L is a subset of L such
that « A y,2z€J whenever #z,yeJ,ze L and v <z2. It is shown in
[5] that filters are related to homomorphisms for implicative semi-
lattices in the same way they are for boolean algebras. In particular,
if by the kernel of a homomorphism we mean the pre-image of the
greatest element of the range, then the kernel of any homomorphism
is a filter, every filter is the kernel of a homomorphism, and the con-
gruence relation and quotient algebra determined by the homomorphism
are also determined by the kernel of the homomorphism. Also, in
[6] it is shown that the lattice of filters and therefore the lattice of
congruence relations of an implicative semi-lattice is distributive.
Thus we are able to make use of the results and techniques of
Jonsson [3].

In § 2 we determine several elementary properties of subdirectly
irreducible implicative semilattices. Here it is also shown that the
variety of implicative semilattices is generated by its finite members,
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covers no subvariety, and is not the lattice join of any two proper
subvarieties. In §3 we determine the varieties generated by chains
and give identities for these. In § 4 we introduce the notion of sub-
length for implicative semilattices and show that this is a variety
property. The varieties of sublength three are determined by their
generators.

For a class K of algebras H(K), S(K), P(K) denote respectively
the class of all homomorphic images of elements of K, the class of
all subalgebras of elements of K, and the class of all direct products
of elements of K. Pigozzi [8] has determined all direct compositions
of the operations H, S, and P for arbitrary algebras. In the final
section we consider this problem when restricted to classes of impli-
cative semilattices.

For the basic arithmetic of implicative semilattices, the reader is
referred to [5].

2. Subdirectly irreducible implicative semilattices. Since a
subdirectly irreducible algebra is one with a smallest proper congruence
relation, we see that a subdirectly irreducible implicative semilattice
is one with a smallest proper filter, thus one with a unique dual atom
which dominates all elements other than 1. If we let K* denote the
smallest variety containing the class of algebras K, then K* = HSP(K).
Since a variety is determined by its subdirectly irreducible members,
for a given class K of algebras, it is helpful to know the subdirectly
irreducible members of K°. It follows from [3, Cor. 3.4] that if K
is a finite set of finite implicative semilattices, then every subdirectly
irreducible member L of K° is in HS(K). The following lemma shows
that L is actually in S(K).

LEMMA 2.1. If L is an implicative semilattice every filter of
which 1s principal, them any homomorphic image of L 1is isomorphic
to a subalgebra of L.

Proof. Suppose @: L — L' is a homomorphism. The kernel of @
is principal, say generated by a. It is easy to check that the mapping
v: L — L which takes « to a2 is a homomorphism with the same
kernel as @. Thus (L) = @(L).

If L is any implicative semilattice, we let L be the result of
adjoining an element # to L in such a way that © < w <1 for each
xe L ~ {1}. The operations of L extend those of L and satisfy the
formulas

lxu=uuxl=1,;
and
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xxu =1 uxx =2 forall xzeL ~ {1}.

Clearly L is subdirectly irreducible and L <,L (L is a subalgebra of
ﬁ). Also note that every subdirectly irreducible implicative semilattice
can be so obtained. It is easy to check that the mapping ¢ defined
by ®(x) = w = x is a homomorphism of L onto L. Thus we get the
following lemma.

LEMMA 2.2. Every implicative semilattice is both a subalgebra and
a homomorphic image of the same subdirectly irreducible tmplicative
semilattice.

By [3, Lemma 4.1] we see that if V, and V, are varieties of
implicative semilattices and if L is a subdirectly irreducible member
of (V,U YV, then LeV, or LeV, Using Lemma 2.2 and a proof
as in [3, Thm. 5.4] we get the following corollary.

COROLLARY 2.3. If V, and V, are proper subvarieties of I, then
so s the lattice join of V, and V,.

The following lemma shows that I is generated by its finite members.

LEMMA 2.4. Let L be an implicative semilattice, and let S be a
finite, nonempty subset of L which is closed under N. Then there is
a finite implicative semilattice L' and a one-to-one, order preserving
mapping @ of S into L' such that

(1) Pl Ay =P@) APy of ©,yes,

(i1) p@xy) =P@) «Py). If z,y,zxyeSs.

Proof. Let L' be the set of all ideals of S ordered by inclusion.
Clearly L’ is closed under intersection. For xe S, let (z) = {ye S:y < 2}
so (x)eL'. For A, A,e L/, let

Ao A, ={weS:@NA S A4,).

Obviously 4,0 A,eL’. If xe A, N (A - A,), then () = (x) N A, S 4,
so xe€d,, Thus A N(A4,cA4)S A, IfAcl’, ANAZS A, and zc A,
then (x) N A, S A4, so xeA, oA, Hence AZ 4,0 A4,. Therefore,
{L'; N, o> is an implicative semilattice.

Now let ¢: S— L' by #(x) = (x). This mapping is clearly one-to-
one and order preserving. Also it is clear that @(x A ¥) = (@) N P(y)
if #,ye S. Hence @(x) N P(x * y) S PY), s0 P = y) S P(x) o P(y). If
we P@) o P(y), then (w)N () S (y) so w Az =<y. Thus w=<2x+y and
we (@ x*y) = px*y). Hence @(x*y) = @(x) o P(y) and the proof is
complete.
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THEOREM 2.5. I is the smallest variety of implicative semilattices
which contains all of the finite implicative semilattices.

Proof. From Lemma 2.4 it follows that any identity which does
not hold in every implicative semilattice fails in some finite implicative
semilattice.

COROLLARY 2.6. There is mo wvariety V which I covers in the
lattice of subvarieties of I.

Proof. Same as [3, Cor. 5.5].

LEemMMmA 2.6. If K is a class of similar algebras and if A is a
subdirectly irreducible member of SP(K), then Ae S(K).

Proof. Suppose A =, [I:.;A; where each 4;¢ K. Let ®; be the
projection of A into A;. Then A is a subdirect product of {p,(4):i¢ I}.
Thus one of the projections must be a monomorphism.

3. Varieties generated by chains.' From the remarks of the
preceeding section it is clear that any chain with a largest element
and a dual atom is a subdirectly irreducible implicative semilattice.
For ne w ~ {0}, let &, denote the variety generated by an n-element
chain. Let & denote the variety generated by all finite chains;
© =V &, From Lemma 2.1 of the preceeding section it is clear
that for m < n we have &, c%,. In fact &,., covers &, in the
lattice of subvarieties.

THEOREM 3.1. If C is any infinite chain with 1, then < s the
variety generated by C. Hence & 1s the variety generated by the class
of all chains.

Proof. Since C contains each finite chain as a subalgebra we
clearly have & < {C}°. The reverse inclusion is obtained by a standard
argument. If an identity fails in C it fails in a finite subchain of
C. This subchain together with 1 is a subalgebra of C in which the
identity fails. Thus C satisfies every identity which holds in each

finite chain, so Ce &.

FIGURE 1

NoTATION. Let D’ denote the implicative semilattice of Figure 1.

1 T. Katrinak has obtained results similar to some of those in this and the next
sections.
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LEMMA 3.2. If L s a subdirectly irreducible implicative semi-
lattice and L s not a chain, then D' <, L.

Proof. Let u be the dual atom of L and let a, b be elements of
L which are not related. It is straightforward to check that

{1, u,axbb*a, (@b A (b*a)

is a subalgebra of L. To see that these elements are distinct it is
enough to show that a*b and b+ a are not related. But if axb <
b x a, then

b=bAb=bA(@*b)<bA(b+a)=<a

a contradiction.
In [7] the operation of pseudo-join for implicative semilattices was
introduced. This operation is given by

a+b=(a=b)xb) A ((b*a)*a).

It was shown that this operation is a lattice join precisely when the
operation is associative. Semi-Boolean lattices are those implicative
semilattices in which the pseudo-join is associative.

THEOREM 3.3. & 1is the class of semi-Boolean lattices.

Proof. It is clear that in any chain a + b is the larger of a and
b. Thus any chain is a semi-Boolean lattice. It then suffices to show
that any subdirectly irreducible implicative semilattice which is not
a chain is not semi-Boolean. For this it is enough to show that D*
is not semi-Boolean. If o and b are the two unrelated elements of
D' then a + b = 1 which is not the least upper bound of a and b.

THEOREM 3.4. For n=1,2, ---, the identity
I,,,Z (xl*xz) + (mz*xs) + e + (mn*xrrﬂ) =1
holds i C, dbut fails in C,y,.

Proof. In the m-element chain, for any elements a, a,, <+, @,
we must have a; < a;., for some 7 so0 a; * a;,, = 1.

In the n + 1 element chain, we have a, > a, > +-+ > a,,, SO
(% @) + (@ x ) + coe 4 (@ *Quiy) = Q4 G+ 200 + Cuyy

=aq,.

COROLLARY 3.5. &, 1s characterized by I, together with the as-
soctative law for —+.
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Proof. Let V be the variety defined by I, and the associative
law for +. By Theorems 3.3 and 3.5 we see that V is a proper
subvariety of & which contains <7,. Since D' is not semi-Boolean,
we see by Lemma 3.2 that the only subdirectly irreducible members
of & are chains. Thus any subvariety of & which properly contains
<, must contain C,.,. Since V does not contain C,,, we have V = &,.

4, Semilattices of finite sublength.,

DEFINITION 4.1. For n =1, 2, ... an implicative semilattice L is
said to have sublength % provided C, is a subalgebra of L but C,.,

is not. We let =, denote the class of implicative semilattice having
sublength less than or equal to .

Lemma 4.2. If f: L — C, is an epimorphism, then L has a sub-
algebra isomorphic to C, which is mapped onto C, by f.

Proof. The proof is by induction on n. The case n = 1 is clear.
Suppose the result is true for » = k& and that f: L—C,,,. Let C,,, =
{1=a,a, -, a, a,,} where a, > a, > «-+ > a; > a4, Let

{1 = &y, xZ’ M) xk; xk+1} g L

such that f(x;) = @; for t =1, ---, k + 1. We may assume that x, >
Ly > ooe > L > Xpyy SINCE X, > By ARy > co0 > 2 A ooe A 2, and

f(ocl/\ e /\xj):aj.

If we restrict f to the principal filter generated by x, and apply the
induction hypothesis, we may assume that z;xx; = x; if 1 <7 <k.
We focus our attention on the subalgebra of L generated by

{xly ] xk-l—l} M

Clearly x,,, is the least element of this subalgebra so we denote it
by 0. Also we denote a,., by 0. For 2=j<Fk let y; = af* =x;
where 2* = 2x0. We now claim that {1, v, +--, ¥, 0} is the sub-
algebra of L which we desire.

It is clear that 1 =y, > .-+ = 9, = 0. However,

= fl@i*) = a;
= [(a;, = 0) = 0] = a;
= (0+0) * a;

= Q; .
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Thus we have 1 >y, > «+- > %, > 0 and f(y) = a,.

To check that {1, v,, ---, ¥, 0} is a subalgebra of L, we only need
to show that y; =0 = 0 and that y,«y; = y; if 1<t <7 =k. Since
Y; = ¥ = x; = ®; = %, We have y; 0 < @, x 0 = xf.  Also,

Yo=®f v, Zwf "+ 0 = xf*F = af .

Thus ;0 <z} 0 = z*. Hence 9, *0 < o} A zf* =0 so ¢, 0 = 0.
Furthermore,
Yo+ Y5 = (@ = @) = (xfF* = xy)
= @i * o (% )

= xF* ey
=Y
and the proof is complete.
THEOREM 4.3. For m =1,2, «++, %, is a variety.

Proof. Clearly %, is closed under the taking of subalgebras, by
Lemma 2.6 it is closed under products, and by Lemma 4.2 it is closed
under homomorphisms.

COROLLARY 4.4. Let I be the wariety of all itmplicative semi-

lattices. Then V., &, = L.

Proof. This is clear since V,., &, contains all of the finite im-
plicative semilattices.

THEOREM 4.5. For m = 1,2, --- &, is characterized by I, (with
all association in I, being to the right).

Proof. Let V, be the variety determined by I,. We show by

induction on % that V, = &,. If L¢ %, then L contains C,., as a
subalgebra; so by Theorem 3.4 I, fails in L. Thus we see that

V, < #,. Hence we only need to show that the subdirectly irreducible

members of =, are in V,. The case n = 1 is clear since %’ consists
only of one element algebras.

Now assume that I, characterizes %, and that L is a subdirectly
irreducible member of Z#,.,. Suppose a,, @, -+, a,:, € L and that

(a* @) 4+ (@ ag) + oo+ (@ * Q) + Qg * Qpys)) o+0) < 1.

Then we must have a, @, @, *as, ==+, d* @ < 1. From this we get
Ay, Ay, » =+, Qpsy < 1. Also we have
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(@ * as) + ((a * a) 4 oo+ (0 * apyy) + (@4, = ariz) < 1.

By the induction hypothesis we have I, holding in L since Le Z,.
Thus one of a,, a,, -+, a;,,, must be the dual atom of L, call it u.
Now since @, < u, a, * a, < v we must have a, < w. Similarly a; < u
for 1 =38,4, -+, k + 2. Hence a, = u. Then we get

1> (az * (lg) + e 4 ((ak * a/k+1) + (ak»H * ak+2)) b ') .
= (Uxa) + «oo + (@ * Q1) + (Qpss * Wpig)) +o0) o
= (1« as) + o0 + ((a = alﬁ'—l) + (@4 * @pys)) =) «

But this contradicts the assumption that I, holds in L, and the proof
is complete.

LEMMA 4.6. Let L be any subdirectly irreducible member of Z,
which has a least element 0. Then L is a Boolean algebra.

Proof. 1If xe L ~ {1} we can not have 0 = 0 or else {1, u, z, 0}
is a four element subchain of L. Using Theorems 4.3 and 4.4 of [5]

we see that L is a Boolean algebra. (Note that L e Z,., implies that
LeZz).

COROLLARY 4.7. &, is generated by its finite members.

Proof. Suppose not. Let V be the variety generated by the
finite members of &,. Then there is a subdirectly irreducible member

of Z,~V, say L. Thus there is some identity which holds in ¥V but
fails in L. The failure of L to satisfy this identity depends only on
a finite number of elements of L. Thus we may assume L is finitely
generated. However, this would imply that L has a least member
giving us L a finite Boolean algebra.

COROLLARY 4.8. Let <7, denote the variety generated by B, where
B,, is the 2"-element Boolean algebra. If m < n, then <7, C <Z,. Also

we have V ,., 2, = &

COROLLARY 4.9 If B is any infinite Boolean algebra, then B

generates (Zg
5. H, S, P for implicative semilattices.

DEeFINITION 5.1. If @ and Q' are two compositions of the operators
H, S, P, we let Q@ < Q mean that Q(K) < Q' (K) for every class K of
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implicative semilattices. Also @ < @ mean Q < @', but Q(K) C Q'(K)
for some class K.

It is well known that for any class K of algebras we have SH(K) &
HS(K), PH(K) < HP(K), and PS(K) < SP(K). Pigozzi [8] has shown
using these inequalities that any composition of H, S, P is equal to
one of the compositions without a repeated term or to either SHPS
or SPHS. He has also shown that no further reductions are possible.
For implicative semilattices, we shall show that HS = SH and that
the reductions which follow from this equality are the only one possible
for implicative semilattices.

LEMMA 5.1. If L and L' are implicative semilattices and if L'
18 a homomorphic image of a subalgebra of L, then L' is a subalgebra of
a homomorphic image of L.

Proof. Suppose L” <,L and f: L' — L’ is an epimorphism. Let
J = ker (f). Then L' = L"/J. Let K be the filter of L generated by J.
It is clear that K restricted to L" is Jso L' = L"/J=L"/ (KN L") =<,L/K.
THEOREM 5.2. For tmplicative semilattices,
HS = SH, HSP = SHP, PHS = PSH, SHPS = HSP
and SPHS = SPH. No further reduction is possible.
Proof. All of the equalities follow easily from the first which is

immediate from Lemma 5.1.
To establish that no further reduction is possible we show that

FIGURE 2
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(i) S £ HS, (i) HZ£ SP, (iiiy P £ HS, (iv) HP £ SPH, and (v) SP £
HPS. To see that this will suffice we note that the ordering indicated
by the diagram in Figure 2 is consistent with < and that any further
collapse in the diagram would contradict one of (i)-(v).

(i) SLHP: Let K={C}whereC={1}U{x,:n=1,2, ---} and
1>ax >a,+--. Clearly the two-element chain is a subalgebra of C
so it is in S(K). Suppose C,e HP(K). Let f:]l;.;C— C, be an
epimorphism. Suppose f(x) = 0. Since C has no smallest element,
we take ye [];.;C such that y, < z; for each 1€ I. We must have
fly) = 0. Then (x*y); = x;*y, =y, so ¢y =19y. But this gives 0 =
fly) = flexy) = f(@) = f(y) = 00 =1 a contradiction.

(ii) H £ SP: Let K ={L} where L=1I(C,;» =1,2, ---}. Let
C.={1,9, +-+,y"}t with ¥y >94* > .-+ > y". Let

J ={xeL:xz;, =1 for all but a finite number of <’s} .

Clearly J is a filter. For xe L we let [x] denote the equivalence class
in L/J which contains x. For each n we let # be the element of L
defined by

_ y* if 1=mn

Tl i i<,

Now if n > m, then for any 7 = n we have 7, = y* < y™ = m,;. Thus
#; < m; for all but a finite number of ¢’s. Thus [#] < [m]. Also for
all but a finite number of ’s we have m,; = n;, = %; so [m] = [#] = [%].
Thus we have an infinite chain C = {[1],[2], -} <, L/J. Thus Ce
SH(K). Now if H(K) < SP(K) we get Ce SH(K) = SSP(K) = SP(K).
Since C is subdirectly irreducible, Lemma 2.6 gives Ce S(K). But if
C £,.11C,, we apply Lemma 2.6 again to get C <, C, for some un, a
contradiction.

(iii) PZ HS: Let K={C,}. Then C, x C,e P(K), but C, x C,¢
HS(K).

(iv) HP £ SPH: If HP < SPH, then SHP < SPH. We show
that this is not the case. Let K={C,:n=1,2,..-}. Clearly HK) =K
so SPH(K) = SP(K). Now in (ii) we saw that SH(IIC,) has an infinite
subdirectly irreducible member C. Thus Ce SHP(K). Now if Ce
SPH(K) we have by Lemma 2.6 that Ce S(K) = K, but this is not
the case. Hence Ce SHP(K), but C¢ SPH(K).

(v) SP£L HPS: Let K=/{C}. Let L consist of all cofinite
subsets of an infinite set. Then Le SP(K). We note that L has no
least element. It is clear that any member of HPS(K) has a least
element.
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