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ARCWISE CONNECTIVITY OF SEMI-APOSYNDETIC
PLANE CONTINUA

CHARLES L. HAGOPIAN

Suppose M is a bounded semi-aposyndetic plane continuum
and for any positive real number ¢ there are at most a finite
number of complementary domains of 1}/ of diameter greater
than . In this paper it is proved that J is arcwise connected.

Let M be a continuum (a closed connected point set) and let
and y be distinct points of M. If M contains a continuum H and an
open set G such that xeG < HC M — {y}, then M is said to be
aposyndetic at x with respect to y [4]. M is said to be semi-apo-
syndetic if for each pair of distinet points 2 and y of M, M is
aposyndetic either at x with respect to ¥ or at y with respect to «.
In [3] it is proved that every bounded semi-aposyndetic plane con-
tinuum which does not have infinitely many complementary domains
is arcwise connected. For other results concerning semi-aposyndetic
plane continua see [1] and [2].

Let « and y be distinect points of a metric space S. A finite
collection {4, A4,, +++, A,} of sets in S is a chain in S from z to y
provided A, contains x, A, contains y, and for 7 and j belonging to
1,2, «--,m}, A, N A; # ¢ ifand only if |i — j| < 1. If each element
of a chain .27 has diameter less than = (a positive real number) then
.57 is said to be an r-chain. Suppose . = {4, A,, --+, A,} and .7 =
{B, B,, --+, B,} are chains in S from 2 to y. The chain =% is said
to run straight through .o provided the closure of each element of
& is contained in an element of .9 and if B; and B, 1 =<1<k=<mn)
both lie in an element A, of .97, then for each integer 7 (1 < j < k),
B; is contained in an element of .9 whose intersection with A, is
nonvoid.

If M is a bounded plane continuum and for any positive real
number ¢ there are at most a finite number of complementary domains
of M of diameter greater than ¢, then M is said to be an E-continuum
[6, p. 112].

The boundary of a set A is denoted by Bd A.

THEOREM 1. Suppose M is a semi-aposyndetic E-continuum s S
(a 2-sphere with metric @), U is a disk in S, x and y are distinct
points which belong to the same component of M N U, and V is an
open disk in S containing U. Then for any positive real number r
less than both @ (z, y)/5 and @ (Bd U, Bd V)/5 there exists an r-chain
{H, H,, «++, H} (n>3) in S from x to y such that for each positive
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integer 1 less tham or equal n, H; is a continuum in MNV and
o(H;,, Bd V) is greater than 4r.

Proof. Let G be the union of all components of S — M which
have diameter less than »/3. Since M is a semi-aposyndetic E-con-
tinuum, M U G is a semi-aposyndetic continuum which does not have
infinitely many complementary domains [5, Th. 2 (proof)]. Let F
be the x-component of U N (M U G). F'is a semi-aposyndetic continuum
in S which does not have infinitely many complementary domains [3,
Th. 1] (D and M in [3] are S — U and M U G respectively). Hence
F is arcwise connected [3, Th. 2]. Let A be an arc in F from 2 to
y. There exists a finite point set B in A — {z, y} such that each
component of A — B has diameter less than /3. For each component
C of A — B, let G(C) be C union all components of G which intersect
C and let Z(C) be the boundary (relative to S) of G(C). For each com-
ponent C of A — B, since the boundary of each component of G is a
continuum [6, Th. 2.1, p. 105] and each point of C that is not in G
belongs to Z(C), Z(C) is a continuum of diameter less than » in M.
Let 27 be the finite coherent collection of continua {Z(C)|C is a com-
ponent of A — B}. The points 2 and y each belong to an element of
2% and each element of 27 intersects U. It follows that any chain
from x to y whose elements are members of .2~ has the specified
conditions.

THEOREM 2. If M is a semi-aposyndetic E-continuum, then M 1s
arcwise connected.

Proof. Let S be a 2-sphere which contains M and let @ be a
distance function on S. Let p and ¢ be distinct points of M. Define
r, to be a positive real number less than both 1/8 and @ (p, ¢)/56 and
let s, = 4r,. According to Theorem 1, there exists an -chain {H!},
H;, ---, H,}(n >3)in S from p to ¢ such that for each positive integer
7 less than or equal »,, H! is a continuum in M. Let m, be the smal-
lest integer greater than or equal to (n, — 1)/2. There exist a set of
disks {U}, U3, +++, U, } and a set of open disks {Vi, V}, -+, V,,} such
that {Vi, Vi, ---, V. } is an s-chain in S from p to ¢ and for each
positive ¢ less than or equal m, H}, , U H) U Hi,,C U.C V! (if #n,
is even, let H, ., = ¢).

Let {p}, % *++, Pn,i} be a point set such that p; = p, ;.. = ¢,
and for each positive integer 7 less than or equal m,, p: belongs to
Hi_,. Let t, be the smallest number in the set {(Bd U!, Bd V})|:
<m} U {®(p}, pi:)]t =< m}. Let », be a positive real number Iess
than both ¢/5 and 1/16. Define s* to be 4r,. For each positive in-
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teger 7 less than or equal m,, there exists an 7,chain & in S from
p; to pi,, such that each element of & is a continuum in M N V}
and at a distance greater than 47, from Bd V}: (Theorem 1). There
exists an »,-chain {H}, Hi, ---, H;} in S from p to ¢ whose elements
belong to UM, &, such that for each positive integer 7 less than or
equal m,, & N {H}, Hi, ---, H;} is a coherent collection. Let m, be
the smallest integer greater than or equal to (n, — 1)/2. There exist
a set of disks {U}, Ui, ---, U.} and a set of open disks {V?}, V3, ---,
Vb such that {Vi, Vi, .-, V2 } is an s,-chain in S from p to ¢ and
for each positive integer 7 less than or equal m,, H%_, U H% U H%,, C
Uic Vi (if m, is even, let H;. = @). Note that {Vi, V3, -+, V,}
runs straight through {Vi, V3, ---, V. }.

Continue this process. For 7 =3, 4,5, ---, there exists a chain
{H}, Hi, ---, H;} in S from p to ¢ whose elements are continua in
M, and there exists an s;-chain {V3, Vi, -+, Vi } (s; <1/2) in S from
» to ¢ whose elements are open disks in S such that UU7:, V’ contains
U)i H; and {Vi, Vi---, V,:} runs straight through {Vi™, V;7, --.,
Va'}. For each positive integer 1, let L, be the continuum Uji, Hj.
The limiting set L of the sequence L,, L, L, --- is a continuum in
M containing p and q. Note that for each positive integer 7, L is
contained in U7, Vi

Let « be a point of L — {p, ¢}. For each positive integer 1, let V;,
be an element of {Vi, V3, -+, V,;} which contains . Assume without
loss of generality that 4 < j, < m, — 4. For each positive integer
i, let P; be {Vi, Vi, --«, V;._} and let F; be {Vi., Vi, -, Vil
Let P=Uz, (P,NL) and F =Yz, (F;NL). Pand F are nonempty
disjoint relatively open subsets of L and PU F = L — {x}. Hence x
is a separating point of L. It follows that L has only two nonse-
parating points. Therefore L is an arc [6, Th. 6.2, p. 54]. Hence M
is arcwise connected.

REVARK. TUsing [3, Th. 1] and Theorem 2 one can easily prove
that if M is a semi-aposyndetic F-continuum, then M has Jones’s
cyclic property (that is, if p and ¢ are distinct points of M and no
point cuts p from ¢ in M, then there exists a simple closed curve
lying in M which contains p and q).
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