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ON COMPLETELY HAUSDORFF-COMPLETION
OF A COMPLETELY HAUSDORFF SPACE

ASIT BARAN RAHA

R. M. Stephenson, Jr. (Trans. Amer. Math. Soc, 133 (1968),
537-546) has established the existence of a completely Haus-
dorff-closed extension X1 of an arbitrary completely Hausdorff
space X. Stephenson demonstrates that X' enjoys many
interesting properties of the Stone-Cech compactification.
This paper shows that, by a modification of the topology, Xf

is made also to possess a property which is in the line of
the celebrated property of the Stone-Cech compactification of
a completely regular Hausdorff space that it is the largest
amongst all Hausdorff compactifications.

1* Introduction. A topological space X is called completely
Hausdorff if for every pair x, y of distinct points of X there exists a
continuous real valued function / on X such that f(x) Φ f{y). A
completely Hausdorff space is called completely Hausdorff-closed if
every homeomorphic image of it in any completely Hausdorff space is
closed. A space Y is termed a completely Hausdorff-closed extension
of a completely Hausdorff space X if X is dense in Y and Y is
completely Hausdorff-closed. R. M. Stephenson, Jr. in [4] has esta-
blished the existence of a completely Hausdorff-closed extension
(referred to as the completely Hausdorff-completion) X of an arbitrary
completely Hausdorff space X. If X is completely regular (which, of
course, assumes Hausdorff property and is necessarily completely
Hausdorff) then X is the Stone-Cech compactification of X. Stephenson
shows {[4], Theorem 4} that, even if X is completely Hausdorff but
not necessarily completely regular, Xf continues to enjoy many
interesting properties of the Stone-Cech compactification. By enlarging
the topology of X we shall, in fact, strengthen Theorem 4 of [4] in
the sense that property (vii) therein will be replaced by the following:

X is a projective maximum in the class of completely Hausdorff-
closed extensions Y of X with the property that any element in F(X),
the set of all continuous functions on X into [0, 1], admits an exten-
sion to F(Y).

The above property is, obviously, akin to the well-known fact
that the Stone-Cech compactification is largest among the Hausdorff
compactifications of a completely regular Hausdorff space.

2* Notations and definitions* We shall try to follow the
notations and definitions of [4] as far as possible.
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C(X) will stand for the set of all bounded continuous functions
on X. If Z is any topological space, we shall denote by C(X, Z) the
set of all continuous mappings of X into Z.

A topological space Y is an extension space of another space X
if X is dense in Y. If T is an extension space of a topological space
S, the trace filters of T are the filters ^~(t), te T — S, where .y~{t) is
the filter on S given by {U f] S: U a neighbourhood of £ in T}.

Banaschewski [1] introduced the notion of a protective maximum
in a set E of extensions of X; an extension Y in E is a protective
maximum in E if for each Z in E there is a continuous function
from Y onto Z which leaves X pointwise fixed.

A filter ,yr on a space X is called completely regular provided
that it has a base ,<ζ@ of open sets such that for each B e :ζ&, there is
a set Bf c B in έW and a function / e MX) such that f(B') = 0 and
/ - 1 on X - B.

3* Main result. Let X be a completely Hausdorff space, and
let ^// be the set of all maximal completely regular filters on X which
have empty adherences. (If J ^ is a completely regular filter,

Π {F: Fe JΓ} = n {F: Fe ^~} - adherence of JΓ ,

where F = closure of F in X. If Π {i7": Fe J^} = 0 , ^ is called /ree,
otherwise it is called fixed.) Put Xf = X [j ̂ /^. We shall endow X'
with a topology as follows:

Any set, open in X, is also open in X'. If J^ e ̂ f, basic neigh-
bourhoods of J^ are of the form G U {J^} where G e J^. With this
topology (will, henceforth, be called the Kate to v topology) X; becomes
a completely Hausdorff-closed space and will be called the completely
Hausdorff-completion of X. The trace filters of X' are the filters
{^(^): JT e ̂ //} and for each Ĵ ~ e ^ , ^(JT) = {Uf) X: UaXr and
U a neighbourhood of J^} ^{G:Ge J?~} = J?~. Thus the trace filters
of X' are the maximal completely regular filters J^~ on X such that

Π {(?: G G J^} = 0 .

Now we are in a position to state our main theorem which is
identical with Theorem 4 of [4] with the exception of property (vii).

THEOREM 1. Let X be a completely Hausdorff space. The com-
pletely Hausdorff-completion X' of X has the following properties:

( i ) If Z is a compact Hausdorff space, then each function in
C(X, Z) has a unique extension in C(X', Z).

(ii) The Stone-Weierstrass theorem holds for X'.
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(iii) Xf is locally connected if and only if X is locally connected
and each trace filter of X* has a base consisting of connected open sets.

(iv) X' is locally connected only if X is locally connected and
pseudocompact.

(v) X' is connected if and only if X is connected.
(vi) C(X!) and C(X) are isomorphic, and if R is the real line,

€{Xr) and C(X, R) are isomorphic only if X is pseudocompact.
(vii) Suppose Y is a completely Hausdorff-closed space containing

X as a dense subset and each element of F(X) has an extension to
F{Y). Then there exists a one-to-one function geC(X', Y) such that
g(Xr) = Y and g is identity on X. In short, X' is a projective
maximum in the class of completely Hausdorff-closed extensions Y of
X with the property that any element in F(X) admits an extension
to F{Y).

Proof. Proofs of (i) — (vi) are omitted as they are same as those
given in Theorem 4 of [4] (page 540). We shall only give a proof
for (vii). Let 7 be a completely Hausdorff-closed topological space
containing X as a dense subset and such that every function in F(X)
admits an (unique) extension to F(Y). If J?~ is a nonconvergent
maximal completely regular filter on X(i.e., ^e^/ί) define Z —
{feF(X): for some G',Gej?~ with G'cG, one has /(G') = 0 and
f(X— G) — 1}. Z is nonvoid as J^~ is completely regular. For fe F(X)
let / ' denote its extension in F{Y). Put Z' = {fife Z}. Take S? =
{V(f, t) = f'-1 [0, t): f e Z\ 0 < t ^ 1}. The empty set does not belong
to 6^. Consider, V(f/, t^eS^j i = 1, 2, •••, n and choose, for each
i, 0 < Si < ti. By using the normality of [0, 1] we can get ^ 6 F(Y)
such that ^(F(//, β4)) = 0 and & [Γ - V(f/, U)] = 1 for i = 1, 2, . . ., n.
Put g = rnax,,^^. Then ^ 6 ^ ( 7 ) and g[ΠU V(f/, s,)] - 0 and

Note also that f|?=i V(f/, sd) c n*=i W Λ td). Thus, we have shown
that finite intersections of sets of S^ form a completely regular filter
T)ase on F. Let ^ be the completely regular filter on Y generated
by S^ and let ^ denote a maximal completely regular filter on Y such
that gf c ^ . Since F is completely Hausdorff-closed every completely
regular filter on F has nonempty adherence (See [4] Theorem 1, and
[2]). Consequently adherence of fS {—ad {^/)) is nonempty and
maximality of ^ will make ^ converge to each point in ad{^f). But
F is Hausdorff, so ad{^/) must contain exactly one point, i.e., Π U —
,Π {U: Ue %S} is a singleton. We now claim that J^ — {U{\ X: Ue

Proof of the claim. Since ?/ is a maximal completely regular
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open filter it has a completely regular filter base Jr consisting of
open sets. As X is dense in Y, it is easy to see that <:& Π l =
{U Π X: UeΉS} is an open filter on X with an open base given by
^ f]X= {Vf]X:Ve y). Let VΠ Xe y n X. Since Ve JT there
exist F ' e f with V c V and heF(Y) such that h(V') = 0 and
Λ(F - F) = 1. Obviously, Λ(F' f] X) = 0 and i ( I - F n I ) = 1.
Let / denote the restriction of h to X. Then / e F(X) and
f(W Π X) = 0 and /(X - F n X) = 1 i.e., ^^ n I is a completely
regular filter base on X for ^ Π X. Therefore ^ f] X is a completely
regular filter on X. Again j ^ ~ is a completely regular filter on X, so
F G J^ implies that there exist F' e J^ with Ff c F and / e F{X) such
that /(F') = 0 and f(X - F) = 1. This gives F ' c /^[O, 1) c F.
Hence feZ and F ' c f'~ι [0, 1) Π X c JP where / ' e Z\ Now, /'-1

[0, 1) e 2Γ c ^ . Thus X n Z'"1 [0, 1) e ^ n X and F D I Π Z'"1 [0, 1)
implies Fe'^ΓiX (since it is a filter). We get j^~<z.% Π X and maxi-
mality of j^~ forces j ^ — ̂  Π X. Immediately we have from the above
fact, (n U) ΓΊ X= Γl (ί/Π X) = Π {ί7: Fe J^} = 0 as J ^ is a free maximal
completely regular filter. So the single point contained in Π U is
actually in Y — X. Let the point be denoted by y{j^"). Next we show
that if j ^ " x and JF~2 are two distinct points in ^ , the points y{^r

ι)
and y{J^~' 2) are distinct points of Y — X. Since j ^ Ί and ^ ^ 2 are two
distinct free maximal completely regular filters there must exist Gγ e ίβ

r

ι

and G2 e J^2 such that G, and G2 are open in X and GLΠ G2 = 0 . As
shown earlier, we can associate two maximal completely regular
filters ^ L and ^/2 on Y with ^~\ and jβ"2 respectively. By definition
{y(Fi)} = Π {U: Ue ^ J , i = 1, 2 and we also know that J ^ = ^/^ Π X*
Consequently there exists [7{ e ^ ^ such that f/{ Π X - Ĝ  and C7{ is
open (i = 1, 2). Since Gγ Π G2 = 0 and X is dense in F we have
Uλ Π ?72 = 0 Since ?/ (J^^) e f/̂  for i = 1, 2 we get ^(j^O Φ y{^2)* So
far we have shown that J^ H^ y(,j?r) is a one-to-one map of ^// into
F — X. Let i denote the identity map on X into Y.
Define ?: X ; —> Y as follows:

ΐ(ίc) = ί(x) = x if ίc G X, and

if ^ ^ e ^/r - X' - X.

Claim: i is continuous.
We shall establish the continuity by showing the continuity at

each point.
( i) Suppose xeX. Then i(x) = x. Let W be an open neigh-

bourhood of x in Y, then i~ι(W) Π X = i~ι(W) = G, an open neigh-
bourhood of x in X and hence open in X' and also i (G) c T7.

(ii) For ^e^/f, we have i(j^~) — y{^)* By construction of
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we know that it is the point of convergence of a maximal com-
pletely regular filter f/ on Γ such that ^ = ^ fι X.

If W is an open neighbourhood of y(^~) in Y then We^S i.e.,
i f Π l e J^. But I f Π l i s open in X and hence (W Π X) U {J^Π is
an open neighbourhood of ^" in Xf such that

%\(W n X) u UΠ] = W n x) u ίcjr) - *( ΪF n x) u
= (W n X) U {y(JT)} a W.

Thus the continuity of i has been proved. But Xf is, in particular,
completely Hausdorff-closed and i is a continuous function on Xf into
a completely Hausdorff space Y in which X is dense. Consequently,
from the following fact it will follow that i is onto Y.

Fact. Let X be a completely Hausdorff-closed space and let Y
be a completely Hausdorff space such that there is a continuous
function f:X—*Y. Then /(X) is a completely Hausdorff closed
subspace of Y.

Let us put g = L Then 0 e C(X', Y) with <?(X') - Γ and g
restricted to X equals i, the identity map on X.

COROLLARY 1. Suppose Y is completely Hausdorff-closed space
satisfying the conditions stated in Theorem l(vii) and f is a homeo-
morphism of X onto X, then there exists a one-to-one function
g e C(X\ Y) such that g{X') = Y and g restricted to X equals /.

Proof. We first note that if JF" is a nonconvergent maximal com-
pletely regular filter on X, f{J?~) is a nonconvergent maximal completely
regular filter on X. Then the proof follows by a reasoning similar
to one presented in the proof of Theorem l(vii) where i is replaced
by/.

4. REMARKS. The completely Hausdorff-completion X' of X in
Theorem 1 is essentially unique, i.e., if T is any completely Hausdorff
closed extension of X and T satisfies the properties of Theorem 1
then X' and T are homeomorphic. For there exists g e C(X', T) such
that g{Xf) — T and g is identity on X. Also, there exists h e C(T, X')
such that h(T) — X' and h is identity on X. Therefore by the
following result {[3], page 5} we can assert that X' and T are
homeomorphic.

Result. Let X be dense in each of the Hausdorff spaces S and
T. If the identity mapping on X has continuous extensions s from
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S into T, and t from T into S, then s is a homeomorphism onto, and
s"1 = t.

One can raise the following two questions regarding Theorem 1:
(a) Is a Y satisfying the condition (vii) of Theorem 1 homeomor-
phic to X'? (b) Is X' a one-to-one continuous image of such YΊ We
shall answer both the questions in the negative. Let N denote the set
of natural numbers with discrete topology. On N any free maximal
completely regular filter is nothing but a free ultraίilter. Thus
β N — NU^/f where Λ? is the set of all free ultrafilters on N. The
topology by which β N is the Stone-Cech compactification of N will
be called Stone-Cech topology (S — C topology) for β N. Its open sets
are generated by {V: V open in N} where V — V U {^" e , / : Ve ^r}.
But, according to our definition, βN endowed with the Kate to v
topology is the completely Hausdorff-completion of N and in this
topology ^y// = β N — JV is a closed, discrete infinite subspace of β N
and, thus, cannot be compact. While in the S — C topology of β N,
^ is closed, no doubt, and hence compact. Clearly, the S —C topology
is strictly weaker than the Katetov topology. As S — C topology of
β N is compact, no continuous map from β N with S — C topology
onto β N with Katetov topology can exist. So homeomorphism is ruled
out. But the Stone-Cech compactification β N satisfies all the conditions
enjoyed by a Y in Theorem l(vii).

Acknowledgement. The author expresses his thanks to Dr. Ashok
Maitra for suggesting some modifications to an earlier version of the
paper and especially for raising the questions discussed under the
caption "Remarks".
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