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THE TRANSLATION GROUPS OF #-UNIFORM
TRANSLATION HJELMSLEV PLANES

DAvID A. DRAKE

The purpose of this paper is twofold: first, to determine
the full translation groups for all n-uniform translation affine
Hjelmslev planes for all positive integers #; and second, to
prove that all such groups occur as the full translation
groups of Pappian Hjelmslev Planes.

1. Introduction. For brevity’s sake, we introduce the follow-
ing three conventions: Hjelmslev plane will be abbreviated to H-plane;
we will always mean affine (rather than projective) when we write
translation H-plane; and throughout the paper, translation group
will denote the group of all translations. H. Liineburg has previ-
ously defined translation H-planes [7] and has determined the trans-
lation groups of all uniform translation H-planes [7, Satz 8.3]. The
author has defined a class of finite H-planes called n-uniform H-planes
in such a way that the finite uniform H-planes are just the =n-uni-
form H-planes with # =1 and 2 [3]. In §2, we prove (see Theorem
2.6.) that only certain groups can occur as translation groups of
n-uniform translation H-planes; and in § 3, we establish the converse.
As algebraic corollaries to the geometric theorem of §2, we obtain
results on the additive structures of the finite Desarguesian H-rings.
(See Corollary 3.1 and Remark 3.3.). This is possible, because every
Desarguesian H-ring coordinatizes a Desarguesian affine H-plane,
because every Desarguesian affine H-plane is a translation H-plane,
and because every finite Desarguesian H-plane is n-uniform for some #.

In § 3, we quote a result of W. E. Clark and the author on the
additive structure of finite commutative Desarguesian H-rings; we
use this result to show that all groups permitted by Theorem 2.6
do in fact occur as translation groups of Pappian affine H-planes.
Then every translation group of an wm-uniform translation H-plane A4
is isomorphic to the translation group of a Pappian affine H-plane B.
One may always take B to have the same invariants as A. One
may also always choose B so that its associated ordinary affine plane
has prime order.

2, The translation groups of finite translation H-planes. The
reader is referred to P. Dembowski [2] or to the papers in the
bibliography for definitions of affine and projective H-planes. We
will write P~ @, g+ h, ete., to mean the point P is neighbor to @,
the line ¢ is not neighbor to A, etc. Associated with every finite
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affine or projective H-plane are two invariants denoted by s and ¢.
We may take ¢ to be the number of lines through a point P which
are neighbor to the line g where (P, g) is an arbitrary flag of the
H-plane; then s + t will denote the total number of lines incident
with P. It is well known that s/t is the order of the ordinary affine
or projective plane associated with the H-plane. (See [4] and [7].)

DEFINITION 2.1. Let P be a point of an H-plane n#. We define
P to be the following incidence structure. The points of P are the
points @ of « such that @ ~ P. The lines of P are the nonempty point
sets I =1N P, | being a line of #. Incidence is given by inclusion.

DEFINITION 2.2. We define a 1-uniform affine (projective) H-plane
to be a finite ordinary affine (projective) plane. We call a finite
affine or projective H-plane n-uniform (n = 2) provided that

(a) P is an (n—1)-uniform affine H-plane for each point P in r.

(b) For each P, every line I is the restriction of the same
number of lines from .

The following result is part of [3, Proposition 2.2]. The reader
should thoroughly acquaint himself with the content of this pro-
position as it will be used frequently in the rest of the paper.

PROPOSITION 2.1. Let @ be an n-uniform projective or affine
H-plane. Then w satisfies the following properties:

(1) If r = s/t, then s = r" and t = r" .

(2) Distinct intersecting netghbor lines of ™ meet in r° points
for some integer i such that 1 <1 =n — 1.

(8) The dual of (2) holds in .

(4) If Peh, the number of lines through P which intersect h
in r¢ or more points s v for 1 =1,2, <+, 0.

(5) The dual of (4) holds in .
We write “P(=%)Q” and read “P is i-equivalent to @” to mean P is
joined to @ by exactly #* lines; we write “P(~7)Q” and read “P is
at least i-equivalent to @” to mean P is joined to @ by r’ or more
lines.

(6) (~1) is an equivalence relation on points for t=0,1, «++, n.

(7) The following conditions imply |[INk|>1:R,Qecl; R,Se

k; R(=Z9)Q; Q(~ © + 1)S; 1 is a nonnegative integer < n.

(8) If P is any point of w, the number of points @ of m™ such

that Q(~1)P is ™% for 1 =1,2, «++, m.

In light of Proposition 2.1 (1), an #n-uniform H-plane may be
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thought of as having three invariants », s, and ¢t. However, s and ¢
are determined by » and #»; and thus, we shall write the invariant
of an n-uniform H-plane 7 to refer to ». Since r=s/t, the invariant
of = is the order of the ordinary affine or projective plane associ-
ated with =. Next we prove

LeEmMmA 2.2. Let P, Q, R be points of an n-uniform H-plane which
satisfy P,Qeg; P,Reh; Q,Rek. Further suppose P(Z1)Q(=1)R(=1)P,
1< n, and g+~ h. Then h~~k+~ g.

Proof. Proposition 2.1 (5) implies the number of points X such
that Xeg and X(~% + 1)P is » . By (7), any line joining R to
such an X is neighbor to A, hence not neighbor to g. Then no line
joins R to two such X. By (6), the number of lines joining R to
each such X is 7'. Then the number of lines joining R to all such
X is ' =¢. Thus all lines through R which are neighbor to &
meet ¢ in points X which satisfy X(~7 + 1)P. Then k ~ &k, and by
symmetry k + g.

To state the next several lemmas, we need some notation and a
definition. We will write ‘P to denote {@: Q(~mn — %)P}. Thus °P=
{P} and "P is the set of all points of the H-plane.

DEFINITION 2.3. A mapping ¢ defined on the point set of an
affine H-plane is called a dilatation if the following condition is
satisfied: P, Qe g; (P)oeh; gllh imply (Q)o € h.

LEMMA 2.3. Let o be a dilatation of an n-uniform affine H-plane.
Let P,Q, R, T be points such that Q(=j)P(=j)R, T(~j + 1)P, and
(Pyo(=t + 5)(Q)a. Then

(a) (Ryo(=i+ J)(P)o, and

(b) (TMo(~t+J5+ D(P)oif 1 +J5 < n.

Proof. Let g be any line through P and @, & be any line through
P which is not neighbor to g. We first prove the lemma for all
R, Teh such that R(=j)P, T(~j+1)P. We have R, T(~7)Q. Since
h + g, Proposition 2.1 (7) implies R(=j)Q. Let k be any line through
R ane Q, m be any line through 7 and Q. By Lemma 2.2, |hNk|=
1. Let ¢/, i’ be the lines through (P)o parallel respectively to g, k;
let &', m’ be the lines through (Q)c parallel respectively to k, m. In
one form of the definition of affine H-planes (See [7] or [3], not [2].),
the following condition is assumed: [ANk|=1 and Ek||k imply
|hNk'|=1. Then also | Nk'|=1. Similarly, |’ N g¢'|=1; and since
Imngl >1,|m Ng|>1. Since (P)o(= 1t + j)(Q)o and k' ~ k', Pro-
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position 2.1 (7) implies (R)o(~ % + j)(P)o. Since m' ~ g' + k', the
same argument implies (T)o(~ 1+7)(P)o. We have (R)o(=1+75)(P)o,
for otherwise the above argument would yield (Q)o(~ 7+7+1)(P)o.
Next, suppose (T)o(=i+5)(P)o. Then since 1’ + ¢, (T)o(=1 + 7)(Q)o.
If © +7 <mn, Lemma 2.2 implies m’ +~ ¢g’. By the contradiction, we
conclude that (T)o(~ ¢+ j + 1)(P)a. To see that the conclusions of
the lemma hold for points R and T on a line & through P such that
h ~ g, we apply the above results, replacing g and @ by ¢* and Q*
where Q*cg* +¢g and Q*(=j)P. (The existence of such a point
Q* e g* is assured by Proposition 2.1 (5).)

LEMMA 2.4. Let o0 be a dilatation of an n-uniform affine H-plane.
Let (P)o(= 1)(Q)o for monneighbor points P, Q. Then if k< n — 1,
("*P)o = "*((P)o).

Proof. Taking j = 0 in Lemma 2.3 yields ("P)og C " *((P)o) and
(**P)o C"((P)o). It follows from Proposition 2.1 (8) that for
each k =0,1, ---, n — 1, there exists a point R, such that R, (=k)P.
Using induction and Lemma 2.3, we get (" *P)o " *(P)o) for all
k<n—1. If we can prove that the last containment is equality
when %k = 0, then another induction proof using Lemma 2.3 will
yield the full conclusion of Lemma 2.4. Thus it suffices to prove
that "~*((P)o) C Image (o).

We let g denote the line joining P and @Q; ¢’, the line through
(P)o which is parallel to g. Let A’ be any line through (P)o not
neighbor to ¢’, and let R’ be any point of »’ satisfying R'(~ %)(P)o.
Let k' be any line joining R’ to (Q)o. Since (@)o(= 7)(P)oc and
R'(~%)(P)o, R'(~%)(Q)g. Since h'~ g’ R(=1)(Q)o. If R'(~i+1)(P)o,
then k'~g’; hence k'~ K. If R (=1i)(P)o, Lemma 2.2 implies k'~ h'.
Then in all cases |K"NA'|=1. Let h be the line through P which
is parallel to &', &k be the line through @ which is parallel to %'.
Then |kNnh|=1. If {R} is kNh, then (R)g = R’. To see that
Image (o) contains points R’ on lines 2’ ~ ¢’, repeat the above argu-
ment using (in place of g and Q) a line g* through P such that
g* £ g and a point Q* on g* such that Q* « P. Lemma 2.3 implies
(P)o(= 1)(Q*)o. Since g* + g, a previous argument implies (¢*)" + ¢’,
hence (¢*)’ ~ I'. (Here (9*)' denotes the line through (P)o which is
parallel to g*.) Then "~((P)o)C Image (o), and the proof of the
lemma, is complete.

Lemmas 2.3 and 2.4 combine to yield

ProPOSITION 2.5. Let 0 be a dilatation of an n-uniform affine
H-plane. Let P(=7)Q and (P)o(Z 1+ 7)(Q)0 for some j <n — 1.
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Then for all k < n — i, (""*P)o = "*=((P)o).

The reader is referred to [7] or [2] for the definition of trans-
lation H-planes and for the results on translation H-planes which
we quote and use below. If 7 is a set of subgroups (called com-
ponents) of the group T, J(T, =) denotes the incidence structure with
parallel relation defined as follows: the points are the elements of T
the lines are the right cosets of the components; incidence is given
by inclusion; and lines are parallel if and only if they are cosets of
the same component of wn. If A is any translation H-plane and if
T* is the translation group of A, then T* is abelian and there exist
T,7 such that A = J(T,n) and T* = T. Every element t* of T
may be defined on T by (x)t* = x + ¢t for all xe T, some fixed te T.
If J(T, 7) is an affine H-plane A and if 7 is abelian, then A4 is a
translation H-plane with translation group isomorphic to 7. Finally,
we note that the invariant of 4 must be a prime power, since the
ordinary affine plane associated with A is a translation plane.

THEOREM 2.6. Let A be an n-uniform translation H-plane with
nvariant r = p° and translation growp T*. Then there exist non-
negative integers k,, k, j such that T* is the direct sum of 2xk,
cyclic subgroups of order p' and of 2xk, cyclic subgrouns of order pi+.

Proof. We represent A by J(T, w) where T'= T*. Let ‘T denote
the set of all elements of T in 0. Let teT, t* denote the trans-
lation which adds 7 to each element of 7. Then all lines connecting
0 and 7 are “traces” of t*, i.e., are fixed by t*. Thenif B¢ T, all lines
through g parallel to these traces are also traces of *, hence con-
tain (8)t*. Then B(~ n — 9)(8)c*; and if Be'T, 7t + B = (B)T*eT.
Then *T is a subgroup of 7. Let ‘m denote the set of all inter-
sections of ‘T with components of 7. Then ‘0 is isomorphic to J(:T, ‘).
Since A is n-uniform, 0 is an ¢-uniform affine H-plane; since ‘T is
an abelian group, ‘0 is a translation H-plane.

We prove the theorem by induction on %. The I1-uniform
translation H-planes are just the finite translation planes, and it is
well known that such planes have elementary abelian translation
groups. Since the order of the translation group of such a plane
equals 7%, the number of points in the plane, the theorem is satisfied
with j =1 =Fk, and %k, = 0. Now let A be an n-uniform translation
H-plane with » > 1. By the induction hypothesis, "'T is the direct
sum of 2xk, cyclic subgroups of order p’ and of 2xk, cyclic subgroups
of order p*' for suitable k,, k., 7. We may assume j >0, %k, >0. Let
o be the dilatation of A defined by (8o = pg for all e T. By
Lemma 2.4, Image (0)="0 for some ¢ < n. If 1=0, T is elementary
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abelian. The theorem is then satisfied with j=1, k,=n, k, =0, since
the number of points in A is 7*".

Henceforth, we assume ¢ > 0. Since ¢ <n, we may apply the
induction assumption to ‘T and conclude that 7 is a p-group even
for 1+ 0. If 7+ 0, Lemma 2.4 implies that p(*™'T) = ‘'T. Then
1T is the direct sum of 2xk, cyclic subgroups of order p~ and 2k,
cyclic subgroups of order 2°.

Now o(*T) = p*-0('T), and o(T) = p*-0(*~*T). Thus, letting o*
denote the restriction of o to "'T, we see that Ker (¢*) and Ker (o)
have the same order. Then T and *'T both have the same number
k = 2x(k, + k,) of summands. By counting elements of order p, we
see that, in general, no p-group may have fewer summands than any
of its subgroups. ‘T and ‘T also have k& summands unless j = 1.
Assume 7 =1 so that “'T is the direct sum of 2xk, cyclic subgroups
of order p. Applying the induction assumption to ‘T and observing
that o(*T) = p*-0(*"'T), we see that either

(2.1) T is the direct sum of 2x(k, + 1) cyclic subgroups of
order p,
or

(2.2) ‘T is the direct sum of 2x(k, — 1) cyclic subgroups of
order p and of 22 cyclic subgroups of order p°
Assume that (2.2) is satisfied, and apply the induction assumption to
SR iR ... 2T, Since *'T has more summands than *7, there is
an integer ! such that 0 <1 < n — 1 and “*'*'T is isomorphic to the
direct sum of **'T and of 2x cyclic subgroups of order p. Then
(' T)o = (**'T)o + 0 which contradicts Lemma 2.4. We conclude
that (2.1) is the only possibility for ‘7" when j = 1.

If 7 > 1, applying the induction assumption to ‘7, we see that

(2.3) T must be the direct sum of 2x(k, — 1) cyclic subgroups

of order p* and of 2x(k, + 1) cyclic subgroups of order p’.
Since (2.1) is just a degenerate case of (2.3), we see that (2.3) must
be satisfied whenever T is not elemetary abelian. Then if T is not
elementary abelian, T must contain a subgroup S which is the direct
sum of 2x(k, — 1) cyclic subgroups of order p’ and 2x(k, + 1) cyeclic
subgroups of order p’*'. Since o(T) = o(S), T = S, and the proof is
complete.

We have also proved

LemMmA 2.7. For all m < n, etther ™T s elementary abelian,
or else there exist monnegative integers j, k., k., © such that

(a) ™'T s the direct sum of 2xk, cyclic subgroups of order p’
and of 2xk, cyclic subgroups of order p'*;
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(b) ™T is the direct sum of 2x(k, — 1) cyclic subgroups of order
p and of 2x (k, + 1) cyclic subgroups of order p'*.

We now use Lemma 2.7 to obtain the following improvement
of Theorem 2.6.

THEOREM 2.6A. Let A= J(T,n) be an n-uniform translation
H-plane with invariant r = p* and translation group isomorphic to T.
Then there exist integers l, k with 0 <[ < k and subgroups C; of T
which satisfy the following conditions:

(a) T=CDH---DBCy

(b) for 1 <1, C; is the direct sum of 2x cyclic subgroups of
order p't;

(c) for i>1, C; is the direct sum of 2x cyclic subgroups of
order p’;

(d) forisn=1Fki+1,

0=p"(C.D--DC)D P (Cos D -+ B C)

where q, e are given by n — i =kq+ ¢, 0= e <k.

Proof. By Theorem 2.6, we have that 7 is the direct sum of
2xk, cyclic subgroups of order p’ and 2xk, cyclic subgroups of order
p*t. Set k =k, + k,. Using Lemma 2.7 and Proposition 2.1 (8), it
is easy to see that for m <k,

" =D, @ - DD,

where each D, is the direct sum of 2x cyclic subgroups of order p.
By Lemma 2.4, there exists an integer ¢ such that p’T =T for
all b = ¢. Clearly, ¢ = k. Assume that for some m with 0 < m <
min (k, n — k), there exist subgroups E; of T satisfying

24 ""IT=ED - DOE.DDp..D -+ DDy

(2.5) pE,=D; for 1 £¢=m;

(2.6) each E; is the direct sum of 2x cyclic groups of order p.
Certainly the above requirements are satisfied for m=0. Let {d;:1<
1 < 2x} be a basis for D,.,. Since p("**+*'T)=""T>D,., there
exist e; e ™ T gatisfying pe; = d;. Let E, ., be the group generated
by {e;}. Suppose ¢ is an element of

E,.NED - BE.DDu:® -+ DD .
Then by (2.5),
pe€ Dpiy N (DD ++- D D,) -
Then pe = 0; hence
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eeDm+1ﬂ(D1$." @Dm@Dwﬁz@ A @Dk) .
Then ¢ = 0. We have proved that the sum

E=E1+ e +Em+1+Dm+2+ e +D1c

is direct. We know E C ™ *'T, and Proposition 2.1 (8) implies K =
mHke T, It is now easy to see that (2.4) — (2.6) are all satisfied if
we substitute m + 1 for m.

Proceeding in this manner, we eventually obtain

T=FN®-.---pFr,

where F; is the direct sum of 2z cyclic groups of order pi*' if ¢ <k,
and of 2z cyclic groups of order p’ when 7> k,. The result now
follows from setting | =k, C; = F,,,_; for 1 <1< 1] and C;=Fis111
for I <1 <k. We may assure ! < k by changing the value of j if
necessary.

3. The translation groups of finite Desarguesian affine
H-planes. The reader is referred to Klingenberg [5], [6] or Dembowski
[2] for the definition of Desarguesian and Pappian affine H-planes as
well as for all the results on such planes stated below. We do
repeat the following definition.

DErFINITION 3.1. A Desarguesian H-ring (henceforth abbreviated
to H-ring) is an associative ring with identity which satisfies the
following three conditions:

(a) Every divisor of zero is a two-sided divisor of zero, and the
set N of divisors of zero is an ideal.

(b) Every nondivisor of zero has an inverse.

(e) If »,me N, then there is an he H such that nh = m or
n = mh; and there is a ke H such that kn = m or n = km.

If H denotes an H-ring, then Klingenberg defined [6] an inci-
dence structure >, (H) as follows: points are left “homogeneous
triples” of elements of H; lines are right “homogeneous triples”; a
point and line are incident if and only if the inner products of their
corresponding triples are zero. Klingenberg proved [6, S 28, S 29,
proof of S 29] that >, (H) is a projective H-plane whose affine
H-planes are all isomorphic Desarguesian affine H-planes with trans-
lation groups isomorphic to H+* @ H*. The affine H-planes belonging to
>, (H) are themselves coordinatizable (in an affine manner) by the
ring H and Klingenberg denotes such an affine H-plane by 3., (H).
Call a projective H-plane P Desarguesian if and only if P is isomorphiec
to 3, (H) for some H-ring H.
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By definition, all affine Desarguesian H-planes are translation
H-planes. The author has proved [3, Theorem 5.4] that all finite
> (H) and hence also all finite >, (H) are n-uniform for various .
Let 3. (H) or >, (H) be n-uniform with invariants =, s, t. Then
o(H) =s =" and o(N) =t = r* (See [3, Lemma 5.1].) It is clear
from [3, Theorem 5.3 and Lemma 5.2 (1)] that o(N%) = »*~% for 1 <
2 < n. In particular, N is nilpotent of degree n. We are now in a
position to state and prove the following algebraic corollary to
Theorem 2.6.

COROLLARY 3.1. Let H be a finite H-ring with radical N. Let
r* denote o(H/N). Then »* is a prime power p°. H™ is the direct
sum of xk, cyclic subgroups of order p° and of wxk, cyclic subgroups
of order p'*' for some nommnegative integers k., k,, j.

Proof. Since H is a finite H-ring, 3, (H) is an n-uniform trans-
lation H-plane. Since »* = o(H/N), r* is the invariant of >, (H);
hence r* is a prime power. The result now follows from Theorem
2.6 and the previous observation that the translation group of >.(H)
is isomorphic to H* P H+.

We remark that W. E. Clark and the author [1] have given an
algebraic proof of Corollary 8.1. Nevertheless, it is interesting that
the corollary should be an immediate consequence of a geometric
theorem.

LEmMMA 3.2. Let H be a finite H-ring with radical N, >, (H)
be n~uniform. Then for each point (c,d) of >, (H), one has *(c, d)=
{c+a,d+b:a,be N~} 0=1<n.

Proof. Let ae N — N* ! pe N7 — N+, We assume 7=
j. Let [z, y] denote the line whose incident points are {(tx, ty): t € H}.
The lines through (0,0) are the lines of the form [z, y]. (See [6,
S23]. Note that [z, y] is a line if and only if not both z, ye N.)
Let [x,y] be a line through (a,b). Then there exists t,e H such
that a = ¢t,x, b = ¢,y; hence xe H— N and t,e N*. Let ue H— N,
we N¥, v=ux"'y+w. Then [u, v] contains (a, b). There are (s—t)r"*
satisfactory pairs u, »; and, since [u, v] = [«/, v] if and only if v’ =
2u, v =zv for a unit 2z, these must give rise to at least "¢ distinct
lines. Then (a, b) €0, 0). Similarly, if j = 4, (a, b) €0, 0). Let X=
{(a, b):a, be N*~}. Then X0, 0). Since | X|=7*=]|%0, 0)], (0, 0)=
X. This yields the result when (¢, d) = (0,0). To obtain the full
result, one merely considers the translation z(c, d) which maps each
point (x, y) to (¢ + x, d + ¥).
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REMARK 38.3. Let H, N, »r* = »°, k, k, be as in Corollary 3.1.
Set b=k, +k,. Let 7 be any nonnegative integer less than »n where
n satisfies N ' %= N” =0. Let ¢, » be the nonnegative integers
which satisfy ¢ = kg + » and » < k. Then (N*%)* is the direct sum
of z(k — ») cyclic subgroups of order p? and of wxr cyclic subgroups
of order pe*.

Proof. Let T= H*@ H*. Let = be the set of lines [z, y]. It
is-clear from [6, S 23] that >\, (H) = J(T, 7). By Lemma 3.2, N*~x
N =%0,0) = ‘T. Then the conclusion follows from Lemma 2.7
and Corollary 3.1.

In [1], W. E. Clark and the author prove the following result:

PROPOSITION 3.4. Let there be given a prime integer P and non-
negative integers x, ki, ks, J, such that x>0 and k,j + k,(j + 1) > 0.
Then there exists a commutative H-ring H with radical N such that
o(H/N) = p° and so that H™ is tha direct sum of xk, cyclic subgroups
of order p’ and of wzk, cyclic subgroups of order pi+'.

Klingenberg proves (See [5] or [2].) that if H is a commutative
H-ring, then >, (H) is Pappian. We then obtain the following
strong converse to Theorem 2.6 as an immediate corollary to Pro-
position 3.4.

COROLLARY 3.5. Let r= 9" ki, k., j be given with k,j-+k.(j+1)>
0, 2 > 0. Then there exists a Pappian affine H-plane with invariant r
whose translation group is the direct product of 2xk, cyclic subgroups
of order p’ and 2xk, cyclic subgroups of order pi+-

Corollary 3.5 says that all translation groups of n-uniform trans-
lation H-planes can be obtained as translation groups of Pappian
H-planes. Actually it says somewhat more: namely, if T is the
translation group of an m-uniform translation H-plane A whose in-
variant is p°, then T can be obtained as the translation group of a
Pappian affine H-plane B whose invariant is p’ where y is any posi-
tive integer such that y|zk, and y|xk,. In particular, one can always
take y = 2 so that A and B will have the same invariant. Also all
translation groups can be obtained as the translation groups of
Pappian affine H-planes whose associated affine planes are of prime
order.
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