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THE TRANSLATION GROUPS OF ^-UNIFORM
TRANSLATION HJELMSLEV PLANES

DAVID A. DRAKE

The purpose of this paper is twofold: first, to determine
the full translation groups for all n-uniform translation affine
Hjelmslev planes for all positive integers n; and second, to
prove that all such groups occur as the full translation
groups of Pappian Hjelmslev Planes.

!• Introduction* For brevity's sake, we introduce the follow-
ing three conventions: Hjelmslev plane will be abbreviated to iϊ-plane;
we will always mean affine (rather than projective) when we write
translation iϊ-plane; and throughout the paper, translation group
will denote the group of all translations. H. Liineburg has previ-
ously defined translation Jϊ-planes [7] and has determined the trans-
lation groups of all uniform translation ίf-planes [7, Satz 8.3]. The
author has defined a class of finite Jϊ-planes called ^-uniform ϋΓ-planes
in such a way that the finite uniform iϊ-planes are just the -̂ -uni-
form H-planes with n — 1 and 2 [3]. In § 2, we prove (see Theorem
2.6.) that only certain groups can occur as translation groups of
^-uniform translation iϊ-planes; and in § 3, we establish the converse.
As algebraic corollaries to the geometric theorem of § 2, we obtain
results on the additive structures of the finite Desarguesian iϊ-rings.
(See Corollary 3.1 and Remark 3.3.). This is possible, because every
Desarguesian iϊ-ring coordinatizes a Desarguesian affine ίf-plane,
because every Desarguesian affine ίΓ-plane is a translation if-plane,
and because every finite Desarguesian iϊ-plane is ^-uniform for some n.

In § 3, we quote a result of W. E. Clark and the author on the
additive structure of finite commutative Desarguesian iϊ-rings; we
use this result to show that all groups permitted by Theorem 2.6
do in fact occur as translation groups of Pappian affine iί-planes.
Then every translation group of an π-uniform translation ϋ-plane A
is isomorphic to the translation group of a Pappian affine iί-plane B.
One may always take B to have the same invariants as A. One
may also always choose B so that its associated ordinary affine plane
has prime order.

2* The translation groups of finite translation iZ-planes* The
reader is referred to P. Dembowski [2] or to the papers in the
bibliography for definitions of affine and projective H-planes. We
will write P ~ Q, g rh h, etc., to mean the point P is neighbor to Q,
the line g is not neighbor to h, etc. Associated with every finite
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afϊine or protective Zf-plane are two invariants denoted by s and t.
We may take t to be the number of lines through a point P which
are neighbor to the line g where (P, g) is an arbitrary flag of the
iϊ-plane; then s + t will denote the total number of lines incident
with P. It is well known that s/t is the order of the ordinary affine
or protective plane associated with the iϊ-plane. (See [4] and [7].)

DEFINITION 2.1. Let P be a point of an if-plane π. We define
P to be the following incidence structure. The points of P are the
points Q of π such that Q ~ P. The lines of P are the nonempty point
sets V — I Π P, I being a line of π. Incidence is given by inclusion.

DEFINITION 2.2. We define a 1-uniform affine (projective) iϊ-plane
to be a finite ordinary affine (projective) plane. We call a finite
affine or projective iϊ-plane n-uniform (n ^ 2) provided that

(a) P is an (n—l)-uniform affine iϊ-plane for each point P i n π.
(b) For each P, every line V is the restriction of the same

number of lines from π.

The following result is part of [3, Proposition 2.2]. The reader
should thoroughly acquaint himself with the content of this pro-
position as it will be used frequently in the rest of the paper.

PROPOSITION 2.1. Let π be an n-uniform projective or a fine
H-plane. Then π satisfies the following properties:

(1) If r = s/t, then s = rn and t = r*"1.
(2) Distinct intersecting neighbor lines of π meet in rι points

for some integer i such that 1 ^ i ^ n — 1.
(3) The dual of (2) holds in π.
(4) If Peh, the number of lines through P which intersect h

in r{ or more points is r%~1 for i — 1, 2, , n.
(5) The dual of (4) holds in π.

We write "P(^i)Q" and read " P is ί-equivalent to Q" to mean P is
joined to Q by exactly r* lines; we write "P(~i)Q" and read "P is
at least ΐ-equivalent to Q" to mean P is joined to Q by r* or more
lines.

(6) (~i) is an equivalence relation on points for ΐ = 0 , 1 , •• ,n.
( 7 ) The following conditions imply 11 Π k \ > 1: R, Q el; R, S e

k; R(^i)Q; Q(~ i + 1)S; i is a nonnegative integer < n.
( 8 ) If P is any point of π, the number of points Q of π such

that Q{~i)P is r2in~i} for i = 1, 2, , n.

In light of Proposition 2.1 (1), an ^-uniform iϊ-plane may be
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thought of as having three invariants r, s, and t. However, s and t
are determined by r and n; and thus, we shall write the invariant
of an π-uniform if-plane π to refer to r. Since r = s/t, the invariant
of π is the order of the ordinary affine or projective plane associ-
ated with π. Next we prove

LEMMA 2.2. Let P, Q, R be points of an n-uniform H-plane which
satisfy P,Q e g; P,R e h; Q,R e k. Further suppose P( = i)Q( = i)R( = i)P,
i < n, and g i- h. Then h η^ k η^ g.

Proof. Proposition 2.1 (5) implies the number of points X such
that Xeg and X(~ί + ΐ)P is r*"1"""1. By (7), any line joining R to
such an X is neighbor to ft, hence not neighbor to g. Then no line
joins R to two such X. By (6), the number of lines joining R to
each such X is r\ Then the number of lines joining R to all such
X is rn~ι = t. Thus all lines through R which are neighbor to h
meet g in points X which satisfy X(~i + 1)P. Then k η^ ft, and by
symmetry k η^ g.

To state the next several lemmas, we need some notation and a
definition. We will write \P to denote {Q: Q(~n - i)P). Thus °P=
{P} and nP is the set of all points of the jff-plane.

DEFINITION 2.3. A mapping σ defined on the point set of an
affine iϊ-plane is called a dilatation if the following condition is
satisfied: P, Q e g; (P)σ eh; g\\h imply (Q)σ e h.

LEMMA 2.3. Let σ be a dilatation of an n-uniform affine H-plane.
Let P, Q, R, T be points such that Q(~j)P(~j)R, T(~j + 1)P, and
(P)σ(=i + j)(Q)σ. Then

(a) (R)σ(=ί + j)(P)σ, and
(b) (T)σ(~i + j + ΐ)(P)σ if ί + j < n.

Proof. Let g be any line through P and Q, h be any line through
P which is not neighbor to g. We first prove the lemma for all
R, Teh such that R(~j)P, T(~j + l)P. We have R, T(~j)Q. Since
hi- g, Proposition 2.1 (7) implies R(=j)Q. Let k be any line through
R ane Q, m be any line through T and Q. By Lemma 2.2, \hΠk\ =
1. Let g\ hr be the lines through (P)σ parallel respectively to g, h;
let k', mr be the lines through (Q)σ parallel respectively to &, m. In
one form of the definition of affine if-planes (See [7] or [3], not [2].),
the following condition is assumed: \hf]k\ = l and k\\kf imply
A n & ' | = l Then also \h' C[k'\ = l. Similarly, \hf C[g'\ = l; and since
m Π g\ > 1, I ra' ΓΊ g' \ > 1. Since ( P ) σ ( ~ i + i)(Q)σ and ft' ^ A;', Pro-
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position 2.1 (7) implies (R)σ(~ i + j)(P)σ. Since m' ~ g' φ hr, the
same argument implies (T)σ(~i+j)(P)σ. We have (R)σ(^i+j)(P)σ,
for otherwise the above argument would yield (Q)σ(~ i-\-j + l)(P)σ.
Next, suppose (T)σ(=i+j)(P)σ. Then since K ̂  g', (T)σ(=ί + j)(Q)σ.
If i + j < n, Lemma 2.2 implies m' η^ g''. By the contradiction, we
conclude that (T)σ(~ i + j + l)(P)σ. To see that the conclusions of
the lemma hold for points R and T on a line h through P such that
h ~ g, we apply the above results, replacing g and Q by g* and Q*
where Q* e g* ̂  g and Q^(~j)P. (The existence of such a point
Q*eg* is assured by Proposition 2.1 (5).)

LEMMA 2.4. Le£ σ be a dilatation of an n-unίform affine H-plane.
Let {P)σ(~ i){Q)σ for nonneighbor points P, Q. Then if k <L n — i,
(n~kP)σ = n-k

Proof. Taking j = 0 in Lemma 2.3 yields (nP)σ c n~i((P)a) and
(n~ιP)σ(Zn-i-1{{P)σ). It follows from Proposition 2.1 (8) that for
each k — 0,1, , n — 1, there exists a point Rk such that Rk(=k)P.
Using induction and Lemma 2.3, we get {n-kP)σ an~i-k{{P)σ) for all
k ^ n — i. If we can prove that the last containment is equality
when k — 0, then another induction proof using Lemma 2.3 will
yield the full conclusion of Lemma 2.4. Thus it suffices to prove
that n-i{{P)σ) c Image (σ).

We let g denote the line joining P and Q; g', the line through
(P)σ which is parallel to g. Let h! be any line through {P)σ not
neighbor to g', and let Rr be any point of hf satisfying R'(~ i)(P)σ.
Let k! be any line joining Rr to (Q)σ. Since (Q)σ(~ ί)(P)σ and
R'{~i){P)σ, R'(~i)(Q)σ. Since h'Φg', R'{=i){Q)σ. If R'(~i+l)(P)σ,
then ft'~flr'; hence k!'<t<h'. If Rf{^i){P)σJ Lemma 2.2 implies k'^h'.
Then in all cases \k' Γϊ h'\ = 1. Let Λ be the line through P which
is parallel to h', k be the line through Q which is parallel to kf.
Then |jfcnfe| = l. It {R} is knh, then {R)σ = R\ To see that
Image (<J) contains points Rf on lines h! ~ g', repeat the above argu-
ment using (in place of g and Q) a line g* through P such that
g* i- g and a point Q* on g* such that Q* ̂  P. Lemma 2.3 implies
(P)σ(= i)(Q*)<7. Since g* rh g, a previous argument implies (#*)' o6 #',
hence (flf*)' ^ /̂ '. (Here (g*)' denotes the line through (P)σ which is
parallel to g*.) Then n~ί((P)σ) c Image (σ), and the proof of the
lemma is complete.

Lemmas 2.3 and 2.4 combine to yield

PROPOSITION 2.5. Let σ be a dilatation of an n-uniform affine
H-plane. Let P(~ j)Q and (P)σ(= i + j){Q)σ for some j < n — i.
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Then for all k ^ n - i, {n~kP)σ = n-Jc-i((P)σ).

The reader is referred to [7] or [2] for the definition of trans-
lation iί-planes and for the results on translation iϊ-planes which
we quote and use below. If π is a set of subgroups (called com-
ponents) of the group T, J{T, π) denotes the incidence structure with
parallel relation defined as follows: the points are the elements of T;
the lines are the right cosets of the components; incidence is given
by inclusion; and lines are parallel if and only if they are cosets of
the same component of π. If A is any translation iί-plane and if
T* is the translation group of A, then T* is abelian and there exist
T, π such that A ~ J(T, π) and Γ* = T. Every element t* of T*
may be defined on T by (x)t* — x + t for all xe T, some fixed te T.
If J(T, π) is an affine JET-plane A and if T is abelian, then A is a
translation iϊ-plane with translation group isomorphic to Γ. Finally,
we note that the invariant of A must be a prime power, since the
ordinary affine plane associated with A is a translation plane.

THEOREM 2.6. Let A be an n-uniform translation H-plane with
invariant r = px and translation group T*. Then there exist non-
negative integers ku k2, j such that T* is the direct sum of 2xk1

cyclic subgroups of order pj and of 2xk2 cyclic subgroups of order pj+1.

Proof. We represent A by J(T, π) where T ~ T*. Let ιT denote
the set of all elements of T in '0. Let τ e ' Γ , r* denote the trans-
lation which adds τ to each element of T. Then all lines connecting
0 and r are "traces" of r*, i.e., are fixed by r*. Then if β e T, all lines
through β parallel to these traces are also traces of r*, hence con-
tain (,β)τ*. Then β(~ n - i)(β)τ*; and if βe 'T, τ + β = (β)τ* e ιT.
Then ^ is a subgroup of T. Let % denote the set of all inter-
sections of *T with components of π. Then "0 is isomorphic to J(*T, ιπ).
Since A is n-uniform, *Ό is an ΐ-uniform affine £Γ-plane; since ιT is
an abelian group, 40 is a translation ίί-plane.

We prove the theorem by induction on n. The 1-uniform
translation iϊ-planes are just the finite translation planes, and it is
well known that such planes have elementary abelian translation
groups. Since the order of the translation group of such a plane
equals r2, the number of points in the plane, the theorem is satisfied
with j — 1 = kι and k2 = 0. Now let A be an n-uniform translation
iί-plane with n > 1. By the induction hypothesis, "v~ιT is the direct
sum of 20^! cyclic subgroups of order pj and of 2xk2 cyclic subgroups
of order pj+1 for suitable ku k2, j . We may assume j > 0, kx > 0. Let
σ be the dilatation of A defined by (β)σ = pβ for all βe T. By
Lemma 2.4, Image (α^^O for some i < n. If ΐ = 0, T is elementary
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abelian. The theorem is then satisfied with ;/ = l, kt = n, k2 = 0, since
the number of points in A is r2n.

Henceforth, we assume ί > 0. Since i <n, we may apply the
induction assumption to *"Γ and conclude that T is a p-group even
for iΦO. It i Φ 0, Lemma 2.4 implies that p{n~ιT) == ί-1Γ. Then
ί - 1 Γ is the direct sum of 2xkx cyclic subgroups of order p3'*1 and 2#&2

cyclic subgroups of order pj.
Now oCΓ) = p^-o^T), and o(Γ) = p2x-o{n~ιT). Thus, letting σ*

denote the restriction of σ to n~ιT, we see that Ker (σ*) and Ker (σ)
have the same order. Then T and n~ιT both have the same number
k — 2x{kγ + k2) of summands. By counting elements of order p, we
see that, in general, no p-group may have fewer summands than any
of its subgroups. ιT and ι~ιT also have k summands unless j = 1.
Assume j =1 so that ι~ιT is the direct sum of 2xk2 cyclic subgroups
of order p. Applying the induction assumption to *Γ and observing
that o{ιT) = p^-o^T), we see that either

(2.1) {T is the direct sum of 2x(k2 + 1) cyclic subgroups of
order p,
or

(2.2) iT is the direct sum of 2x(k2 — 1) cyclic subgroups of
order p and of 2x cyclic subgroups of order p2.
Assume that (2.2) is satisfied, and apply the induction assumption to
i+1T, i+2T, •• ,%~277. Since n~ιT has more summands than % there is
an integer I such that 0 ^ I < n — 1 and i + ί + 1Γ is isomorphic to the
direct sum of i+ιT and of 2x cyclic subgroups of order p. Then
(i+ι+1T)σ = (i+ιT)σ Φ 0 which contradicts Lemma 2.4. We conclude
that (2.1) is the only possibility for ιT when j = 1.

If j > 1, applying the induction assumption to <27, we see that
(2.3) *T must be the direct sum of 2x(kλ — 1) cyclic subgroups

of order p i - 1 and of 2x(k2 + 1) cyclic subgroups of order pj.
Since (2.1) is just a degenerate case of (2.3), we see that (2.3) must
be satisfied whenever T is not elemetary abelian. Then if T is not
elementary abelian, T must contain a subgroup S which is the direct
sum of 2x(k1 — 1) cyclic subgroups of order pj and 2x(k2 + 1) cyclic
subgroups of order p3+1. Since o(T) = o(S), T = S, and the proof is
complete.

We have also proved

LEMMA 2.7. For all m ^ n, either mT is elementary abelian,
or else there exist nonnegative integers j , kl9 k2, x such that

(a) m~ιT is the direct sum of 2xkx cyclic subgroups of order p3

and of 2xk2 cyclic subgroups of order p3+1;
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(b) mT is the direct sum of 2x(kL — 1) cyclic subgroups of order
pj and of 2x (k2 + 1) cyclic subgroups of order pd+1.

We now use Lemma 2.7 to obtain the following improvement
of Theorem 2.6.

THEOREM 2.6A. Let A — J(T, π) be an n-uniform translation
ΈL-plane with invariant r = p% and translation group ίsomorphic to T.
Then there exist integers I, k with 0 ̂  I < k and subgroups Ci of T
which satisfy the following conditions:

( a ) Γ=C 1 0.. .0C i ;
(b) for i iί I, Ci is the direct sum of 2x cyclic subgroups of

order pj+1;
( c ) for i > I, Ci is the direct sum of 2x cyclic subgroups of

order p3;
(d) for i <z n — kj Λ- I,

*0 = ?>«+1 (Ci Θ Θ Q Θ 2>' (Cβ+1 0 0 Ck)

where q, e are given by n — i = kq + e, 0 ̂  e < k.

Proof. By Theorem 2.6, we have that T is the direct sum of
2xkt cyclic subgroups of order pj and 2xk2 cyclic subgroups of order
pj+1. Set k = kx + k2. Using Lemma 2.7 and Proposition 2.1 (8), it
is easy to see that for m ̂  k,

where each Di is the direct sum of 2x cyclic subgroups of order p.
By Lemma 2.4, there exists an integer c such that pbT = b~cT for
all b ̂  c. Clearly, c = k. Assume that for some m with 0 <£ m <
min (fc, n — k), there exist subgroups 2^ of Γ satisfying
(2.4) " + f c Γ = ^ 1 © . . . 0 £ ? m 0 Z ) 1 I I + 1 © . . . © i ) Λ ;
(2.5) p ^ = Di for 1 ̂  i £ m;
(2.6) each E{ is the direct sum of 2x cyclic groups of order p\
Certainly the above requirements are satisfied for m=0. Let {d^ 1 ^
ί^2x} be a basis for Dm + 1. Since p(m+k+1T) = m+ίT ^ Dm+1, there
exist e iG

m+fe+1Tr satisfying pe{ = d̂ . Let J5W+1 be the group generated
by {βj. Suppose β is an element of

Em+1 Π ( ^ θ © Em 0 ΰ m + 2 © ...

Then by (2.5),

pe 6 Dm+1 n (A 0 0 Dm) .

Then pe = 0; hence
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e e Dm+ι Π ( A Θ Θ Dm θ Dm+2 © ® Dk) .

Then e = 0. We have proved that the sum

# = Ex + + # m + 1 + D m + 2 + + Dk

is direct. We know Eam+k+1T, and Proposition 2.1 (8) implies E =
m+fe+1T. It is now easy to see that (2.4) - (2.6) are all satisfied if
we substitute m + 1 for m.

Proceeding in this manner, we eventually obtain

T - F, 0 0 Fk

where Fi is the direct sum of 2x cyclic groups of order pj+1 if i ^ k2

and of 2x cyclic groups of order pj when i > &2. The result now
follows from setting I — k2, d = Fi+1^i for 1 <̂  £ <j £ and Cί = jpτ

fc+z+i_i
for £ < £ !g h. We may assure £ < k by changing the value of j if
necessary.

3* The translation groups of finite Desarguesian affine
ίt-planes* The reader is referred to Klingenberg [5], [6] or Dembowski
[2] for the definition of Desarguesian and Pappian affine iJ-planes as
well as for all the results on such planes stated below. We do
repeat the following definition.

DEFINITION 3.1. A Desarguesian iί~ring (henceforth abbreviated
to iJ-ring) is an associative ring with identity which satisfies the
following three conditions:

(a) Every divisor of zero is a two-sided divisor of zero, and the
set N of divisors of zero is an ideal.

(b) Every nondivisor of zero has an inverse.
(c) If n, mG N, then there is an he H such that nh = m or

n — mh; and there is a k e H such that kn — m or n — km.
If H denotes an iϊ-ring, then Klingenberg defined [6] an inci-

dence structure Σ* (H) a s follows: points are left "homogeneous
triples" of elements of H; lines are right "homogeneous triples"; a
point and line are incident if and only if the inner products of their
corresponding triples are zero. Klingenberg proved [6, S 28, S 29,
proof of S 29] that ΣP (H) is a protective if-plane whose affine
fF-planes are all isomorphic Desarguesian affine iJ-planes with trans-
lation groups isomorphic to H+ 0 H+. The affine H-planes belonging to
Σ P (H) are themselves coordinatizable (in an affine manner) by the
ring H and Klingenberg denotes such an affine iϊ-plane by Xα (H).
Call a projective iϊ-plane P Desarguesian if and only if P is isomorphic
to Σ P (H) for some ίf-ring H.
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By definition, all affine Desarguesian £Γ-planes are translation
iϊ-planes. The author has proved [3, Theorem 5.4] that all finite
Σ? (H) and hence also all finite Σα (H) are ^-uniform for various n.
Let Σα (H) or Σ P (H) be ^-uniform with invariants r, s, t. Then
o(H) = s = rn and o(AΓ) = t = r*"1 (See [3, Lemma 5.1].) It is clear
from [3, Theorem 5.3 and Lemma 5.2 (1)] that oCΛF) = r*"* for 1 ^
i <s w. In particular, N is nilpotent of degree n. We are now in a
position to state and prove the following algebraic corollary to
Theorem 2.6.

COROLLARY 3.1. Let H be a finite H-ring with radical N. Let
r* denote o(H/N). Then r* is a prime power px. H+ is the direct
sum of xkι cyclic subgroups of order pj and of xk2 cyclic subgroups
of order pj+1 for some nonnegative integers kly k2, j .

Proof. Since H is a finite H-ring, Σα (H) is an ̂ -uniform trans-
lation iϊ-plane. Since r* — o(H/N), r* is the invariant of Σα (H);
hence r* is a prime power. The result now follows from Theorem
2.6 and the previous observation that the translation group of Σα(-BΓ)
is isomorphic to H+ 0 H+.

We remark that W. E. Clark and the author [1] have given an
algebraic proof of Corollary 3.1. Nevertheless, it is interesting that
the corollary should be an immediate consequence of a geometric
theorem.

LEMMA 3.2. Let H be a finite H-ring with radical N, Σα (H)
be n-uniform. Then for each point (c, d) of Σα (H), one has \c, d) —
{(c + a,d+ b): a, be N71'1}, 0 ̂  ΐ < n.

Proof. Let a e Nn-* - Nn"i+\ b e Nn~j - Nn~''+1. We assume i ^
j . Let [x, y] denote the line whose incident points are {(tx, ty):teH}.
The lines through (0, 0) are the lines of the form [x, y]. (See [6,
S23] Note that [x, y] is a line if and only if not both x,yeN.)
Let [x, y] be a line through (a,b). Then there exists tQeH such
t h a t a = tox, b = toy; h e n c e xeH — N a n d t0 e Nn~\ L e t ueH - N,
weN\ v = ux~ίy+w. Then [u, v] contains (α, b). There are (s — ί)rn"*
satisfactory pairs u, v; and, since [u, v] = [u\ v'] if and only if vf =
zuj v' = zv for a unit z, these must give rise to at least rn~ι distinct
lines. Then (α, b) e *(0, 0). Similarly, if j ^ i, (α, b) e 5'(0, 0). Let X=
{(α, δ):α, δe-ΛΓ-*}. Then JSΓc*(O, 0). Since |X |-r 2 i H*(0, 0)|, *(0, 0) =
X. This yields the result when (c, d) = (0, 0). To obtain the full
result, one merely considers the translation τ(c, d) which maps each
point (x, y) to (c + x, d + y).
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REMARK 3.3. Let if, N, r* = p*, kly k2 be as in Corollary 3.1.
Set k — k1

Jr k2. Let i be any nonnegative integer less than n where
n satisfies Nn~x Φ Nn = 0. Let g, r be the nonnegative integers
which satisfy i = kq + r and r < k. Then (Nn~*)+ is the direct sum
of x(k — r) cyclic subgroups of order pq and of xr cyclic subgroups
of order pq+1.

Proof. Let T = H+@H+. Let TΓ be the set of lines [x, y\. It
is clear from [6, S23] that Σα (H) = J(T, π). By Lemma 3.2, JV^x

Nn~i = »^ 0^ = ίΓ# T h e n t h e c o n c i u s i o n follows from Lemma 2.7

and Corollary 3.1.
In [l], W. E. Clark and the author prove the following result:

PROPOSITION 3.4. Let there be given a prime integer p and non-
negative integers x, ku k2, j, such that x > 0 and kj + k2(j + 1) > 0.
Then there exists a commutative H-ring H with radical N such that
o(H/N) = px and so that H+ is tha direct sum of xkγ cyclic subgroups
of order pj and of xk2 cyclic subgroups of order pj+1.

Klingenberg proves (See [5] or [2].) that if H is a commutative
iJ-ring, then Σ α (H) is Pappian. We then obtain the following
strong converse to Theorem 2.6 as an immediate corollary to Pro-
position 3.4.

COROLLARY 3.5. Let r = px,k1,k2,j be given with kj + k2(
0, x > 0. Then there exists a Pappian affine H-plane with invariant r
whose translation group is the direct product of 2xkλ cyclic subgroups
of order pj and 2xk2 cyclic subgroups of order pj+u

Corollary 3.5 says that all translation groups of ^-uniform trans-
lation ίf-planes can be obtained as translation groups of Pappian
ίf-planes. Actually it says somewhat more: namely, if T is the
translation group of an ^-uniform translation ff-plane A whose in-
variant is px, then T can be obtained as the translation group of a
Pappian afRne iϊ-plane B whose invariant is py where y is any posi-
tive integer such that y \ xkt and y \ xk2. In particular, one can always
take y — x so that A and B will have the same invariant. Also all
translation groups can be obtained as the translation groups of
Pappian affine iJ-planes whose associated affine planes are of prime
order.
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