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RINGS OF QUOTIENTS AND π-REGULARITY

R. M. RAPHAEL

Throughout this paper rings are understood to be com-
mutative with 1, and subrings are understood to have the
same identity as their over-rings. Familiarity with the
Utumi-Lambek concept of complete ring of quotients Q(R),
of a commutative ring R, is assumed. Q(R) is commutative
and it contains a copy of the classical ring of quotients of
R (denoted Qci(R)), obtained by localizing R at its set of
nonzero-divisors. Any ring lying between R and Q(R) is
called a ring of quotients of R. R is π-regular if for r e R
there exists r1 e R and a positive integer n such that rn =
(rn)2rf. This paper investigates the question: if Q(R) is π-
regular, under what conditions are all rings of quotients of
R π-regular?

The characterization obtained is applied to the case of semiprime
rings. Examples are given, followed by some results directed at the
problem of characterizing internally those rings R for which Q{R) is
π-regular. The author is indebted to the referee for posing the latter
question, and for his criticisms. The terminology and notation are
consistent with Lambek's Lectures on Rings and Modules.

PROPOSITION 1. (Bourbaki-Storrer, [(6, 5.6), (l, p. 173,16(d))]. //
R is a commutative ring then the following are equivalent:

(1) R is π-regular,
(2) R/rad R is regular, where rad R is the prime radical of R,
(3) all prime ideals of R are maximal ideals.

COROLLARY 2. A semiprime π-regular ring is regular.

Let R be a ring and let S be an over-ring of R. An element
s of S is called integrally dependent on R if there exist elements
r0, n, , rn_j. in R such that sn + rn^sn~ι + . . . + rxs + r0 = 0. The
set of all elements of S which are integrally dependent on R is a
ring called the integral closure of R in S, and if this is all of £
then S is called an integral extension of R.

PROPOSITION 3. [7, p. 259]. Let R, S be rings, S an integral
extension of R. If P is a prime ideal of S, P is maximal in S if
and only if P Π R is a maximal ideal in R.

DEFINITION 4. A ring is classical if it coincides with its classical
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ring of quotients. Equivalently, each of its elements is a unit or a
zero-divisor.

LEMMA 5. A π-regular ring is a classical ring.

Proof. Let r be a nonzero-divisor in R, a 7Γ-regular ring. Then
there exists rf e R and an integer n such that r w ( l - r V ) = 0. Since
r does not divide zero, neither does f so 1 - rnrf = 0 which shows
that r is a unit.

The main result*

PROPOSITION 6. Let R be a commutative ring with complete
ring of quotients Q(R) which is π-regular. The following are equiva-
lent:

(1) Q(R) is integral over R,
(2) every ring of quotients of R is π-regular,
(3) every ring of quotients of R is classical,
(4) R[q] is π-regular for all qeQ(R),
(5) R[q] is classical for all qeQ(R),
(6) the units of Q(R) are integral over R.

Proof. Clearly (2) =* (4) => (5) and (2) =* (3) => (5). (1) => (2). If
S is a ring of quotients of R, then S is integral over R. Any
prime ideal of S contracts to a prime ideal of R which is maximal
in R by Proposition 1. Thus by Proposition 3 all prime ideals in S
are maximal and by Proposition 1, S is π-regular.

(5)=>(6). Let g ba a unit in Q(R) with inverse qf. Since R[q]
is classical q is either a zero-divisor or a unit in R[q\. If it were
a zero-divisor in R[q] then it would be both a unit and a zero-divisor
in Q(R), an impossibility. Thus qr lies in R[q], and q'= rnq

n + ••• +
rxq + r0 for some r{ e R, i = 0, 1, , n. Now 1 = qq' — rnq

n+1 + +
rxq

2 + roq. If one multiplies both sides of the equation by (q')n+1

and transposes one obtains the equation (q')n+L — rQ{qf)n — r1(q')n~ι—
— rn^{qr) — rn = 0 which shows that qr is integrally dependent on R.
Since every unit is the inverse of a unit (6) is established.

(6) => (1). Let q e Q{R) Since Q{R) is π-regular there is a q' e Q{R)
such t h a t qn = (qn)2qr. Let e = qnq', u — qn + 1 — qnqr. One verifies

immediately that e = e2, that u is a unit with inverse u~ι = qn(qf)2-\-
1 — qnqf and that qn = ue. Now e is integral over R, and by (6) v,
is, so qn is integral over R, which implies in turn that q is integral
over R.
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PROPOSITION 7. [4, p. 42]. Let R be a semiprime ring. Then
Q{R) is regular.

PROPOSITION 8. Let R be semiprime and let Q(R) be its complete
ring of quotients. Then the following are equivalent:

(1) Q(R) is integral over R,
(2) all rings of quotients of R are regular,
(3) all rings of quotients of R are classical.

Proof. Q(R) is regular so by Proposition 6, (2)=>(3)=>(1). (1)=>
(2). Let S be a ring of quotients of R. Q(R) is semiprime so S is
as well. By Proposition 6, S is τr-regular. Therefore by Corollary
2, S is a regular ring.

EXAMPLE 9. Boolean rings. A ring is Boolean if each element
is idempotent. Thus a Boolean ring is regular. Rings of quotients
of Boolean rings are discussed in [3, 2.4] where it is shown that a
Boolean ring coincides with its complete ring of quotients if and only
if it is complete when viewed as a partially ordered set. Further-
more the complete ring of quotients of a Boolean ring is Boolean.
Thus if R is a non-complete Boolean algebra, Q(R) is a proper ex-
tension of R, which clearly satisfies condition (1) of Proposition 8.

EXAMPLE 10. In Fine-Gillman-Lambek [2, 4.3] the rings QL(X)
and QF(X) are introduced and it is shown that the former is the
complete ring of quotients of the latter. To realize QL{X) one con-
siders the set of all locally constant continuous real-valued functions
whose domains of definition are dense open subsets of a completely
regular Hausdorff space X, and divides out by the equivalence relation
which identifies two functions which agree on the intersection of
their domains. QF(X) is the subring determined by the functions
with finite range. QF(X) is regular. It is not difficult to see that
the two rings differ if X is the real field in its usual topology.

Let g e QL(X) and suppose that gn + gn~fn-ι + + /0 = 0 for
some fi G QF(X), i = 0, 1, , n — 1. We may assume that all the
functions are defined on the domain D given by the intersection of
their individual domains. Each f is defined on a finite clopen partition
Πi of D, on the elements of which it is fixed. Let 77 be the common
refinement of the 77̂ . Then 77 is finite and each f{ is fixed on the
elements of Π. Since g must satisfy the above polynomial it can
assume only a finite number of different values on a given element
of 77. Thus g restricted to D has finite range and therefore lies in
QF(X). Thus the elements of QL(X) — QF(X) are not integral over
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QF(X). Thus we have examples of regular rings for which the con-
ditions of Proposition 8 fail.

Proposition 6 demands the τr-regularity of Q(R) thus raising the
question: for which rings is the complete ring of quotients ττ-regular?
In the Noetherian case the classical ring of quotients is Noetherian
and it coincides with the complete ring of quotients. Thus [6, 5.5
and 5.7] the complete ring of quotients is π-regular if and only if it
is Artinian. Furthermore Small [5] has shown that a Noetherian
ring R has Artinian classical ring of quotients if and only if R
satisfies the following 'regularity' condition: if f is not a zero-divisor
in jβ/rad R, then r is not a zero-divisor in R. We examine the
question of Q(i2)'s π-regularity in the light of this condition. By R
and Q(R) we denote i?/rad R and Q(J?)/rad Q(R) respectively. The
following diagram (with the obvious maps) is commutative

R >Q(R)

R >Q(R)

and R —• Q(R) is a monomorphism since rad (Q(R)) Π R = rad R.

LEMMA 11. // Q{R) is π-regular and rad R is nilpotent then R
satisfies the regularity condition.

Proof. Let f be a nonzero-divisor in R. If f is a zero-divisor
in Q(R), then there exists s e Q(R)\raά Q(R) such that rs e rad Q(R).
There is a dense ideal D in R such that sD c R. Suppose that
sDczR. Since rad R is nilpotent, (rad R)k = (0) for some integer
k. Thus skDk = (0). But Dk is dense so sk = 0, contradicting the
fact that s ί rad Q{R). Thus there exists d e D such that sd e R\(rsiάR).
Now r(sd) e rad R contradicting the fact that r is not a zero-divisor
in R. Thus r is a nonzero-divisor in Q{R). But Q(R) is regular by
Proposition 1, so r is invertible in Q(R). Thus there is a qeQ(R)
such that rq — leradQ(iϋ), from which it is easy to see that r is
a unit in Q(R), and therefore not a zero-divisor in R.

LEMMA 12. If rad R is nilpotent then Q(R) is a ring of quotients
of R. Furthermore if R satisfies the regularity condition then Q(R)
contains QC1(R).

Proof. Let q be a nonzero element of Q(R). qDaR, for some
dense ideal D of R. Suppose that qD c rad R. There exists an
integer k such that (rad R)k = (0) so qkDk = (0) yielding qk = 0, a
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contradition. Thus there is a d e D such that qd e iϋ\rad R yielding
qd Φ 0 in R, and Q(R) is a ring of quotients of R. [4, p. 46 no. 5].

If the regularity condition holds and r is a nonzero-divisor in
R, then r is a nonzero-divisor in R and rq = 1 for some qeQ(R).
But then rg = ϊ showing the nonzero-divisors in R have inverses in
Q(R). Thus QCB) 3 Q^CR).

PROPOSITION 13. If rad J? is nilpotent and Qa(R) — QCβ) ίAew
Q(R) is π-regular if and only if R satisfies the regularity condition.

Proof. Lemma 11 gives one implication. If QCι(R) = Q(R) then
by Lemma 12 Q(R) = Q(S). But Q(R) is regular by Proposition 7.
Thus by Proposition 1, Q(R) is π-regular.

The above proposition applies to the Noetherian case. More
generally if R is commutative with maximum condition on annihilatar
ideals then:

( a) rad R is nilpotent [3]
(b) R satisfies the maximum condition annihilator ideals [5,

1.16], and
(c) Q{R) = QCι{R), [4, p. 114, 5(g)].
By condition (b), condition (c) also holds for the ring R. This

together with condition (a) makes Proposition 13 meaningful for these
rings as well.

REFERENCES

1. N. Bourbaki, Algebra Commutative, Chapitres 1, 2. Paris: Herman 1961.
2. Fine, Gillman, and Lambek, Rings of Quotients of Rings of Continuous Functions,
Montreal, McGill University Press, 1965.
3. Herstein and Small, Nil rings satisfying certain chain conditions, Canad. J. Math.,
16 (1964), 771-776.
4. J. Lambek, Lectures on Rings and Modules, Waltham, Toronto, London: Blaisdell,
1966.
5. Small, Orders in Artinian Rings, J. Algebra, 4 (1966), 13-41.
6. H. H. Storrer, Epimorphism en von kommutativen Ringen, Comm. Math. Helv.,
4 3 (1968), 378-401.
7. Zariski and Samuel; Commutative Algebra, 1. Van Nostrand, 1958.

Received May 12, 1970. Based partially on a thesis supervised by J. Lambek at
McGill University with N.R.C. support.

DALHOUSIE UNIVERSITY AND SIR GEORGE WILLIAMS UNIVERSITY






