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ZERO DIVISORS IN DIFFERENTIAL RINGS

HowArD E. GORMAN

Let R be a commutative ordinary differential ring with 1.
Let A be a commutative differential R-algebra satisfying the
ascending chain condition on radical differential ideals. Let
M be a differentially finitely generated R-module. We obtain
the following results on the zero divisors of 4 and M in R.
(i) If R satisfies the ascending chain condition on radical
differential ideals and if A has zero nilradical, then the
assassinator of A in R is finite and consists of differential
ideals; it is contained in the support of A in R, and the
minimal members of each set comprise exactly the minimal
prime ideals which contain the annihilator of A in R; (ii) If
R < A and I is a radical differential ideal of A, then we
obtain the assassinator of A/l in R from the assassinator of
A/l in A by intersecting with R; (iii) If R is noetherian,
then the set of zero divisors of M in R is a urnique union of
prime differential ideals of R, each of which is maximal
among annihilators in B of nonzero elements of M; (iv) If [
is the annihilator or power annihilator of M in E, then any
prime ideal of R minimal over I is the annihilator of a
nonzero element of /. In the above, (iii) and (iv) require an
additional hypothesis to be made explicit later.

These results (except (ii)) are well known for finite modules over
mnoetherian rings.

2. Preliminaries. In what follows, all rings are commutative
and all modules are unitary. R will always be a differential ring
with 1, with fixed derivation denoted by “’”. By a diferential
module M over R, one means an R-module M together with an addi-
tive map from M to M, again denoted by “’ 7, which satisfies (rm) =
rm + rm’ for each re R and me M. If x<c M, the successive deriva-
tives of x will be denoted by «, %", ---, 2™, .--. By a differential
algebra A over R, one means a differential module A which is a ring
and for which the module derivation is a ring derivation. By an
ideal of A, we always mean an algebra ideal.

Let M be any R-module and TS M a subset. We denote the
zero divisors of T in R by 2%(T) and the annihilator of T' in R by
A(T). The assassinator of M in R, written Assp M, is the set of
prime ideals of R which are the annihilators of nonzero elements of
M. The support of M in R, written Supp, M, is the set of prime
ideals P of R such that M, == 0.

Now let R be a differential ring and M a differential R-module.
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Denote by [T]/R the smallest differential submodule of M containing
T. We call M d-finttely generated if there exists n =0 and =z, ---,
z, in M such that M = [«,, ---, 2,]/R.

Let S < R be a multiplicatively closed set with 0¢ S. Then the
derivations on B and M extend by the usual quotient formula to
make M, into a differential R,-module. (See [2; Lemma 1].)

Assume, in addition, that M is a differential R-algebra. Denote
by {T}/M the smallest radical differential ideal containing 7. The
following fact is a trivial consequence of [5; Lemma 1.3]. Let Rad
M =0 (i.e., M has zero nilradical), and let T be a subset of either
R or M. Then .(T) and .97,(T) are radical differential ideals.

3. The assassinator. We begin by stating the first main theorem.

THEOREM 1. Let R be a differential ring and A a differential
R-algebra. Let R and A satisfy the ascending chain condition omn
radical differential ideals, and let Rad A = 0. Then Ass, A is finite,
consists of differential prime ideals, and is contained in Supp, A.
The minimal members of each of these sets are the same and coincide
with the prime ideals of R minimal over .;(A).

Before proving Theorem 1, we need a series of lemmas.

Lemma 1. Let R be a differential ring satisfying the ascending
chain condition on radical differential ideals. Let A be a monzero
differential R-algebra with Rad A = 0. Then Ass, A #+ &.

Proof. For any nonzero ac€ A, Z%(a) is a proper, radical differen-
tial ideal of B. By hypothesis, there are ideals of R maximal among
annihilators of nonzero elements of A. That these ideals are prime
is well known [4; Theorem 6].

LEMMA 2. Let R be a differential ring, and let M be a differential
R-module. Let T be a subset of M, and suppose that .o7(T) is a
differential ideal. Then:

(1) o4(T) = 4(T]/R);

(i) of M s a differential R-algebra, then 7,(T) = 7 (T]1/M);
iof, in addition, Rad M = 0, then 7(T) = (T} M).

Proof. Let ye . o(T). Then, since 2y’ + 2’y = 0 for any 2¢ T,
and ¥’ € .9%(T), we see that 2’y = 0. Hence, ¢y + 2’y = 0. The
above argument applied to ¥’ instead of to y would have resulted
in 'y’ = 0. Hence 2"y = 0. Continuing in this way, we see that
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¥y = 0 for each nonnegative integer k. Now since an arbitrary
element of [T']/R has the form > ; a;,x;, and an arbitrary element
of [x]/M (when M is an R-algebra) has the form >; ; b2 + >.; ;c;;%;%,
for b;;€ M and a;;, ¢;;€ R, for every ¢ and j, we see that .o74(T) &
([T]/R) and 24(T) =& %([T]/M). Since the opposite inclusions
are clear, we have equality.

Now assume that M is an R-algebra and that Rad M = 0. By
the above, we will be through once we show that o4([T]/M)<
(T M), Now 7 ((T1/M)) is a radical differential ideal of
M. Since it contains T, it contains {T}/M; i.e., {T}/M annihilates
([T]/M); therefore, .oz ([T]/M) annihilates {T}/M. This completes
the proof.

LEMMA 3. Let R be a differential ring, and let A be a differential
R-algebra satisfying the ascending chain condition on radical differential
ideals, and such that Rad A = 0. Let P be a prime ideal of R con-
taining x(A). Then Pec Supp; A.

Proof. Since A satisfies the ascending chain condition on radical
differential ideals, there must be a,, -++,a, in A such that A = {a,,
«e+, a,}/A. Suppose that A, = 0. Then there are s;e€¢ R — P such
that s,a; = 0 for each 7. Let s = [[i-,s;- Then sa; = 0 for each 1.
Since Rad 4 = 0, 2°,(s) is a radical differential ideal of A containing
each a;, and so must equal A. But then sA = 0; i.e., s€ .%%:(A), which
contradicts s¢ P. This completes the proof.

LEMMA 4. Let R be a differential ring satisfying the ascending
chain condition on radical differential ideals, and let A be a differential
R-algebra with Rad A = 0. Then Ass, A < Suppy A, and each member
of Suppr A contains a member of Assp A. In particular, both sets
have the same minimal elements.

Proof. That Ass, A < Suppr, A is just [1; §1, °3, Prop. 7()].
Now let Qe Suppr, A. Then A, # 0 as an R,-algebra. By Lemma 1,
Assg, (o) # ©@. Let P e Assg, (4y) with P, = 2%, (a/1). Since Rad
(4,) =0, P, is a differential ideal. Let P = {rel|r/le P}. Then Pis
a prime differential ideal of R and P < Q. We claim that Pe Ass, A.
By hypothesis, P = {p,, -+, p,}/R for some p, ---, p,€ R. Since p;a/l
= 0, there are s;€ R — P such that p;s;a = 0 for each ¢. Hence, if
s = [I~, s; »: € Zx(sa) for each 4. Since Z%(sa) is a radical differential
ideal of R, PZ Z%(sa). On the other hand, if xze 2%(sa), then
za/l = 0; i.e., x/l1e P;; i.e., € P. Hence P = Z5(sa) c Ass; A, and we
are done.
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LEMMA 5. Let R be a differential ring, and let A be a differential
R-algebra satisfying the ascending chain condition on radical differential
ideals. Assume that Rad A =0. Then A has a normal series

A=A, DAD--24,=0

where

(i) A, is a radical differential ideal of A for each 1;

(i) %(A4i_JA) = Assy (A;_/A,) for each i, and both consist of @
single prime differential ideal P; of R.

Proof. Let B # A be a radical differential ideal of A. Then A/B
is a differential R-algebra satisfying the ascending chain condition
on radical differential ideals, and Rad (4/B) = 0. Since A/B # 0, we
are guaranteed by Lemma 1 that there exists in Ass; (4/B) a differ-
ential prime ideal P = 2%(x)(x € A/B and nonzero) which is maximal
among the annihilator of nonzero elements of A/B. Let B, = o~({x}/
(A/B)) where @ is the canonical homomorphism of A onto A/B. Then
B, is a radical differential ideal of A, B < B, and B,/B = {x}/(A/B) so
that .,(B,/B) = P by Lemma 2. Now suppose that Q<€ Assz(B,/B).
Then @ = 25(b) for some b, ¢ B,/B. Since Pb, = 0, P = Q; hence, by
the maximality of P, P= @ and Ass (B,/B) consists of the single
prime P.

Starting with B = 0 and using the above method, we construct
an increasing chain of radical differential ideals of A satisfying the
conclusions of the lemma. By hypothesis, this chain must stop; i.e.,
at some stage, B, = A, and we are done.

Proof of Theorem 1. We follow the notation of Lemma 5. By
[1; §1, °1, Prop. 3],

Ass, A S UL, Assy, (A JA) = Py, »++, P}

so that Assp A is finite and consists of differential ideals. By Lemma
4, Assp, A = Suppr 4, and each has the same minimal elements. (In
fact, since P; e Suppr(A;_,/A;) by Lemma 4 and since 0 # (4;_./4:)», =
(Ai—)r,/(A))p, each P;eSupp, A;_, & Suppr A.) That these minimal
elements coincide with the prime ideals of R minimal over .o7,(A)
follows from the following two facts: The minimal elements of Ass, A4,
and so of Supp; 4, contain .94(A); the primes minimal over .o%(4)
are members of Supp, A by Lemma 3. This completes the proof.

COROLLARY. Let the hypotheses be as in Theorem 1. Then Supp, A
consists of exactly the prime tdeals of R which contain (A).
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We remark that if R contains the rational numbers and satisfies
the ascending chain condition on radical differential ideals, then any
quotient by a differential ideal of the differential polynomial ring over
R in a finite number of differential indeterminates also satisfies the
ascending chain condition on radical differential ideals.

If we assume that R < A, we get the following result with no
chain condition assumptions on R.

THEOREM 2. Let R be a differential ring contained in the dif-
ferential R-algebra A. Assume that A satisfies the ascending chain
condition on radical differential ideals. Let I be a radical differential
ideal of A. Then: (i) I can be written uniquely as I = N1, P; where
the P; are prime differential ideals of A; (ii) if @Q; = P; N R, then

ASSA(A/I) = {Pu ctcy Pn} and ASSE(A/I) = {Qu ) Qn}‘

Proof. We note that (i) is well known and proved more directly
in [5; Theorem 7.5]. Now A/I, viewed as an A-algebra, satisfies the
hypotheses of Lemma 1 and Theorem 1. Let P,, ---, P, be the unique
elements of Ass, (A/I) minimal over .o7,(A/I). Since 1c A, 7, (4/I) =
I, and since I is a radical ideal, I = N}, P;. This proves (i).

Since the P; are minimal over .97,(4/I), they are minimal members
of Ass, (A/I) by Theorem 1. On the other hand, let P = 2,(a)e
Ass, (A/I), with a,€ A/I. Let ac A be mapped to a,. Then a¢P;
for some j=1,:--,n. But Pe S I < P;, so that P< P;; i.e., P=
P;. Hence Ass, (4/I) = {P,, +++, P,}.

Now let P; = 2°,(a;), a;€ A/I for each 7. Then Q; = P; N R must
be 2%(a;) for each 1; i.e., Q;€ Ass, (A/I).

To complete the proof, we must show that any Qe Ass, (A/I) is
one of the Q;. Localize A and R at Q. Then A, is an R,-algebra
satisfying the hypotheses of the theorem and I, is a radical differen-
tial ideal of A,. Further, I, is a proper ideal of A, for, since IN
R< Q, we seethat (INR), = I, N By & Qg i.e., Ry, & I,. Since each
P; is prime, I, = (N, Py)e = Ni(P;), where we have assumed that
P, ---, P, are exactly those among P,, ..., P, such that (P;), + A,.
Note that » > 0 by Lemma 1 since A,/I, # 0. By the initial argument
in this part of the theorem, Assg, (A¢/Iy) = {(P)e) **+, (P,)g}. Since
Qo S Z7e(AdlIy), Qo S (Pi)o N Ry = (@), for some i. Since @, is maxi-
mal, @, = (®;)¢; i.e., @ = Q;, and the proof is complete.

4. The case for modules. The situation for modules is less
complete. However, under the restriction given below, we can gain
some information about Ass, (M) when M is a d-finitely generated
R-module.
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We say that the differential R-module M satisfies the property (£)
if ideals of R maximal among the ammnihilators of mnomzero elements
of M are differential ideals. We say that M satisfies the property
(%) if M/N satisfies the property (§) for every differential submodule
N of M.

THEOREM 3. Let R be a moetherian differential ring and M a
nonzero, d-finitely gemerated R-module which satisfies the property (£%).
Then Assp M 1is finite.

Proof. The assassinator of nonzero modules over noetherian rings
is never empty. Using the condition (#%) and Lemma 2(i), we modify
the proof of Lemma 5 to prove an analogue of Lemma 5 in which
the A; are replaced by differential R-modules. The result now follows
as in the first part of Theorem 1.

Further progress in this direction is limited by the fact that
prime ideals of R containing .9 (M) need not be in Suppp M. The
correct modification is given in Lemma 7. (For example, let R = Z,
the integers, with the trivial derivation. Let M be generated over
Z/2Z by 1 and the set {z/2"} for n =0,1,2, ---, and have derivation
defined by (x/2") = «x/2"*'. Then M =[1, x]/Z. Now .7,(M) = 0; but
if P=3Z,M, =0.)

The following discussion indicates what is still true if we assume
only the condition (#). We shall need the result [2; Th. 1]:*

THEOREM A. Let R be a noetherian differential ring, and let M
be a d-finitely generated R-module. Then M satisfies the ascending
chain condition on differential submodules.

We can now prove

THEOREM 4. Let R be a moetherian differential ring and M a
d-finitely generated R-module which satisfies the property (£). Then
2%(M) is expressible uniquely as the union of a finite number of
differential prime ideals, each of which is maximal among the annihi-
lators of monzero elements of M.

Proof. Kach nonzero x € M has an annihilator ideal, and Z,(M)
is clearly their union. Each such annihilator is contained in a max-
imal one which is prime, and differential by assumption. Let {P;};,
be the set of these maximal annihilators, and let P, = 2%(x), x;e M

1 This theorem, in different language, is originally due to J. Johnson, Differential

dimension polynomials and a fundamental theorem on differential modules, Amer. J.
Math., 91 (1969), 239.
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for each ne 4. The differential submodule N of M generated by the
x;’s is d-finitely generated by Theorem A. Let N = [, ---,2,]/R,
with the z,, ---, 2, chosen from among the x,’s. Then, for any X\,
X, = >y, ri%d, with r;; € R for each ¢ and j, and only a finite number
of values for j appearing. Since, by Lemma 2, P; = .o ([x;]) for each
t=1,2,--,n, this implies that P, 2 N %~, P;. This implies, by maxi-
mality, that P, is one of the P;’s. Hence, 2,(M) = U~, P,

To show uniqueness, we remark that if @ were a member of
another such union, then Q@ & U, P; implies that @ equals one of the
P’s [4; Th. 8]. This proves the theorem.

For any R-module M, define &% (M), the power annihilator of
M in R, to be the set of » in R such that for every me M, there
is a positive integer n with r"m = 0. Then Ao (M) is an ideal
which contains both .o (M) and its radical. (If M is finitely gen-
erated, it equals this radical.)

LEMMA 6. Let M be a differential R-module. Let ac M and re
R, and suppose that ra = 0. Then, for every nonnegative integer w,
we have r"*'a™ = 0.

Proof. We proceed by induction, the case n = 0 being satisfied
by hypothesis.

If ra» =0, then r"a™ + nr"~'r'a™" = 0.

On multiplying through by 7, we have the result.

LEMMA 7. Let R be a differential ring M o d-finitely generated
R-module. Let PZ R be a prime ideal containing .F.7(M). Then
M; =+ 0.

Proof. Let M = [m,, +++,m,]/R, and assume that M, = 0. Then
there is an se B — P such that sm; = 0 for each 7. By Lemma 6,
skmF =0 for each ¢ and %k, and so, for every m e M, there is a
positive integer ¢ with s'm = 0; i.e., se Fo4(M). This contradicts
s¢ P.

LEMMA 8. Let M be any R-module. Let I = .o7,(M) (resp., I =
Fsn(M)), and let P be a prime ideal of R containing I. Assume
that Mp + 0. Then I, & .%%,(My) S P, (resp., I, = .7, (M,) < P,).

Proof. The first inclusion is clear in both cases. We prove the
second inclusion, P07 (Mp) S Pp. Let ajte For, (M) with ze R
and te R — P, and let me M be such m/1 = 0. If (x/t)"m/l = 0, then
there is an se R — P with sam = 0. If x¢ P, then sx’e R — P, so
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that sx"m = 0 implies that m/l1 = 0, a contradiction. Hence, x¢ P,
and we are done.

If M is any R-module, it is well known that any prime ideal of
R minimal over .9 (M) is contained in 2%(M) (See [4; Th. 84]). A
minor variant of the proof in the reference proves.

LEMMA 9. Let M be any R-module. Let P be a prime ideal
minimal over Pp(M). Then P ZR(M).

THEOREM 5. Let R be a moetherian differential ring and M a
d-finitely generated R-module. Let I = .S7x(M) (resp., P (M), and
let P be a minimal prime ideal over I. Assume that M, == 0 (note
Lemma T in this regard) and that M, satisfies the property (£). Then
P is a differential ideal and Pe Ass, M.

Proof. M, is a nonzero, d-finitely generated module over R,.
Since P is minimal over I, Lemma 8 implies that P, is minimal over
7 (Mp) (resp., P, (Mp)). By Lemma 9 and the remark preceding
it, Pp & 2Z%,(M;). It follows from Theorem 4 and the maximality of
P, that there is an v € M such that P, = 2%,.(x/1). Further, P, is
a differential R,-ideal. Since P = {re R|r/l1e P}, P is a differential
ideal also. Since P, is finitely generated, this implies the existence
of an se R — P such that sPx =0. But then P = 2%(sx). For if
ysx = 0, for some ye R, then (y/1) (x/1) = 0; i.e., y/1€ P,. It follows
that y € P, and we are done.

ExaMPLE. Let S be a noetherian ring containing the rational
numbers and equipped with the trivial derivation. Let R be the ring
of formal power series over S in the indeterminate z, equipped with
the derivation defined by 2/ = z. Since every prime ideal of R is of
the form PR or PR + zR, where P is a prime ideal of S, R satisfies
the condition (##) for any R-module. Let 2 be an indeterminate, and
let M, = R[x™"], viewed as a differential R-module by the derivation
()’ = r for some unit re S. Since =" = (x™")™ times a unit of
S, M, is d-finitely generated over R by 1 and 2™'. Let M be any
quotient module of M, by a differential submodule. Then M and R
satisfy the hypotheses of Theorems 3,4, and 5. Notice that if M, is
considered as a ring, Rad M, need not be zero.
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