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NONLINEAR EQUATIONS OF EVOLUTION

BRUCE D. CALVERT

We begin by considering various kinds of nonlinear
operators in a Banach lattice X, i.e., a Banach space which
has a compatible lattice structure. With adequate definitions
we are able to develop a theory parallel to the theory of
nonlinear equations of evolutions in a general Banach space,
as carried out by Komura, Kato, Browder and others. Ex-
istence and uniqueness theorems about solutions of the equa-
tion of evolution du(t)/dt = — Au(t) are developed under
conditions on the space X and the operator A. Given a
solution wu(f) to du(t)/dt = — Au(t) with initial condition
#(0) = v, where v lies in the domain of A, a semi-group U(t)
is defined by U(t)v = u(t), t = 0.

Conditions are found under which the semi-group is order-preserv-
ing, and under which a trajectory wu(f) is itself increasing as ¢
increases. Under these conditions, the existence of zeroes of the
infinitesimal generator -A is derived, corresponding to fixed points of
the semi-group U(t). These results are stronger than those concerning
the zeroes of accretive operators in a general Banach space.

Under the special condition that the space X be an algebra whose
unit is an order unit, we give conditions on -A in order that it
generates a semi-group, without assuming local uniform continuity
of A.

Ergodic theory, which concerns the convergence of 1/n S:U(t)vdt

as m— oo is developed, having an intimate connection with the
nonlinear semi-groups U(t) of the type considered above. Nonlinear
ergodic theorems have not so far appeared in the literature.

Furthermore, the existence of a solution to du(t)/dt = + Au(t)
under the condition that A preserves order is discussed. These
results lead to some new open questions, as for example how to carry
over the theory of fixed points and zeroes developed above.

The last two sections deal with equations of evolution outside
the Banach lattice. For the case of a lattice, the concept of x — 2J(z™)
being a selection of the subgradient of x — ||x*|]?*, with J a duality
map, was used. With G a closed convex subset of x, we now use
the fact that v —2J(x — Ux) is a selection of the subgradient of
z— (d(x, G))’, where Uz denotes a nearest point to x in G. With G
compact, we directly generalise some of the results of the theory of
accretive operators, which correspond here to G = {0}.

Finally, in order to find zeroes of a given operator A4, a smoothed
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version of du(t)/dt = + Au(t) is considered. Smoothing refers to the
fact that Banach spaces X, X, and linear operators St, ¢t = 0, from
X, to X, are considered, which abstract the idea of smoothing or
modification by convolution. This gives results under the conditions
of the Nash-Moser inverse function theorem.

1. Nonlinear Operators in a Banach Lattice. We recall a
Banach lattice X is a Banach space X over the real numbers R, which
is a lattice under the ordering <, such that for z, ¥ and z in X,

(a) 2<y impliessx+2=y+ 2

(b) x <y implies ax < ay for a =0 in R

(¢) |=| = |y| implies [|z|| =< [[y]l.

A background in Banach lattices is provided by the books of
Yosida [24], Schaefer [20] and Birkhoff [2]. Schaefer’s notation is
mostly followed, in particular z* = sup(z, 0) and 2~ = sup( — «, 0), so
that x = 2t — ¢~ and || = o™ + 2.

We use where possible nonlinear terminology from Browder [5].
In particular a duality map J is a function from X to its dual X*
such that (Jz, ) = ||z|]* and ||Jz|| = ||#|| for 2 in X. With an order
structure on a Banach space we may consider further properties
possessed by J.

DEFINITION. Suppose X is a Banach lattice, and J a duality
map. Then J is positive if

(1) Jz,yy=0if x=0and y=0

(2) Jz,y)=0if = L y.

Since writing this paper as a thesis the author has found Phillips
[18] used this duality mapping in the theory of linear nonexpansive
semigroups.

We recall: a subset A of X is order bounded if it is contained
in an order interval [a,b] ={z in X: a <2z<0b}. X is countably
order complete (sigma complete in Yosida [24]) if for every order
bounded countable subset A of X, supA and infA exist. X is order
complete if we remove the countability requirement. Following
Krasnoselski [13], if X is an ordered Banach space we say the norm
is monotonic if 0 < 2 <y implies ||z|] < ||y|l. Schaefer [20] page
215 shows that X has an equivalent monotonic norm iff the positive
cone {x in X: 2 = 0} is normal.

ProposiTioN 1.1. (1) Suppose X is an ordered Banach space with
monotonic norm. Then there is a duality map J satisfying (1) above.

(2) Supposing X is a Banach lattice, then there is a duality
map satisfying (2) as well, i.e., a positive duality map.
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Proof. (1) Suppose z in K, the positive cone of X, and ||z] = 1.
Let B be the open ball center 0 radius 1 and let B — K be the convex
open set (b — k: bin B and k in K}. « is not in B — K, for if
z=0b—k, then b= 2 = 0. Hence, [|b]| = ||z]| = 1.

By the Hahn-Banach theorem there is a closed hyperplane con-
taining « which does not intersect B — K. Hence, there is an element
Jx of X* with (Jx,2) =1 and (Jw, f) <1 if f is in B— K. By
continuity, (Jx, % — k) <1, hence, (Jx, k) =0 for £k in K. For b in
B, (J.z, b) <1, hence, ||Jx|| £1. Therefore, ||Jx|| = 1since (Jz, 2) = 1.
This gives a duality map on KU — K satisfying (1). If « is not in
K or —K, we consider the open set B instead of B — K as usual to
obtain a duality map J: X — X* satisfying (1). The device used
above is that of the Brauer: Namioka theorem on extension of positive
functionals. (See Schaefer [20], page 227.)

(2) X may not be sigma complete, but X** is; indeed, it is
order complete. Hence, for © in X** and for y = 0 we define

P,(y) = sup{inf(n |z|, y): » in Z7}
= sup{[0, y] N B.}

where B, = {z*}* is the band generated by x. For general y we define
P,(y) = P(y*) — P,(y"). P, is a bounded linear operator of norm 1,
idempotent, a lattice homomorphism, and P,(y) = 0 if = Ly.

Now the evaluation e: X — X** defined by (e(), f) = (x, f) for
f in X* is a lattice homomorphism and an isometry. If X were
sigma complete with J, as in (1) a duality map for X, we could
define Jx = P#J(x).

Given J, as in (1) a duality map for X**, we define for # in X,
Jr = e*P% Jex.

(a) (Jo,x) = (Jex, P(ex)) = |lex| = [[z]

(b) (Ju, y) = (Jiex, Po.(ey)) = llex]| eyl = [[@llly]];

(¢) if 2,y =0, then ex = 0 and P,.(ey) = 0, hence, (Jx,y) = 0;

(d) if 2 L y, then ex L ey, hence, P, (ey) = 0, hence, (Jz, y) = 0.
Hence, J is a positive duality map.

COROLLARY. If X is a Banach lattice and X* is strictly converx,
then the duality map is positive since it 1S UNiQue.

If g is a convex real valued function on X, then the subgradient
dg: X — subsets of X* is defined by: w is in dg(x) iff for all u in X,

g(w) = g(®) + (w, uw — ) .

A selection of a function F: X —subsets of Y is a function
J: X— Y with f(x) in F(z) for « in X. The first part of this next
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result is central to further development.

ProposiTioN 1.2. Suppose X a Banach lattice with positive
duality map J. Then y — 2J(y*) is a selection of the subgradient of
y—||yt|]’. Conversely, if x— 2w(x) is a selection of the subgradient
of x—||&T|]* and w(x) = 0 for all © in X, then w(x) is a permissible
value for J(x).

Proof. Let # and y be elements of X.

J(=), ¥) = (J(=*), y*) since J positive and y* = v .
(@), (&) = (=), 2+ — 27)
= (J(x*), x*) since J positive and z* 1 x~.

Now (||#*]| — [[y*[)* = 0, hence,
lytl? = ot + 2J(xY), y* — 7).
Therefore,
ly* |l = [le* [ + 2(J(z7), y — @) ,

and ¢ — 2J(z*) is a selection of the subgradient of x — [|&¥|.
Conversely, suppose for ¥ in X we have

(1) Iy IF = ll2*[I* + 2(w), y — 2) .
Putting y = ax, a real in (1), we have
allat | = 2(w(x), ¥)a + 2(w(@), x) — [[«*|f = 0.
Hence, the discriminant is < 0, i.e.,

0= (w), ©)* — 2 [[a*||~(w®), ) + [[a* |}

= (w(@), ) — [[=*|[)* .
Hence,
(w(x), ©) = |[a*|P .
(w(®), 27) = (w(x), 2) + (w(x), ©7)
= (w(x), ) since w(x) =0 and 2~ =0
= [[a* .
Now given e > 0, there is U(e) in X with || U(e)|| = [[w(x)]| and

(w(x), Ule)) = [|lw@) ][> — e .
Putting y = U(d) in (1), we have

NTE@IF + [l&*[]* = 2(w(@), Ue))
= 2[lw@) | — 2e .
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Therefore,
lw@) | < ||t + 2.
Hence,
w@) | = [la*]],
giving

lw@) |l = |le*]] and (w(x), 2*) = [|a*|F .

A global + system for a Banach space X is a function : X — X*
with ||v(x)|] < ||z]] and (v (2), ) = ¢||z]]* for 2 in X, where ¢ > 0 is
in R. (See Browder [7], Chapter 3)

PrOPOSITION 1.3. Suppose X a Banach lattice with positive
duality map J, then () = 3(J(z*) — J(27)) ts a global  system for
X with constant ¢ = 1/4.

Proof. ||z*]| = ||2]| and ||z7|| < ||#|| since X a Banach lattice,
hence, ||y (2)|| = ||zl

2(y(@), 2) = (J&¥) — J(&7), 2" — 27)
= ||2%|[* 4+ ||z"|*  since J positive .

Now
2|z Iz~ = [[=F])F + [z~ -
Therefore,
12| = (lz*]] + [|27]])?
= 2(l=* P + [z -
Therefore,

@, 2) = ¢ llalF -

DEFINITION. Suppose X a Banach lattice with positive duality
map J.

A: D(A) — X, D(A) C X, is T-accretive if for x and y in D(4),
(Az — Ay, J(x — y)*) = 0, and A is hypermaxzimal T-accretive if also

RI+A)=X.
U:. D(U)— X, DIU)c X, is T-nonexpansive if for ¢ and y in D(U)
N(Ux — U*ll = i@ — ™Il -
A: D(A) — X is generalized T-accretive if there is k> 0 in R with
Az — Ay, J@& — 9)) =2— k|l — v)*[]*.
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U: D(U)— X is T-Lipschitz if there is k> 0 in R with
[[(Ue — Uy)*ll < kll(x — »)*]l -

A: D(A) — X is locally generalized T-accretive if for z in D(A),
there is k, > 0, and a neighborhood N, of z in X, with

Az — Ay, J(x —y)*) = — k. ||(x — »)* I}
for « and y in N, N D(4).

U. D(U) — X is locally T-Lipschitz if for z in D(U), there isk, > 0
and a neighborhood N, of z in X with |[(Ux — Uy)*|| £ k. || (x — »)7]|
for x and v in N, N D(U).

Given a global « system «, A: D(A) — X is +-accretive if

(v — Ay, y(@ — ) = 0.

U: D(U) —is monotonic if ® = y implies Ux = Uy.
U: D(U) — X* is T-monotone if (Ux — Uy, (x — y)*) = 0.

The definition of T-monotone functions was given independently
by Brezis-Stampacchia [5] in a particular concrete case. 7T-monotone
implies monotone, but, in general, T-accretive does not imply accre-
tive. In many function spaces it does, we see later, but we obtain
additional information from the T-accretive property.

T-accretive functions arise as nonlinear partial differential opera-
tors; for example, the conditions (A) of Brower [6] give T-monotoni-
city in the Hilbert space L*G), hence, T-accretivity, for second order
operators.

We now consider certain relations between these classes.

ProrosiTION 1.4. Suppose X a Banach lattice with positive duality
map, and A:D(A) — X 1is T-accretive. Then A s accretive with
respect to (z) = 3(J(z") — J(z7)) of Proposition 1.3.

Proof. Let x and y be in D(A). Now 2y (x — y)™ = J(z — y)* and
29 (@ —y)~ =J@—y)~ and 2y(x — y) = ¥(@ — »)* — Py(x—y)~. Hence,

2(Ax — Ay, v(x — ) = (Ae — Ay, J@x — y)*) — (Ax — Ay, J(x — y)7)
= (Av — Ay, J(x — y)*) + (Ay — A=, J(y — 2)7)
=0 since A is T-aceretive.

We note A is T-accretive iff (Ax — Ay, J.(x — y)*) = 0 where J,
is a generalized duality map. Hence, if J,(2) = J, (") — J,.(27) for z
in X, then T-acecretive maps are accretive. This occurs in L? spaces,
1< p<oc. Yamamuro [23] gives a result on generalized duality
maps of this type.
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ProposiTION 1.5. (a) If U is a (locally) T-Lipschitz function,
then — U s (locally) gemeralized T-accretive and also (locally) Lipsch-
itzian.

(b) A T-accretive function is generalized T-accretive and a
generalized T-accretive fumction is locally generalized T-accretive.

(¢) A T-nonexpansive function is T-Lipschitz and a T-Lipschitz
function is locally T-Lipschitz. A T-Lipschitz function is monotonic.

(d) Suppose D(U)C X is convex. U 1is locally T-Lipschitz iff
there is a continuous function k: D(U)x D(U) — R with

[(Ur — Uy)*ll = k@, y) [[ (@ — »)* .

In particular, U is monotonic.

(e) Suppose D(A) < X s convex, and J(rx) = rJ(x) for r in R
and x in X. A: D(A) — X s locally generalized T-accretive iff there is
a continuous function
k: D(A) x D(A) — R with (Ax — Ay, J(x — y)") = — k=, y) [[(x — »)*|P.

Proof. (a), (b), and (c) are straightforward; we prove (d), and
the proof of (e) is similar.

We suppose U is locally T-Lipschitz, and « and y are in D(U).
We assume 2z — k, is continuous, using a partition of unity. The line
segment joining « and ¥ is compact and contained in D(U). Hence,
we divide the line segment:

X=Xy =, With [[(Uz,o, — Ux) " || < ki || (@imy — @) 7|
with %; corresponding to a set containing x; and «,_,.
Put k(z,y) =sup {k;: 1 <7 < 0.

Now for a and b in a Banach lattice, a™ + b* = (@ + b)*. Hence,
(Xa)* = 2i(a;") for a finite sum, giving || (Xa)* || = [|2(a;*) [[. Hence,

(U — Uy)*|l = [[(XUw, — U "]
= 120(Uw;y — Usy)* ||
= DUz — Uzny)* ||
= k@, y) || @iy — )" ||
= k@, 9 ll(@—y*ll.

Then by a partition of unity, we may assume k is continuous. The
reverse implication is immediate. U is monotonic for suppose z < y,
then ||[(x — y)*|| = 0. Hence, |[(Uzx — Uy)*|| =0, giving Uz < Uy.

PROPOSITION 1.6. Suppose X a Banach lattice with positive
duality map. If U:. D(U)— X is T-nonexpansive, then I — U s
T-accretive.
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Proof. Let x and y be in D(U). Since (Ux — Uy)* = Ux — Uy,

(@ — Uz) — (y — Uy), J& — 9)*)
=@ —»*If - (Uz — Uy, J& — y)*)
Z @ —v)*|f — (Uz — Uyt J= — 9)*)
Z @ — )" = I (Uz — U] [z — y)*l
=0.

ProPOSITION 1.7. Suppose X a Banach lattice with positive duality
map J. If A: D(A) — X is T-accretive, then for all d > 0, (I + dA)™:
R(I + dA) — X is T-nonexpansive. If J is demicontinuous from the
strong to the weak* topology, them the converse is true.

Proof. Suppose w and 2z in D(4), A is T-accretive, and d > 0
is given, and (I + dA)w =« and (I + dA)z = y. Since A is T-accre-
tive, we have

Hw—2*F = (@ —y J(w— 2%
= (@ — ) J(w—2)%)
SlleE=o)*mw-—2*].

Hence, [|[(w — 2)|| = |[(x — »)*|| and (I + d4)™* is T-nonexpansive.
Conversely, suppose ford > 0, (I + dA)w = x; and (I + d4)z = ¥,.
Then
l(w—2)*|| = || (s — ya)*|| for d > 0.

Hence
@s — vty w — 2) = (J(@; — o)™ (w — 2)7)
= 1@ — w1l (w — 2)*]|
= || — wa)* I
= (J(®@s — Ya)"> s — Ya) -
Therefore,

(J@s — ya)*s (w — @) — (2 —v)) =0
But w — 2, = — dAw and 2z — y; = — dAz. Therefore,
J@s — ya)Ty Aw — Az) = 0.
Now 2; — ¥, — w — 2, hence, (x;, — y;)* — (w — 2)¥, hence,
(J(w—2)* Aw — A2) = 0,

and A is T-aceretive.

We see that A is hypermaximal T-accretive if and only if there
exists d > 0 with R(I + d4) = X if and only if for all d > 0,
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R(I +dA) = X .

PropoSITION 1.8. Suppose X a Banach lattice with A: D(A) — X
hypermaximal T-accretive. Then R(A + dI) = X for d > 0.

Proof. Given y in X, d > 0, we want w with (A4 + dl)u = y.
Suppose R(A + d,I) = X, d, > 0. We shall solve

A+dDA+dD) 2=y,
and put v = (4 + d,JJ)~"x. We want 2 with
x+did—d)d, A+ D e =y.

Now (d,'A + I)~'is T-nonexpansive, hence, has Lipschitz constant
< 2. Hence, if |d,7'(d — dy)| < 1/2, we have a solution z by the
contraction mapping principle. Repeating this process a finite number
of times, we have A + dI is surjective for any d > 0.

PROPOSITION 1.9. Suppose X a Banach lattice with positive duality
map, and A: D(A) — X is hypermaximal T-accretive. Then for d > 0,
A(I + dA)™ is T-aceretive and Lipschitzian from X to X.

Proof. Al + dA)*=d*'(I—- I+ dA)™"). By proposition 7,
(I + dA)™* is T-nonexpansive. By Proposition 6, I — (I + dA)™* is
T-accretive. Hence, A(l + dA)™* is T-accretive. Also, (I + dA)™* is
Lipschitzian, hence, I — (I + dA)™ is also, consequently, A(I + dA)™*
is Lipschitzian with Lipschitz constant 3/d.

ProPOSITION 1.10. Suppose X a Banach lattice with positive
duality map, and A: D(A) — X. Suppose A is
(1) T-accretive;
or
(2) generalized T-accretive;
or
(3) locally generalized T-accretive.
For v in D(A) and t im R* we put U(t)v = u(t), if there is a
unique continuwous weakly differentiable function u: [0, t] — X, u(0) = v,
du(s)/ds = — Au(s) for s in (0,t) and s— ||u(s)|| ¢s absolutely con-
tinuous. We say — A generates the semigroup U(t). We have U(t) s
(1) T-nonexpansive;
or
(2) T-Lipschitz;
or
(3) locally T-Lipschitz.
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Proof. Suppose 0 < s<t=<d, and x and y are in D(U(d)). By
Proposition 1.2,

@) — y@) P — [[ (@) — y@)* [
= 2(J(x(®) — y(@)", (@(s) — 2(8) — (y(s) — y() -

Dividing by ¢ — s and letting s —t~, we have, by the absolute con-
tinuity of ||(x(s) — y(s))*|?, for ¢ in [0,d] — N, where N is a set of
measure zero,

% @@ — y@) I = — 2(J(=@) — y@)*, A=) — Ay(@) -

In case (1), d||(x(t) — y(&)"|*/dt < 0 for ¢ in [0,d] — N. Hence,
@) — y@)*[ = l[@— T,
and U(d) is T-nonexpansive.

In case (2), d]|(=(t) — y(®)*[[/dt = 20| @(®) = y(®)*|F. Hence,
A aMCORONELR

Hence, [|[(U(d)x — Ud)y)* < ||| (x — v)*||, and U(d) is T-Lipschitz.
In case (3), we assume d small and « close to y, so that x(¢{) and
y(t) are in a neighborhood N, where k, is constant. This puts us
back in case (2). Composing with U(d) we obtain the result for
general d since [0, d] is compact.

We have a converse of the proposition above.

ProrosiTION 1.11. Suppose X a Banach lattice with positive
duality map, and A: D(A) — X; is such that — A generates the
semtigroup U(t) which is

(1) T-nonexpansive;
or

(2) T-Lipschitz;
or

(3) locally T-Lipschitz.

Then A s

(1) T-accretive;
or

(2) generalized T-accretive;
or

(3) locally generalized T-accretive.
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Proof. Given x and y in D(A),
I @@) — y@)* I = [[@0) — y©0)*[]
+ 2(J(@(0) — »(0))*, (@) — y(@®) — @(0) — ¥(0))) .
In case (1), [|(x(®) — y@)*|" = || (@(0) — »(0))*[]*. Hence,
0 = 2(J(=(0) — y(0)*, (=) — 2(0)) — W) — %(0)) :
dividing by ¢ and letting ¢ — 0* we have A T-accretive.

Cases (2) and (3) are similar.

ProposITION 1.12. Suppose X a Banach lattice with positive
duality map. Suppose A: D(A) — X generates a semigroup U(t), and
A s

(1) T-accretive;
or

(2) generalized T-accretive;

(3) locally gemeralized T-accretive.
(1) [[(Au@)* ] = [[(Au)*[];

(2) [[(Au@)*]| = e [[(Au(0)*||  where (Ax — Ay, J@& — y)*)
= — klf@ -7

(3) [(Au@) || = e || (Au(0))* ||, where (tAw — Ay, J(x — y)7)
— k@) || (x — y)T|]* for x near y and K(t) = Sok(u(s)) ds.

\%

Proof. We prove case (3). Suppose A is locally generalized
T-accretive, and wu is a continuous function [0, d] — X with du(t)/dt
= — Au(t). Then

[ + k) — w@)~ || = || (w(h) — w(0))~[le* .
by Proposition 1.10, since v(t) = w(t + k) is a solution to

%’. () = — Av(t), with v(0) = (k) .

Dividing by % and letting % — 0*, we have
[[(Au@)* || = || (Au(0))*[le* .

Case (1) and (2) are similar, indeed particular cases.

COROLLARY. Suppose X and A are as in (3) above, with
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du)/dt = — Au(t), and Au(0) < 0. Then Au(t) <0 as long as u(t)
s defined, and u(t) < u(s) of t < s.

Proof. By (3) of Proposition 1.12, ||(Au(t)*]| < 0. Given ¢ <s,
(s du
u(s) — u(t) = S KLy
¢ dr

= g: — Au(r)dr
0.

v

We recall a function T: X — 2% is g-accretive if there is a map
¢: Xx X x X — X* with ¢(u, v, x) in J(u — ) for x, w, v in X, such that
for y in T(w) and w in T(v), (3(w, v, y-w), y — w) = 0.

ProposITION 1.13. Suppose X a Banach lattice with positive
duality map. Then X has an equivalent norm in which T-nonex-
pansive functions are mnonexpansive and T-accretive fumnctions are
g-accretive.,

Proof. Set ||z||, = ||=*| + |l~||. || |l. is an equivalent norm.
Suppose U: D(U) — X is T-nonexpansive and z and y are in D(U).

| Uz — Uyl = [[(Uz — Uy)*|l + || Uz — Uy)~||
=ll@—o)*l+ @ -7l
= lle —yll. -

Suppose A: D(A) — X is T-aceretive. Then for d > 0, (I + dA)™* is
nonexpansive, hence, nonexpansive in (X, || ||). Hence, by Theorem
9.1 of Browder [5], A is g-accretive in (X, || ||,).

COROLLARY. Suppose G is a closed subset of a Banach lattice
and U: G— G satisfies ||(Ux — Uy)*|| < all(@ — »)T|| with a <1, for
x and y in G. Then U has a unique fixed point.

Proof. ||Ux — Uy, < allz — y||, for x and y in G. The result

follows from the contraction mapping principle.

We note that (X, || ||, <) is not a Banach lattice. We have only
that || < |y| implies ||z||, < 2||y]|,. In general, the equivalent norm
|| |l does not preserve properties like normal structure, strict con-
vexity, or uniform convexity of X or X*.

We recall that a Banach space X has property P of Bohnenblust
[3] if a,b,¢,d=0,a L bcLdlla]|=]|c| and [b]=]d| implies
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lle + bl = lle + dl.

PROPOSITION 1.14. Ewery T-nonexpansive function U: D(U) — X
is nonexpansive if and only if X has property P.

Proof. Suppose X has property P and % and z are in D(U).
[|(Ue — Uy)*|| < |[( — y)*||, hence, [[(Ux — Uy)*|| = al/(x — y)*|| for
some ¢ in [0, 1]. Similarly, there is b in [0, 1] with ||(Ux — Uy)7||=
bll(@—wy)~|]. Now a(r—y)* Lb(x—y)~ and (Uzx— Uy)*L(Ux — Uy)~.
Hence,

| Uz — Uyl| = [|[(Uzr — Uy)* + (Uz — Uy)~||
= [la(@ — v)* + blx — )~ ||
SlleE—9*t+ @ -y
=lle—yl.

Conversely, suppose X does not have property P. Then there are a,
bye,d=0 in X with [|c|| = ||d]|, ||a]l = ||b]l,& Le, b Ld,and [[a+c||<
|6 +djl. Put U@O) =0, U@—c=b—d.Then a calculation
shows U: {0, a — ¢} — X is T-nonexpansive but not nonexpansive.

The following proposition shows that in the linear case (see
Phillips [18] and Sato [19]) semigroups of nonexpansive positive
operators are T-nonexpansive. The converse is true too, which could
be extended as in Proposition 1.16 on the differentiable case, for
example to show a hypermaximal T-accretive operator A is g-accretive,
if the resolvents (I 4 eA)™* are C'.

PROPOSITION 1.15. Suppose E is a lattice subspace of X, and
U: E— X is a bounded positive linear operator. Then U is T-Lipschitz.

Proof. Suppose « is in E. Ux = (Uz*) + (Ux~) since U is
linear. U(x*) and U(x~) are = 0 since U is positive. Hence, U(z*) =
U(x). Hence, U(z*) = (Ux)*. Hence,

()| = 1| U@ ||
=Ull=*] .

We found a locally T-Lipschitz function U (with convex domain)
is monotonic. The following proposition shows these properties are
equivalent when U is C'.

ProposITION 1.16. Suppose U: G— X, G an open subset of the
Banach lattice X, is C* and monotonic. Then U is locally T-Lipschitz.
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Proof. The derivative at « in G, U], is positive. For suppose
h=0in X, then for t = 0, U(x + th) — U(x) = 0. Therefore,
Ul(h) = lim ¢ (U(x + th) — U(x))
=0.

Given y in G, take B a ball around y in G, and M a positive con-
stant, with || U.|| < M for  in B. This may be done since U is C'.
Then for x in B

1
Us — Uy = S Ulss ey (@ — 9)dit .
Now from the inequality for a finite sum in a Banach lattice
Lan)* = 3(af) ,

we have for a curve a: [¢, d] — X, that

(Sja(t)dt>+ < Sfa(t)"Ldt .
Hence,
(Us = U9 = || (Utersonlo — 9))dt .
Hence, by Proposition 1.15,

1@ = Ul = | (ool — )7 a8

= [ 1WLewnnll @ = )1t
= Mil@— vl

The question arises of the structure of the fixed point set F(U)
of a T-nonexpansive function U: D(U)— X. If X has property P
and is strictly convex, then F(U) is convex. The following generalizes
a linear theorem of Birkhoff [2], page 391.

ProrosITION 1.17. Suppose U is T-nonexpansive X — X, an AL
space. Then F(U) is a sublattice.

Proof. Suppose Ux =, Uy =y, and z = sup (x,%). U is mo-
notonie, hence, Uz = 2. Suppose Uz = z + h, with » = 0.
|Uz — 2| + [| Uz — yl| = ||z — || + ||z — ¢

= |l — yll.
Hence,
2k + & — yl| < |z — ¥yl .

Therefore, » = 0 and Uz = 2. Similarly, inf (x, ) is in F(U).
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COROLLARY. Suppose A: D(A) — X is hypermaximal T-accretive,
where X is an AL space with positive duality map. Then for x in
X, A7 (x) is a sublattice.

Proof. A~'(x) = B'(0) where B: D(A) — X is defined by By =
Ay — z. Now B(y) = 0 if and only if (I + B)™'y =y. But (I + B)™
is T-nonexpansive. Hence, B~*(0) = F((I + B)™) is a sublattice.

2. Existence of solutions to equations of evolution.

THEOREM 2.1. Suppose X a Banach lattice with X* uniformly
conxex. Suppose A 1is demicontinuous and locally generalized T-ac-
cretive from a neighborhood N of v to X.

Then there is an interval [0, d] and a unique strongly continuous
weakly C* function

i [0, d] — X with u(0) = v and‘;—?(t) = — Aut) .
Proof. We have, since A is demicontinuous, a neighborhood N,
of » and a constant M with ||Ax|| < M if « is in N,. Since A is

locally generalized T-accretive, there is a neighborhood N, of v and
a constant k£ with

(Ax — Ay, J@ — 9)) = — k@ — 9"}

for  and ¥ in N,.
We may assume N = Bp(v) C N, N,. For ¢ > 0, we solve:

(a) —%%—(t)z-Aue(t—e) £>0

u,(t) = v t<0.

There is a d > 0 such that all solutions of (a) are in N for ¢ in [0, d]
independently of e.

Given ¢, >0, for ¢ in [0, d], we set
0e.s(8) = || (w, () — u, @) .
For 0 <s<t=d, we have
Qe.r(8) Z €es(8) + 2(J(we()) — ur() ") (Wels) — w(t)) — (us(s) — us(?))) -

Dividing by ¢ — s and letting s— ¢,

lim qe.f(t)t - Ze.f(s) < 2(J(u,(8) — u(8)", dd@Ze ) — d;tf t)) .

st —_
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By the boundedness of du,/dt, we have ¢, is absolutely continuous.
Hence, there is a set N of measure 0 with

a4 — i Qo) — @..5(5)
dt 9e.s(?) 3‘331 t—s

existing for ¢ in [0, d] — N. For such ¢,

—gt— 0e,s()) = 2(J(w.(t — €) — us(t — f)* — J(w(t) — us(@)*,

Au,(t — ) — Aus(t — f)) — 2(J(we(t — &) — us(t — f)*, Au(t — e)
— Au,(t — f)) .
For ¢ in [0, d],
[ (w,(t — €) — ust — )] < 2R

and
[ ((t) — us()*]] < 2R .

Since X* is uniformly convex, J is uniformly continuous on B,.(0),
hence, there is a function r: R* — R* with »(k) -0 as k— 0 such
that if ||«|| < 2R, |ly|| < 2R, then [|Jx — Jy|| < r(|z — yll). Now
. (t) — w,(t — €)|] < eM and ||u;(t) — us(t — d)|| < dM for ¢ in [0, d].
Therefore,
| (et — €) — us(t — f)) — () — us@) || < (e + /)M .
Now if a, b are in a Banach lattice,
la* — b*| < |a — b|, hence, |[at — b"|| =< ||la — b]| .
Therefore,
1wt — e) — us(t — N — Jw.(@) — w,@)*| < r((e + [)M) .
Therefore for ¢t in [0, d] — N,

a

dt
Now

[[(wet — €) — us(t — NI = (e + /)M + || (w.(t) — us(®)*]l .

Hence,

9.,s(t) = 4Mr((e + /)M) + 2k || (u,(¢ — ¢) — u (e — )T .

[[ (et — € — up(t — FNFIF = 2(e + f) M* + 29,,4(¢) -
Hence,
d

7 Q.5 (t) — 4keq. ;(t) < 2(e + f)*M* + 4Mr((e + f)M) .

Given g > 0 there is # > 0 such that for ¢, f < k the RHS < g. For
e, f<h, tin [0,d] — N,
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—4 4 d
L (1) = e (S gul) — 4ha.s(6)

=9.

Now g¢,,/(0) = 0, hence, e**q, .(t) < gd for ¢ in [0, d]. Hence g, ;(t) <
gde**? for t in [0, d]. Hence, (w,(t) — u,(t))" converges to zero uniformly
on [0,d] as e, f— 0. Therefore,

(o) — us()™ = (us(t) — u(t))*

converges to zero uniformly on [0, d]. Therefore, w,(t) — u/(t) con-
verges to zero uniformly on [0,d]. Since (u,) is a Cauchy net of
continuous functions [0, d] — Bz(v), it converges to a continuous
function u: [0, d] — Bp(v). Hence, wu,(t —e) also converges to u(t)
uniformly on [0, d], and since A is demicontinuous, Awu,(t — e) con-
verges weakly to Au(t).

Suppose f is in X*, then for ¢ in [0, d]

(w,(t), f) = (v, f) — S: (Au,(s — e), f)ds .

Now |Au,(s —e), f)| < M||f]|l, hence, the integral converges to
St(Au(s), fds. (u.(t), f) converges to (u(t), f). Hence,
0

W), f) = (v, f) — S (Auls), f)ds .

Hence, u is weakly differentiable with derivative du(t)/dt= — Au(t),
and since A is demicontinuous, % is weakly C'. Uniqueness follows
from Proposition 1.10.

THEOREM 2.2. Suppose X a Banach lattice with X* wuniformly
convexr. Suppose A, X — X s locally gemeralized T-accretive and
demicontinuous. Suppose A: D(A) — X is hypermaximal T-accretive.
Suppose v is in D(A). Then there is an interval [0, h] and a unique
strongly continuous weakly C' function u: [0, h] > X with u(0) = v
and du(t)/dt = — Au(t), where A, = A, + A.

Proof. We have, for d > 0,
A+ dA)™ =d(I — (I + d4)™)

is T-accretive and Lipschitzian, with domain R(I + dA4) = X. Hence,
A, =4+ Al + dA)™* is demicontinuous and locally generalized
T-accretive: X — X.

By Theorem 2.1, there is a unique solution u, of

(2) %M@=—&m
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ug(0) = v
on some interval [0, A].

By Proposition 1.12, we have a bound on the derivative of w,(fy
depending only on the locally generalized T-accretive part of A4,, and
on t. Hence, we have solutions of (a) for an interval [0, 4] indepen-
dent of d, with ||du,(t)/dt|| < M for ¢ in [0, k] for some constant M.
Taking % small, we may assume there are positive constants k, M,
R, with all solutions u;(t) in Br(v) for ¢ in [0, ], with ||Ax]|| = M,
and

(A — Ay, J@ —9)H) = — k@ — 9)*|F

for x and y in Bj(v).

Let
V,(t) = (I + dA) ™ uy(t) .
Then
-Avy(t) = _cclz—t Ua(t) + Agua(?) -
Hence,

[Av@) | = M + M,
for ¢ in [0, 2]. Now
wy(t) — va(t) = dAvy(?) ,

giving
[|%a(®) — va(®) || = AUM + M,) .
Now
[l (ua(®) — u.(@)| = 2R,
hence,

1 (a(®) — v 1| = [|va(@) — wa@) || + [|va(t) — %) || + 2R
< 2R + (e + d)(M + M,)
<4R, if e, d < (M + M,)"'R .
Since X* is uniformly convex, there is a function r: R*— R* with
r(k) -0 as k—0 such that for ||y]|, ||z|| £ 4R, ||Jx — Jy|| < rk) if
e —y|| < k. Given d,e < (M + MR,
[va(t) — v.() — ualt) + w. (@) || = (e + (M + M,) .
Hence,
[[(a(®) — v — (Ua(t) + u())*|| = (e + (M + M) .
Hence,
[J(va(8) — v,())" — J(wa(t) — u.(E)*|| = r((e + (M + M) .

We set g,,.(t) = || (w(t) — w.(@)*|]>. Now gq,, is absolutely continuous
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on [0, k], hence, there is a set N with measure 0 such that for ¢ in
[0, k] — N, dq.,.(t)/dt exists, and as in Theorem 2.1, for such ¢ we
have

_(%_Qd,e(t) = 2(J(wa(t) — u.(t))", d

Ug du,

0t ® — _di_(t))

= — 2(J(ua(t) — we(t))*, Aowa(t) — Agu.(t))

= 2(J(va(8) — v, ())*F, Ava(t) — Av,(t))

+ 2(J(va(t) — ve(8))* — J(Walt) — we(t))*, Ava(t) — Av.(8)

= 2k || (wa(®) — w,(@))* |

+ 2 [[J(@a(t) — ()" — J(wa(t) — %)) *]]-]] Ava(t) — Av.(D) |
=AM + Myr((e + (M + M) + 2kg,,.(2) -

Hence, for ¢ in [0, ] — N,

L0 = (L guult) — 2000.(2)
< e A(M + My)r((e + d)(M + M) .

Given g > 0 there is an f> 0 with f< (M + M,)"*R such that for
d,e < f, the RHS < g.
Since ¢,,,(0) = 0,
e*q,,.(t) =< gd
for ¢ in [0, k], hence,
Qa,..(t) = gde™ .

Hence, (u,(t) — u.(t))* converges to zero uniformly on [0, %] as d, e—0.
As in Theorem 2.1, u, converges to a continuous . Since

lua(®) — va@) || = d(M + M) ,

v,4(t) also converges to w(t) uniformly on [0, A4].
We claim w(t) lies in D(A4,) for ¢ in [0, A] and ¢— Awu(t) is weakly
continuous.

Since u,(t) — u(t) and A, is demicontinuous, A,u,(t) — AuE). A
is hypermaximal +r-accretive, where - is the + system of Proposition
1.3. v4(t) — u(t), and Aw,(t) is bounded, hence, has a weak cluster
point w.

Given v in D(A),
(Ava(t) — Av, ¥ (valt) — ) 2 0.
Hence,
(w — Av, y(u(t) —v)) = 0.

Since A is maximal r-accretive, u(¢) is in D(A) and Au(t) = w. If
s—t, then Au(s) has a weak cluster point w,, and u(s) — u(¢).
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Given v in D(A4),
(Au(s) — Av, y(u(s) —v)) = 0.
Hence,
(w, — Av, y(ut) — v)) =0,

hence, w, = Au(t), hence, Au(s) —~ Au(t). Hence, u(t) is in D(A,) and
Au(s) — Au(t) as s—t.
As in Theorem 2.1, we have for ¢ in [0, d], f in X*,

t
(f, w®) = (f,0) — || (7, Aul)ds .
Hence, % is continuous, weakly C', and unique by Proposition 1.10.

THEOREM 2.3. Suppose X a Bamnach lattice with positive duality
map. Let N be a neighborhood of v in X. Let A: N— X be locally
uniformly continuous and locally generalized T-accretive. Then there
is a unique strongly C* function u: [0, h] — N for some h >0 with
w(0) = v and du(t)/dt = — Au(?).

Proof. For some neighborhood M of v and positive constant #«,
A 4 kI is T-aceretive M— X. By Proposition 1.13, A + kI is g-accre-
tive in (z, || ||). Hence, for z and ¥y in M,

(Av — Ay, ¢(x, y, Av — Ay)) = — k|le —yl.” .
The result follows from Theorem 9.7 of Browder [5].

We note that we could extend Theorem 2.2 to include a second
hypermaximal T-accretive operator A, such that || Azx| < k|| Ax||
with £ <1. We could also have considered the case of the generator
A being multivalued, and considered the temporally inhomogeneous
problem, du(t)/dt = — T,u(t).

THEOREM 2.4. Suppose X a Banach lattice with X* uniformly
convex. Suppose A,: X — X is demicontinuous and T-accretive, and
A;: D(A) — X is hypermaximal T-accretive. Then A, + A, is hyper-
maximal T-accretive.

Proof. Given w in X, we have x— A + © — w is demicontinuous.
and T-accretive: X— X, hence, by Theorem 2.2, 4, + 1 — w + A,
generates a semigroup U(?).

Given 2 and y in D(A,), for ¢ in [0, k] — N as in Theorem 2.1,
we have

d g ot 92 dy
=7 @@ —v@)' I = 20@?) - y(@) ,d—t(t) =

= —2|[@@) — y@)FIF.
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Putting z(t) = y(t + k) and letting k— 0%, we obtain

|(Go) = | (Go)

(@) = |20y

Hence, if there is a solution y(¢) to dy(t)/dt = — (A, + I + A, — w)y(?)
on an interval [0, k), then by the bound on the derivative y(f) con-
verges as t—k~, hence, there is a solution on an interval [0, £+ %] for
some k > 0, hence, on all of R*.

As t— oo, y(t) is Cauchy, hence, y(t) converges to z for some z
in X. Since A,y() is bounded and A, is hypermaximal T-accretive,
z is in D(A4,) and A,y(t) converges weakly to Az. Hence, z is in
D(U(t)) for t = 0.

Now for ¢t = 0, U(t) is continuous, hence,

Ut)z = U(t) ILIB U(s)y
=lim U(t + s)y

8—co

and similarly,

=2z.
Hence,
Aoz—f-z—i-Alz—w:lim_-U(Li——z—
t—oo

=0.
Hence, R((4, + A, + I) contains w, hence,
R((Ao + Al) + I) =

COROLLARY. Suppose X a Bamnach lattice with positive duality
map. Suppose A: X— X is locally uniformly continuwous and T-
accretive. Then A is hypermaximal T-aceretive.

Proof. By Theorem 2.3, —(A + 1) generates a semigroup, and
the proof proceeds as in Theorem 2.4.

3. Surjectivity of T-accretive operators.

THEOREM 3.1. Let X be a Banach lattice with X* wuniformly
convex. Let A;: D(A)— X be hypermaximal T-accretive. Let A,
X — X be demicontinuous and locally gemeralized T-accretive. Let
A=A + A,.

Suppose either
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(a) fora,bin X {x: a = and Ax < b}
and {x: a =z ® and Ax = b} are bounded,
or
(b) A is T-accretive outside a bounded set in X and A™ is
bounded.
Then A s surjective.

Proof. R(A) is not empty, therefore, there exists an element
a = Az in R(A). Given ¢ in X, we take b, with b=¢ and b= a,
and show b in R(A) since b= a, and a in R(A). Similarly, ¢ will
be in R(A) since ¢ < b and b is in R(4).

For y in D(A) we put A,(y) = Ay — b. Then A,(x) =a— b 0.
Then z(0) = =, dx(t)/dt = — A,x(t) gives x(t) increasing and A,x(t) < 0
as long as «(t) is defined, by the Corollary to Proposition 1.12.

Suppose (a) holds. Since x < x(f) and Ax(t) < b, 2(¢) is bounded.

Dini’s Theorem (see Schaefer [20]) says: If E an ordered l.c.s.
whose positive cone is normal, and S @ subset of E directed under <,
and weakly convergent, then S converges in FE.

Therefore, if «(¢f) is defined for ¢ in [0, %), then x(f) converges
as t— k-, hence, z(f) is defined on [0, k£ + h] for some A > 0, hence,
on all R*. Then x(t)—z as t— o for some z in X. z is in D(4,)
since A, is hypermaximal T-accretive. Hence, z is in D(U(t)) for
small ¢. As in Theorem 2.4, U(f)z =z, hence, A,z =0, hence, Az ="b.

Suppose (b) holds. We have as in (a) x(t) defined on R* if x(¢)
bounded, and, hence, convergent to z with Az =b. If () is not
bounded for ¢ in some interval, then there is ¢, such that A4, is 7T-
accretive on x(t) for ¢ =t, hence, ||4,x(t)| < 2| 4,x(t)||. Hence,
2(t) bounded since A, is bounded, a contradiction.

COROLLARY 1. Under the conditions of Theorem 3.1, A~ has a
monotonic selection.

Proof. We start from some element 2 of D(4) and use the
above construction. Suppose ¢ = c¢. Let a = Az, b = sup (a, ¢), and
d = sup (@, ¢). Now we have solutions to

dz . .
v t) = — Az(t) + b 2(0) =
and

aw . _ .
2 = — Aw@) +d w(0) ==

2(t) increases to z with Az=1>0 and w(t) increases to w with Aw =d.
We have, for small &, except on a set of measure 0 in [0, 4],
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d e oy dz g, dw
'E{”(z(t) — w)* P = 2(J(=(t) — w(?)) ,%(t) %(t))

= 2k |[(2(2) — w@)* P + 2(J(2() — w@)*, b — @)
(where k is the local constant associated with A and k)
< 2k || (2(t) — w(@)*|]? since b= d.
Hence, 2(f) < w(t) in the interval [0, h], hence, for all ¢ in R*.
Therefor, z < w. Now we have solutions to
%:_(t) = —Ar{t)+ ¢ r0) ==z

and
gi_(t) =—Ast) +e s(0)=w.

7(t) decreases to r with Ar = ¢ and s(¢) decreases to s with As = e.
We have except on a set of measure 0,

%H(f(t) = s@)* 1P = 2k |[(r(®) — s@)*IF + 2(J(r) — (@)%, ¢ — ¢)
< 2k || (r(®) — s@)*|F  since c<e.

Now || (r(0) — s(0))*]| = 0, giving 7(t) < s(t) for all ¢ in R*; hence,
r<s.

The function taking ¢ to » by this construction takes e = ¢ to
s = r and hence, is monotonic.

COROLLARY 2. Under the conditions of Theorem 3.1, if we have
x and Yy such that Ac < v < y < Ay, then there is a fixed point of A
wn [z, yl.

Proof. Starting from x as in Corollary I, we have a monotonic
selection B of A™'. BA(x) =2z, and we claim BAy is in [z, y].
BAy =lim,,. x(t), where x(0) =2 and dx(t)/dt = — Ax(t) + Ay. Hence,
¢ < BAy.

Except on a set of measure 0,

d + (12 — o\t Li_m_
E!I(x(t) -yt = 2(J(@®) - v)*, o @)
= —2(J(=(@) — v)*, Az(t) — Ay)

= 2k(@@)) (@@ — »)*IF* .

Hence, x(t) < v for all ¢t in R*. Hence, BAy < v.
Then [Az, Ay] is invariant under B, and is a complete lattice since
X is reflexive.
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The Tarski fixed point theorem says: Let L be a complete
lattice. Then a monotonic function L — L has a fixed point.

Hence, there is z in [Ax, Ay] with Bz = 2, hence, Az = z. Since
B[Az, Ay] C [=, y] by construction, 2z is in [x, y].

THEOREM 3.2. Suppose X a reflexive Banach lattice with positive
duality map. Suppose A: D(A) — X s hypermaximal T-accretive
with A locally bounded. Then

(a) R =X

(b) A is monotonic if it is simgle-valued and demicontinuous.

Proof. (a) We consider B = A(I + A)™: X— X. B s T-accretive
and Lipschitzian, and B~ is locally bounded. We show R(B) = X.

Now Theorem 5.3 of Browder [5] gives: Suppose X a Banach
space with a + system, A a hypermaximal +r-accretive function
D(A) — X, and A~ locally bounded, then clR(A4)) = X.

Since B is +r-accretive with respect to the + system of Proposition
1.3, we have only to show R(B) is closed. By translation we have
only to show that if there is a sequence (x,) in X with Bz, —0,
then 0 is in R(B).

Now Bz, converges to 0 relatively uniformly (see Yosida [24],
page 370). In particular, there is a subsequence (z,) and 2 = 0 with
| Bz, | < m™'z.

Suppose B7'(B,,(0)) is bounded. If m large, then |[m™z|| < r.
Put D(x) = B(x) — m™2 for  in X. Then D(x,) =<0, hence, if
2(0) = x,, and da(t)/dt = — Dux(t), then Dx(t) < 0, and x(¢) is increasing.
Also,

[(Dxe@) || = [| Dayl| < [ B@,) || + [[m™'2]| = 2r .
Hence,
| B2@) || = || De@) || + [[m™'2]| < 3r.

Hence, x(t) is bounded, and by Dini’s Theorem, as in Theorem 3.1,
we have x(t) defined on R+ and «(t) converging strongly to w. Again,
as in Theorem 3.1, U()w = w and, hence, D(w) =0, giving Bw =m™'z
and w = x,,.

Similarly, putting C(x) = B(x) + m™'2, we obtain v with Bv =
—m™z and v £ #,.. Then if

. av .,
v(0) = v, %(t) = — Bo(t)
_ dw B
(2 (O) - lL, dt (t) w (t) y

we have o(t) increasing, w(t) decreasing, and wv(f) < w(t). Hence,
v(t) is bounded, hence, converges strongly to x, with B(z) = 0.
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(b) For d > 0, (I + d'A)™* is T-nonexpansive. Hence,
A+ dl)™ =dI + dA)™

is T-Lipschitz, hence, monotonic. Given y in X, let (4 + d,[)x, = ¥
for a sequence d,— 0*. By Lemma 3.3, xz, may be assumed bounded.
Hence, d,x,— 0, hence, Ax,— v, hence, z,—~ A™'y. Suppose w =1y, and
(A+d, )z, =w. Since (A + d,I)™* is monotonic, z, < ,. Since the
positive cone is weakly closed, and z, — A™'w, A7'w < A™'y.

We recall a Banach lattice X with positive cone k is uniformly
monotone if for e > 0, there is d > 0 such that if f and ¢ are in K,
Il =1 and ||f+ g|| <1+ d, then ||g|| <e. A theorem of Birkhoff
[2], page 371, says that a bounded subset of a uniformly monotone
Banach lattice directed under < is convergent. If X has this property
it is fully regular (Krasnoselski [13]).

COROLLARY. Theorem 3.2 holds if X is fully regular.

LEmMmA 3.3. If A: D(A) — X, D(A) C X, a Banach space with
system, is hypermaximal r-accretive and A is locally bounded, then
given w in cl(R(A)), there is a metghborhood N of w, a bounded set B,
and d, > 0 with (A + dI)*NcC B for d < d,.

Proof. Suppose not, then there are sequences (z,), (d,) with
d, — 0% ||2,]|— >~ and (4 + d,[)z, — w. Suppose

A7(Bs,(w)) © Bi(0) < B,(0)

with # <k. Take s in B,(0) with A(s) in B,(w). Take d, with
dokk < r. If n large, z, is outside B,(0), and (4 + d,I)z, is in B,(w)
and d, < d,. Then (4 + d,I)s is in B, (w). But (4 + d,I)7'B,.(w) is
connected, hence, it contains s, with ||s,|| = k. Then

Afs) = (A + dI)(s) — dus,
is in B, (w), contradicting A~'(B:,(w)) < B;(0).

THEOREM 3.4. Suppose X an order complete lattice, and A an
order bounded subset of X such that B C A implies sup B and inf
B are in A. Suppose {U,: t in T} is a commuting directed set of
monotonic functions, with U,: D(U)— X. Suppose that for a in A,
D(U,) eventually contains a, in which case we may say a as in D(U,)
for small t. Then there is ¢ in A with U, = ¢ for small t.

Proof. Let M = {x in A: Ux = = for small ¢}. M is nonempty
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since inf A is in M. Let ¢ =sup M. Then ¢ is in A. Given z in
M, for small ¢ both  and ¢ are in D(U,), hence, Uec = Ux = x.
Hence, ¢ is in M.

We claim U is in M for small ¢. Given s small in T, Uc=ec,
hence, for small ¢, U,U,c = U,c. Therefore, U,(U,) = U, giving
U,cin M. Therefore, U,c< ¢ for small ¢ since ¢ = sup M. Therefore,
U.,c = ¢ for small ¢.

This generalization of the Tarski fixed point theorem also holds
for U, A— 24, with U, monotonic and U,(x) closed under sup for x
in A. We say U: X — 2% is monotonic if for 2 < y, we have:

(a) for w in U(®), there is z in U(y) with w < z;
and

(b) for z in U(y), there is w in U(x) with w < 2.

PROPOSITION 3.5. Suppose X is an order complete Banach lattice
with positive duality map. Suppose A: X — X 1s locally uniformly
continuous and locally generalized T-accretive. Then for a < bin X:
[A(e), A(b)]  Ala, b].

Proof. We assume Aa < Ab, since otherwise [A(a), A(b)] is empty,
and suppose y satisfies A(a) <y < A(b). Consider A,(x) = Ax — y for
2 in X. A, is locally generalized T-accretive and locally uniformly
continuous, hence, — A, generates a semigroup U(). A, =0,
hence, A,U{t)a <0 and U(t)a is increasing. A,(b) =0, hence,
A, U®t)b =0 and U(t)b is decreasing. By monotonicity of U(z), if =«
is in [a, 0], then for small ¢ = 0, we have

b=zUD=Z U= Ult)a=a .

Since {U(t)} is a commuting family of monotonic functions, and [a, b]
is an order bounded set closed under inf and sup on subsets, and
for small ¢ any given « is in D(U(t)), and if « is in [a, ], U@)x is
in [a, ] for ¢ small, we have by Theorem 3.4 an element ¢ of [a, b]
with U(t)c = ¢ for small ¢t. Therefore, A4,(c) = 0, giving A(e) = ¥.

In 84 we will consider operators on the space C(M) of continuous
real valued functions on a compact 7, space M. Such a space is
order complete if and only if M is extremally disconnected, i.e., the
closure of an open subset is open. A particular example of this case
is the dual of an (AL) space, also studied in §4. If X is an order
complete Banach lattice whose positive cone has nonempty interior,
then it is isomorphic as a Banach lattice to C(M) where M is ex-
tremally disconnected.



NONLINEAR EQUATIONS OF EVOLUTION 319

THEOREM 3.6. Suppose X is an order complete Bamnach lattice
with positive duality map whose cone K has nonempty interior.
Suppose B: D(B) — X is hypermaximal T-accretive and B~ is locally
bounded. Then B is surjective.

Proof. We have A = B(I + B)™ is T-accretive and Lipschitzian,
X— X. A7 is locally bounded. By the Corollary to Theorem 2.4,
A is hypermaximal T-accretive. To show R(B) = X, it is enough to
show R(4) = X, and by Proposition 3.5, it is enough to show that
for ¥ in X there are a,b in X, with ¢ < b and A(a) < y < A(b).

We take » > 0 in R, w and » in X, with B,(w) in v + K and
B,(v) in y — K. By Lemma 3.3, we have, decreasing r is necessary,
positive constants d, and k such that (A + dI)™'B,(w) < B,(0) and

(A + dI)"'B,(v) C B,(0) .

Take d < min {d,, k~*} and take b= (A + dI)~*w, and a = (A + dI)w.
Then a < b since (A + dI)~* is monotonic.

[ldb|| < 7, and ||da|| < r, hence, Aa is in B,(v) and Ab is in
B,(w), hence, Aa < y < Ab.

We complete this section with some results on fixed points of
T-nonexpansive functions.

PROPOSITION 3.7. Let G be a closed bounded convex subset of a
reflexive Banach lattice X. Let N,(G) = {x in X: d(x, G) < e}. Suppose
U: N,(G) — G s locally T-Lipschitz. Then (I — U)N,(G) is closed.

Proof. By translation, as in Theorem 3.2, it is enough to sup-
pose 2, is a sequence in N,(G) with |(I — U)zx,| < n~'z for some 2=0
in X. Since X is reflexive, we may impose an equivalent norm in
which X* is strictly convex. Take n large so that |[[n~'z| < ¢/8.
Now A =1-— U — n'z is locally generalized T-accretive, and locally
Lipschitzian, and — A generates a semigroup {U(¢): t in R*}. Suppose
2(t) is in N,(G) but d(z(t), G) = e/2. Let Vx(t) be a nearest point to
2(t) on G. Then we have, except on a set of measure 0, by Lemma 3.8,

L lat) - Vo) | < 20(t) — Vatt), 20)

= 2(J(x(t) — Va(t), Ux(t) — z(t) + n~'2)

= 2(J(@() — Vat), n7'2) — 2[|2@) — Va@)|F
< 26%/8 — 2¢*/4

= — /4.

Hence, N,(G) is invariant under {U(¢): t in R*}.
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Since Az, <0, U(t)r, is increasing as ¢ increases, and, hence,
converges to z in N,(G) with x — Ux = z/n. Similarly, we obtain y
with y — Uy = — 2/n and y < ¢, < 2. By Proposition 3.5, 0 is in
(I — U)ly,x]. By construction, (I — U)z =0 where z = lim 2(1),
2(0) = y, and dz(t)/dt = (U — I)z(t). Hence, z is in N,(G).

LEMMA 3.8. Suppose G is a closed conver subset of a Banach
space X with X* strictly convex. Let Ux be a nearest point to x on
G. Then 2J(I — U) is a selection of the subgradient of x— (d(z, G))%.

Proof. (a) We claim (J(x — Ux),z — Uz) <0 for  in X and z
in G. Let 2(t) = Ux + t(z — Ux) for ¢ in [0,1]. Then 2(f) is in G,
hence,

le —20) | = |l — Us|P.
Now
lle — Uz|[ = ||z — 20) | + 2(J(z — 2(?), 2() — Ux)
since J is the duality map. Hence,

0 = 2(J(x — 2(t)), 2(t) — Ux)
= 2t(J(x — 2(t)), 2z — Ux) .

Hence, (J(xz —2(t)), z— Ux) <0, and letting t—0*, we have z(¢t)— Ux,
and since J is demicontinuous, we have the result.
(b) Given z and ¥ in X, (|| — Uz|| — ||z — Uy|))* = 0. Hence,

ly — UylP + [|lz — Uzl — 2(J(x — Ux),y — Uy) = 0.
Hence,

ly — Uyl =z ||z — Uz|} + 2(J(x — Uz),y — Uy — @ + Ux)
= ||z — Uz|]? + 2(J(x — Ux), y — 2)

by (a), setting z = Uy.

PROPOSITION 3.9. Let G be a closed bounded convex subset of a
reflexvive Banach lattice X. Suppose there is e > 0 with U: N,(G)—G
T-nonexpansive. Then U has a fixed point.

Proof. Fix y in G; for p in (0, 1), we set U,z =pUzx+ (I — p)y.
U, takes N,(G) to itself, and ||(U,z — U,2)*|| = »||(Ux — Uz)*|| for
2z and 2z in N,(G). By the Corollary to Proposition 1.13, U, has a
fixed point, z,. Letting » —1, we have x, — Ux,— 0, since G is
bounded. By Proposition 3.7, (I— U)N,(G) is closed, hence, contains 0.
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COROLLARY. Suppose there is a T-nonexpansive retraction R:
N,(G) — G where G 1is a closed bounded convex subset of a reflexive
Banach lattice. Suppose U: G — G is T-nonexpansive. Then U has a
JSixed point.

Proof. UR: N,G)— G is T-nonexpansive, giving ¢ in G with
URx = x. But Rx = x, hence, Uz = z.

4. Equations of evolution in C(M). In the following we sup-
pose X = C(M), the space of real valued continuous functions on a
compact T* space M.

DEFINITION. T, a relation on X, is S-accretive if xTw and yTw
implies (¥ — v)(x — y) = 0. Operators of this type were considered
by Kacurovskii [9]. We see T is S-accretive if and only if T is
S-accretive. We will, for simplicity, restrict the discussion to single
valued operators.

DEFINITION. T: D(T)— X, D(T)C X, is hypermaximal S-accre-
tive, if S-accretive, i.e., (Tx — Ty)(x — y) = 0 for =,y in D(T), and
RI+A=X. U: DU)—- X, D(U)cX, is S-nonexpansive if
|Ux — Uy| £ |z — y| for z,y in D(U).

PROPOSITION 4.1. If U s S-nonexpansive, then I — U s S-ac-
cretive.

Proof. Given z,y in D(U),
(- Ux) — (y— Uy)e —y) = [o—y[!— |Uz — Uyl |z — y|

=0.

PropPoOSITION 4.2. T s S-accretive if and only if (I + eT)™* 1is
S-nonexpansive for e > 0.

Proof. Suppose T is S-accretive, and ¢ > 0. Suppose (I + eT)w==z,
I+ eTl)v=y. Then (x— y)(w— v) = (w — v)’. Hence, |z —y|=
|w — v|, and (I + eT)~* is S-nonexpansive.

Suppose T is not S-accretive, then there is w and v in X and s
in M with w(s) > v(s) and Tw(s) < Tw(s). Then there is an ¢ > 0 with

w(s) + eTw(s) = v(s) + eTv(s) .

Hence, v(s) = w(s), a contradiction.

ProprosiTION 4.3. If T: D(T)— X generates a semigroup U(t),
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then T is S-accretive if and only if U(t) is S-nonexpansive for t in
R*.
Proof. If
_%U(t)x - — TU@®)e,

d = —
—%U(t)y = —TU(®)y,
then
%(u(t)w — U®)y)’ = —2(U@®)x — UR)y)(TU{t)x — TU®)y) -

The Lh.s. £ 0 if and only if U(¢) is S-nonexpansive.
The r.h.s. < 0 if and only if T is S-accretive.

PRrOPOSITION 4.4. If da(t)/dt = — Tx(t) and T is S-accretive, then
| Tx(t)| s decreasing.

Proof.
|2 + k) — 2@)| < |2(s + h) — z(s)]
for s < ¢, since U(t) is S-nonexpansive. Dividing by % and letting
h— 0%,
| Ta®) | = [ Tx(s) | -
ProposiTION 4.5. If T: X— X s S-accretive and continuous

from line segments to the topology of pointwise convergence, then T
18 continuous and monotonic.

Proof. Given u, in X, (u, + n'u) converges to w, where u is
the unit of X. Hence, T(u, + »~'u) converges pointwise to T(u,).
If m > n, then

(T(uy + m™u) — T(u, + nu))(m™> — v Hu =0,

hence, T(u, + n~'u) is decreasing. Therefore, by Dini’s theorem,
T(w, + n~'w) converges strongly to T(w,). Similarly, T(w, - n'w)
converges to T(u,). Given n, if (u,) converges to u, then eventually

Uy — Cn)7'u < U, < U, + Cn)7'u,
giving
T(u, — nlu) < T(uk) < T(u, + n'u) .

Hence, T(w;) converges to T(u,) strongly, and T is continuous. If
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r <y, then ¥y + n'u — & = n"'u, hence, T(y + n~'u) = T(x). Therefore,
T(y) = T(x) and T is monotonic.

PROPOSITION 4.6. If T: D(T)— X is hypermaximal S-accretive,
then T is maximal S-accretive.

Proof. Suppose (w — Tv)(u — v) =0 for v in D(T). We want
to show that « is in D(T) and w = T(w).
Given a in X, and ¢ > 0, choose v, with

I+ Tyw,=u+w+ ta.

Then
uw+w—v, — Tv)u —v)=0.
Hence,
(—ta)(u —v,)=0.
Hence,

alu —v) Z0.
Sinece (I + T)™' is S-nonexpansive, and

v, =T+ Ty (u + w+ ta) ,

we have
v,—> I+ T)'(w+ w) as t—0.
Therefore,
au — I+ T)'(w+w)<0.
Hence,

u-—-I+ Ty (u+w =0,
giving  in DI + T) = D(T), and T(u) = w.

ProrosiTION 4.7. If T is S-accretive, then T 1is accretive and
T-accretive.

Proof. If 2 in X, the Jx is the set of bounded real Baire
measures m on M with support in |2|7%(]|z||), with total variation
[|«||, positive where x is positive and negative where x is negative.

If x,y are in D(T), and m is in J(x — ¥), then (Tx — Ty)(x—y) =0
implies Tx — Ty is positive on the support of the positive part of m
and negative on the support of the negative part. Hence,

(Tx — Ty, m) = 0.

If n is in J(® — y)*, then Tx — Ty is positive on support of n=.
Hence, (Tx — Ty, n) = 0.
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THEOREM 4.8. If T: X — X s continuous from line segments to
pointwise convergence, and S-accretive, then — T generates a strongly
C' semigroup on XX R*.

Proof. Given u, in X, there is for ¢ > 0 a solution of
(a) i‘%—(t)z—Tu,(t—e) t=0

() = U, t<0

since by Proposition 4.5, T is continuous.

There is an » > 0 and M > 0 in R with ||T(x)||< M if ¢ is in
B,.(u,). Then there is an interval [0, 2] of R such that all solutions
of (a) are in B,(u,) for t < h.

Suppose ¢, d > 0.

Tzﬁ-wm — ) = —20,(t) — () (Tu(t — &) — Tuylt — )

= 2((w(t — €) — (Ue(1)) — ualt — d) — wa(@))(Tw.(t — €) — Tua(t — d))

since T is S-accretive.

Since
1wt —e) — uQ@) || = eM,
[|ua(t — d) — us(®)|| = dM,
and
|| Tw(t — e) — Tuy(t — d)|| = 2M ,

we have the r.h.s. < 4M*d + e)u where u is the unit of X.

Now (u,(0) — %4(0))* = 0.

Hence,

0 = (w,() — ua(?))” = RAM*(d + e)u
for ¢ in [0, A].

Hence, u, is a Cauchy net of continuous functions [0, k] — X,
hence, convergent to a continuous function u: [0, k] — X. Also,
(s — e) converges to u(s) uniformly on [0, h]. Hence, Tu, (s — e) con-
verges to Tu(s) on [0, A].

Now for e > 0, and for ¢t < h, by (a),

w,(t) = o — gtTue(s — ods .
0
Hence,

u(t) =y — S:Tu(s)ds ,

giving u(t) a C* function: [0, 2] — X.
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Suppose «(¢) is defined on [0, k). By Proposition 4.4, | Tu(t)| < | Tu,|,
hence, if ¢, — k-,
lutt) — it | = |1 Tutt) || at
= (G — ) [ Twol

giving u(t,) a Cauchy sequence, hence, convergent to wu(k).
By the first part of the proof there is a solution on an interval
[k, k + h], with initial point w(k), hence, there is a solution on R*.

COROLLARY. If T is continuous and S-accretive: X — X, then T
is hypermaximal S-accretive.

Proof. Since T + I is continuous and S-accretive, —(T + I)
generates a C* semigroup U(f) for ¢ in B*. Take y and « in X, then

LUt - Uy = — 20 — Uty -
Therefore,
U2 — U@yl = e jo —yl.
Letting y = U(h)x and letting A — 0,
[ TU@)x| < et | Tx| .

Therefore,
|U@)r — Uls)x| < |e~* — e *| | Tal,

hence, U(t)x is a Cauchy net, hence, convergent to an element z of
X, as t— . Then U(t)z =2 for t in R* by continuity. Hence,
(T + I)2 = 0. By translation we have R(T + I) = X.

THEOREM 4.9. If T is continuous, S-accretive, and proper X— X,
them T s surjective.

Proof. By Proposition 4.7, T is accretive, and by the Corollary
above, T is hypermaximal accretive. Since T is proper, T is locally
bounded and T takes closed balls to closed sets.

Hence, by Theorem 5.3 of Browder [7], R(T) = X.

THEOREM 4.10. If X 4s the dual of an (AL) space, Tyt X— X
s comtinwous and S-accretive, T,: D(T)— X 1is hypermaximal S-
accretive, T = T, + T,, then —T generates a weak* C' semigroup on
D(T) <X R*.

Proof. Given u, in D(T,), we have, by Theorem 4.8, for e >0
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a solution for ¢ in R* of

du

2 (Y = — T t
(a) 7 (®) oW (f)

u,(t) = u,
where
T.=T,+ T(I+ eT)?*=T,+ eI —eT)™) .

We let v,(t) = (I + eT) " u,(¢).
Now since T, is S-accretive,

Dieiy| = [ L) < |~ Tau| + | T -

There is M >0 and » > 0 in R such that if z is in B.(w,), then
[| To(x) || < M. Thereis an h > 0 such that if ¢ < h, then the solution
of (a) is in B,(u, for t in [0, 2], independently of e.

Hence, if ¢ is in [0, k], ¢ > 0, then

| Ty, (8)] < \dit“"’“)‘ 4 M< | T + | Towo] + M= M, .

Now v,(t) — u.(t) = eT\v,(t). Hence, |v,(t) — ()| < eM, for ¢ in [0, A].
Given e, d > 0,

g—;(ue(t)) — () = — 2w(t) — () (T10.(t) — Tiva(t))

= 2(() () — va(@) — we(t) + ua(@))(T10.(8) — Tiwa(?))
< 4Mi(e + d) .
Hence,
(w(t) — u,(2))* = hAM(e + d)u
for ¢ in [0, A].
Hence, w,(t) converges to wu(t) uniformly on [0, ], where u is

continuous. Hence, v,(f) converges uniformly to u(¢) on [0, ]. From
(a) we have for ¢ in [0, A,

u(t) = u, — g:Teue(s)ds .

Tu.(s) = Tou(s) + Tv.(s) -

We have T,u,(s) converging to Tu(s). T.v.(s) is bounded, hence,
there is a weak* cluster point w. For v in D(T), (T\w.(s) — Tv)
(v.(s) —v) =0. Hence, (w— T\w)(u(s) —v) =0 since the positive
cone is weak* closed. Since T, is maximal S-accretive, u(s) is in
D(T,)) and w = T,u(s). Hence,
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u(t) = u, — S:Tou(s)ds - S:Tlu(s)ds
= U, — S:Tu(s)ds .

Hence, u(t) is weak* C' on the interval [0, Z].
As in Theorem 4.8, there is a solution wu(t) on all of R*.

COrROLLARY. If X, T,, and T, are as in Theorem 4.10, then
T, + T, is hypermaximal S-accretive.

The proof is the same as the Colollary to Theorem 4.8.

We note that in this section we used the fact that the Banach
lattice X is an algebra whose unit is an order unit . Stone’s
algebra theorem says that X is isomorphic with the Banach lattice
C(M) of continuous real valued functions on M, where M is the set
of multiplicative positive linear forms f satisfying f(u) = 1.

5. Ergodic theory.

THEOREM 5.1. Suppose X is a uniformly convex Banach lattice
with positive cone K. Suppose U: K— K is nonlinear, with W:
K — K linear, and Ur < Wax for x in K. Suppose || W|| < 1. Then
for x in K, S,x = n~t >S,"Ux is convergent to x, in K with Ux, < x,.

Proof. Suppose G is the convex hull of {Uix: ¢ in Z*}. Let
m = inf {||k]]: h in G}. Take ¢ > 0. Then there exists g in G with
gl £ m + e, with g = Dfa,U'z, Ya, =1,a;, = 0. For n in Z+ let
T,=n">rWi Then ||T,9|| < m+ e since || W|| < 1.

Whg = i a;, WUz

k
= >, Uttty
i=1
Hence,

n k
Thgzn3 X a U

h=1 =1
n k n+k
=nt >, 0% — 02,0, Ux + n* 3, ¢;U'x
h=1 i=1 i=n+1
where b; and ¢; are in [0, 1].
Hence,
k . n+k 3
S < T + n"(Z Uiz + >, U@x) .
i=1

i=n+1

Hence,
1S,z]| = m + 2¢ if kn'l|z] <e/2.



328 BRUCE D. CALVERT

But S,z is in G, giving ||S,z|| = m.

By the uniform convexity of X, S,x converges, and to the point
2, of cl(G) with minimum norm. Now G + K is invariant under W,
and, hence, cl(@ + K) is too. Therefore, Wux, =, Therefore
Uz, < x,.

COROLLARY. Suppose X is a uniformly convex Banach lattice,
and U: X — X s linear and positive, with ||U|| < 1. Then for x in
X, S,x is convergent.

Proof. If ¢ is in K, the result follows from the theorem on
putting U = W. For general z, S,x = S,(z*) — S,(x).

THEOREM 5.2. Suppose X is a uniformly convex Banach lattice
with positive cone K. Suppose {U(t): t in R*} is a one parameter
semigroup of nonlinear operators U(t): K— K. Suppose {W(t): t in R*}
s a one parameter semigroup of positive nonerpansive linear opera-
tors. Suppose Ult)x < W)z for x in K and t in R*. Then for x
mn K,

S, = t“lgz U(s)x

18 convergent to x, in K with Ult)x, < x, for t in R*.

The proof is the same as in the case of the discrete semigroup
of Theorem 5.1.

THEOREM 5.3. Suppose X is a Banach lattice with X and X*
uniformly convex. Suppose A: D(A) — X 1is the sum of a hyper-
maximal T-accretive and a demicontinuous generalized T-accretive
Sunction, and A0) = 0. Suppose B: D(B) — X is linear and hyper-
maximal T-aceretive. Suppose D(A)C D(B) and K Ccl(D(A)), and
for © in KN D(A) we have Ax = Bx. Let U(t) be the semigroup
generated by —A. Then for x in K,

S,z = t“IS:U(t)x

converges to x, in K, with Az, =0 if x, is in D(A).

Proof. Let W(t) be the semigroup generated by —B. Then
W(¢) is linear and T-nonexpansive, hence, || W(t)z|| < ||z|| for = in K.
Suppose x is in D(4) N K. Let 2(t) = U(t)x and y(t) = W()x. Then,
except on a set of measure 0,
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d + 112 . o+ d _ d

L6 - v®) 1 < 2(I@) — v0)),-alt) - Ly(t))
= —2((@(®) — ¥(®)"), Aa(t) — Ba(t)
— 2(/(@(®) — v®)"), Ba(®) — By(®)

since 2(t) is in D(A) and, hence, in D(B).

Since Ax(f) = Bx(t) and B is T-accretive the r.h.s. is < 0. There-
fore, x(t) < y(¢t) for ¢ in R*. Extending U(t) and W() to K by
uniform continuity, we have U(t)x < W(t)x for every « in K and ¢
in B*. By Theorem 5.2, S,x converges to x, in K with U(t)x, < x,
for ¢t in R*. If x, is in D(A), we have in the weak topology

— Az, = lim t(U@®)x, — x,) ,
giving Ax, = 0.

COROLLARY. The result holds if K C cl(D{B)) and D(B) < D(A). In
this case, x, is in D(A).

Proof. With notation as above,

I

—d%— @@ —y@)*IF = —2(J(@) — y@)*, Az(t) — By(?))

= —2(J(x(®) — y@)*, Ax(®) — Ay(®))
2(J(x(®) — y(0)*, Ay(t) — By(d)

sinee y(¢) is in D(B) and, hence, in D(A),
= 2k[(=@) —y@)*|F

since A is generalized T-accretive.

Since z(0) = y(0) = x, we have x(t) < y(¢) for ¢in R*. As above,
Sz converges to w,, where z, is in F(W()) for ¢t = 0. Now u, is in
D(B) since lim ¢ '(W(t)x, — «,) exists. Therefore, x, is in D(A4),
giving A(x,) = 0.

THEOREM 5.4. Let W be a positive linear operator wn L*(S,B,m)
with [|W|| < 1. Suppose W extends to a positive linear operator W,
wn L*(S,Bym) with ||W,|| <1l. Suppose m(S) < «, and WQ1) = 1.
Let K be the positive cone in L*(S,B,m). Let U:. K— K satisfy
Ux < Wz for all x. Then for = in K, S,x = n' 22, Uz converges
to x, in K and sup(S,x, ;) converges to x, m a.e.

Proof. By Theorem 5.1, S,x and T,x converge to z, in K. T,x
converges to x, m a.e., by the individual ergodic theorem (Yoshida
[22], page 388). For all n we have
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%, = sup(S,x, x,) < sup(T,x, ) .

Hence, sup(S,z, x,) converges to xz, m a.e.

PrOPOSITION 5.5. Given the conditions of Theorem 5.1, let S,:
K— K be defined by Syx = %, Suppose U is continuous and mono-
tonic. Then

SoUx = S = USx = Sz = S (n = 2),
and R(S}?) = F(U).

Proof.
S, Ux = n“lg Uix
= Sx + n (U2 — Ux) .

The second term converges to 0; therefore, S,Ux converges to S,x.
We showed in Theorem 5.1 that S = US,x. Hence, U"S,x is a
decreasing sequence, since U is monotonic. U"S,x is convergent since
X is uniformly convex, and to a fixed point z of U since U is con-
tinuous. Therefore, S,Sx converges to 2z, giving S = 2, and
Sex < USyx. Since 2z is in F(U), S,z = 2. Hence, Sz = 2, giving
Srx = S2w for » = 2. This also gives R(S?) = F(U).

6. Monotonic generators. In the theory of equations of evolu-
tion the property of being locally T-Lipschitz was the weakest con-
dition stronger than monotonicity. If A: X— X is locally T-Lipschitz,
there is a local solution w for u, in X to

(a) u(O) = U
-(%—u(t) = Au(t) .

Supposing A is merely monotonic, we would like a solution of (a).

DEFINITION. Let X be a topologial lattice. A: X — X is locally
order bounded if for v in X there is a neighborhood N of v with
A(N) order bounded.

THEOREM 6.1. Suppose X is an order complete Banach lattice.
Let A: X— X be monotonic, continuous, and locally order bounded.
Then for w, in X there is a strongly C* solution u to (a) on some
interval [0, k.

Proof. For d > 0 the space of equivalence classes of integrable
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functions f: [0, d]— X is an order complete Banach lattice, L'([0,d],X).
For f integrable [0, d] — X, Af is integrable [0,d] — X, giving an
operator B: L'([0,d], X)— L]0, d], X). If f(s) = g(s) a.e., then
Af(s) = Ag(s) a.e. Therefore, B is monotonic. Suppose f is integrable
[0, d] — X, then ¢—»u, + S f(s)ds is integrable [0, d]— X, thus giving

an operator C: L'(]0, d], X) — L'([0, d], X). If f(s) = g(s) a.e., then

Uy + Stf(s)ds = U, + Stg(s)ds
0 0
for all ¢ in [0, d]. Therefore, C is monotonic.
There is a fixed point of CB by the Tarski fixed point theorem
if there is an order interval [a, b] invariant under CB. We want a,
in X and d > 0 with

a, < U, + StA(al)ds
0

= %, + tA(a,)
for ¢ in [0, d].

If A(X) is order bounded, there is g =0 with A(x) in [—g, ¢]
for x in X. Take a, = u, — g, and d = 1. Then if a is the equivalence
class of ¢t — a,, we have CBa = a. Taking b, the class of t—u, + g,
we have CBb < b. Therefore, there exists u: [0, 1] — X with

u(t) = StAu(s)ds.
0
In the general case, we have, for 2~ = 0, w,: [0,1] — X with
un(t) = St sup(— A, inf(h, Au,(s)))ds .
0
Since A is locally order bounded, there exist » >0 and g = 0 with
AB.(u)) C[—g,9]. Now [[u,(t) — wll = ¢|[gll. Take d=r/llgll.
Then u,(t) is in B,(u,) for ¢ in [0, d]. Hence, Au,(t) is in [—g,g].
Therefore, for ¢ in [0, d] we have
u,(t) = StAug(s)ds .
Then u = u, is differentiable with du(f)\dt = Au(t), and u(0) = u,.
COROLLARY 1. Suppose X ts an order complete Banach lattice
with order unit. Let A: X — X be monotonic and continuous. Then
for u, in X there is a strongly C' solution to (a) on some interval

0, d].

Proof. A is locally order bounded since continuous.
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THEOREM 6.2. Suppose X 1s an order complete Banach lattice
with positive cone K, such that bounded subsets of X directed under <
are convergent. Suppose A: X— X 1is monotonic, continuous, and
there is a meighborhood N of u, with A(N)C K. Then there is a
strongly C* solution (a) on some interval [0, d].

Proof. Take M and r such that ||Az||< M for = in B,(u).
Then take d <r»/M. For ¢t in [0,d], take u,(t) = u,, and define
inductively

Uiat) = Uo + StAu,,(s)ds .
0

Then (u,) is an increasing bounded sequence in L'([0, d], X), hence,
convergent to an element u of L'([0, d], X). For s in [0, d], u,(s) is an
increasing sequence convergent to u(s), and Awu,(s) is an increasing
sequence convergent to Awu(s). Hence,

u(t) = u, + StAu(s)ds
for t in [0, d], giving the result.

We could use the same technique to study the temporally inhomo-
geneous problem, and, indeed, the functional equation du(t)/dt=f(P,u,t),
where P, is the function [—¢, 0] — X defined by Pu(s) = u + s).
Also, the theory could be stated in terms of a locally convex vector
lattice.

7. G-accretive functions. If G is a closed convex subset of a
reflexive Banach space X, there is a multivalued map ¢ — Ux taking
2 to points of G which are nearest to x. If X is strictly convex,
then U is singlevalued. Suppose X is a reflexive Banach lattice and
G = — K, the negative cone. Then U=x contains —2~, (I — U)x
contains z*, and 2 — 2J(z*) being a selection of the subgradient of
x — ||2*|]® is a particular case of the following result.

PROPOSITION 7.1. Let G be a closed convexr subset of a Banach
space with strictly convex dual. Then 2J(I — U) 1s a subset of the
subgradient of x— (d(z, @))%

This was proved as Lemma 3.8.
DEFINITION. Let G be a subset of a Banach space X with duality

map J, and U be a function taking points in X to closest points in
G. Wesay V: D(V)— X, D(V)C X, is G-nonexpansive if
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d(Ve — Vy, @) = dx — 9, G)

for « and y in D(V). We say A: D(A) — X, D(A) C X, is G-accretive
if for ¢ and y in D(4), JI — U)(x — v), Az — Ay) = 0.

If G = {0}, then I — U = I, and we are back in the nonexpansive
and accretive case. If G = —K, then we are back in the T-nonex-
pansive and T-accretive case. When G is a compact convex circled
subset of X, we can directly generalize some results on acecretive
operators.

PROPOSITION 7.2. Let G be a closed convexr subset of a Banach
space X with strictly convexr dual. Suppose u and v are strongly
continuous and weakly differentiable R — X, with du(s)/ds = — Tu(s)
and dv(s)/ds = — Tv(s). Then

I — U)u() — @), Tu) — Tv() = 0
if and only if d(ut) — v(t), G) is decreasing.

Proof. Let q(t) = ||(I — U)(u®) — v@®)]|]>. By Proposition 7.1,
q@®) — q(s) = 2(J(I — U)(u(®) — v(@), w(@) — v(t) — uls) + v(s)) -
Dividing by ¢ — s and letting s — ¢~, we obtain

@{.W%‘iisl} < —2(J(I — U)w(t) — v(t), Tu(t) — To)) -

Since the Lh.s. is < 0 if and only if d(u(t) — v({t), G) is decreasing,
one implication follows.
The technique of Proposition 1.11 gives the converse.

THEOREM 7.3. Suppose X is a Banach space with X* strictly
convex, and G compact convex circled subset of X. Suppose T: X—X
18 G-accretive and locally uniformly continuwous. Then — T generates
a strongly C* solution to dx(f)/dt = — Tx(t), x(0) = x,.

Proof. (a) Given #, in X and ¢ > 0, we have a solution to
d
—,(t) = —Tx(t — t=0
Lot = —Tut — o)

z,(0) = %, .

Now there exist positive constants » and M such that || T(B,(x)) || < M.
Then there is d > 0 such that all solutions x,(t) are in B,(x,) for ¢
in [0,d]. For e and f> 0 and ¢ in [0, d], we set

2.5(8) = [[(I = U)(@() — 2|
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Tim { qe~f(2 — 9e.s(8) b= 2(0a - vy - xAt»%ace(t) - %xfa)

st — 8
= —2(JI — U)(®,Q@) — (), Ta,(t — e) — Tu it — 1)) -

(b) By the local uniform continuity of 7' we may assume 7» is
small enough that T is uniformly continuous on B,(%,). Then there
is a function s: R*— R* with s(k)—0 as k—0, such that || Te— Ty|| =
s(k) if # and y are in B,.(x,) and || — y|| < k. Now

|zt —e) — 2@ = eM, |t — f) — x:0) ]| = fM,
and ||, (t) — x4(t)|| < 2r. It follows that

| Tw,(t — €) — Ta.(t) — Tt — f) + Tapt)|] <lseM) + s(fM) .
Hence,

—2((I — U)(@(t) — o,(t)), Tat — &) — Ta e — £)
= =2(JU — U)(@. () — 2x(¢), T, @) — Txs{))
+ 20T — U)@t) — ,(t), To(t) — Toy(t) — Tt — o)
+ Tapt — f) =12 — U)(@.(t) — x@) || || Tw,(t) — Ts(t)
— Ta,(t — e) + Tt — f)l| < dr(s(eM) + s(fM)) .
Now given g > 0, there is 2 > 0 such that if e, f < &, then
dr(s(eM) + s(fM) =g .
Hence, for e, f < h, we have

HB{ qe,f(ti = Ze'f(s) } <g.

s—t—

Since ¢, +(0) = 0, we have ¢, (t) < gt < gd for ¢ in [0,d]. Hence,
I — U)(x,(t) — x;(t)) — 0 uniformly on [0, d] as e, f— 0.

(e¢) We claim F = {U(x, — x;), e, f < 1} is relatively compact in
C([0, d], X). {z.} is an equicontinuous family since

fe@t) — 2s) || = M|t — s|.

Hence, {x, — x;: e, f < 1} is equicontinuous. U is Lipschitzian, hence,
F is equicontinuous. Since F'[0, d] is relatively compact in X, F is
relatively compact by the Arzela-Ascoli theorem.

Take a sequence e(n) — 0 in R. Writing »,., = «,, there is for
n fixed a subsequence U(x, — z,) of U(x, — z,) convergent to z, in
cl(F) as m' — co. There is a subsequence z, — z in cl(F') as n'— oo.
Since (I — U)(x, — «,)—0, we can find, given e > 0, a sequence
2, (1) = 2(¢) such that ||(z(¢ + 1) — 2(¢)) — z|| < e27*. Therefore,

lo(i) — x(1) —izl][ < e.
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But [|z(?) — «(1)|| < 2 for all 4, so that z = 0. Hence, () is a Cauchy
sequence, hence, converges to a continuous function z: [0, d] — B,(x,).
(d) For each 7+ we have

(i) (t) = @ — S:Tx(i)(s — e(w'(i)))ds -

Now =z(¢)(s — e(n’(?))) — x(s) uniformly on [0,d] as 72— . Hence,
Tx(?)(s — e(n'(2))) — Tx(s), and we have

2(t) = @, — S:Tx(s)ds

for ¢t in [0, d]. Hence, x is C', and dx(t)/dt = — Tx(t).

We have uniqueness to within the compact set G. That is, if
x(t) and y(t) are solutions, then x(t) — y(t) is an element of G, since
(I — U)(=@) — y(t) = 0.

COROLLARY (Peano). Suppose f: R* — R ts continuous and 2, is
an element of R". Then there is a solution to dx(t)/dt = f(x(t)),
2(0) = x,.

Proof. Take G a large set so that the notion of G-accretivity is
void for points near x,. The local uniform continuity of f follows
from the local compactness of R".

THEOREM 7.4. Suppose X is a Banach space with X* uniformly
convex, and G a compact convex circled subset of X. Suppose T:
X — X 15 G-accretive and demicontinuous. Then —T generates a
weakly C* solution to dx(t)/dt = — Tx(t), 2(0) = x,.

Proof. The proof is the same as in Theorem 7.3 except in (d)
where the integral is taken in the weak topology, and in (b) where
the uniform continuity of J is used, as is shown below.

(b)

‘h_m‘{ 2..s() — ¢. f(s)} < —2UJ(I — U)@.(t) — o,(2), Tau(t — e

=t~ t—s -
— Tt — 1))
as in Theorem 7.3. Since 7T is G-accretive, we have
r.h.s. < 2(JI — U)(z,(t —e) — x(t — f))
— JI — U)(@.(t) — 2,1)), Tt — €) — Tw,(t — f))
S AM||J(I— U)(w.(t —e) —w,(t — ) — J(L — U) (@) — 24(2))
< 4M s2(e + f)M)

where s: Rt — R* satisfies s(k) -0 as k—0, and ||Jx — Jy|| < s(k)
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if ||z — y|| <k, for # and ¥ in B, (0) .

Given g >0, we take h >0 such that if e, f<h, then 4M
s(2(e + f)M) < g. Since ¢, ;0) =0, ¢, ,(t) <tg <dg for ¢ in [0, d].
Therefore, (I — U)(z,(f) — 24(t)) — 0 uniformly on [0, d] as e, f— 0.

PROPOSITION 7.5. Under the conditions of Theorem 7.3 or T.4,
the solution x(t) is defined for all t in R™.

Proof. It is enough to suppose there is a solution x(f) on [0, k),
and show x(f) is convergent as ¢—k~. Take % in (0,%k). Then
{z(t): 0 < t < h} is relatively compact. We recall that given a bounded
subset A of a complete metric space X, the ball measure of noncom-
pactness of A, written C(A4), is inf{a > 0: A can be covered by a
finite number of balls of radius <a}. C(4) =0 if and only if cl(4)
is compact. The concept is developed in Nussbaum [17] and Ambro-
setti [1]. We recall /1 X— X is a C-k-set contraction if C(f(4)) <
k(C(A)) for all bounded subsets A of X.

Given ¢ > 0, we may, since C{z(t): 0 <t < h} =0, take t,---t,
in [0,h) such that {x(t): 0=t <h}lC U{B,(z;): 1 <1=<mn} where
x; = x(t;). Suppose y in {x(t}: 0 < ¢ < h} is in B,(x;). Since

d 2
—= 1T = U)a:®) — v

= —2(JU — U)@) — y@)), Tot) — Ty(®)) =0,

y(t) is in B,(z;(t) + G) for t < k — h, where z;(t) is any solution to
du(t)/dt = — Tu(t) with u(0) = x;. Hence,

{x@): k—h <t <Kk CU{B.)(x;(t) + G): 0=t <k—h 1=<i=<mn}.
Hence, C{x(t): k—h <t < k} < a. Since a was arbitrary,
Clet): k—h =t <k}=0.
Hence, x(t) converges as ¢t — k™.

The semigroup U(t) generated by —7T is taken as U(t)xz = all
2(t) such that x(0) = x and dx(s)/ds = — Tx(s). The property

U U®) = Ut + s)

holds, but homological properties of U(f) are unclear; for example,
the existence of a continuous selection.

PRrROPOSITION 7.6. Under the conditions of Theorem 7.3 or 7.4,
@I + T) generates a semigroup {U(t): t i1n R*} with U(t) a C— e % —set
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contraction, for d,t = 0.

Proof. We note I is G-accretive, since

JI-U)x,x)=CJI— U)x,I — U)x) + (JI — U)x, Uz — 0)
> ||(I — U)x|*  since 0 is in G.

Hence, (dI + T') generates a semigroup U(t). Given ¢t = 0, suppose
AC U{Byx,): 1 <1< n}. Given o in A, suppose a is in B,(x;).

—&d? 1T — U)a(t) — 20| < —2d||(I — U)alt) — z:(&)|F -

Hence,
I — U)a@) — @)l < e |[(I — U)la — =) ||
S e ?|la — x| < be?t .

Therefore, a(t) is in B,(z;(t) + G) where k = e~**b. Hence,
UAC U{Bu(z:i(t) + G): 1 <1< m}.
Hence, U(t) is a C — e % —set contraction, since C(U(t)A4A) < e “*C(A).

PROPOSITION 7.7. Under the conditions of Proposition 7.6, with
d > 0, there is a compact convex set closed under U(1).

Proof. We have, if dx(t)/dt = —(dT + I)x(t), that

d . dx
¥ I — U)z@)|]* = 2(J(I — U)a(t), —Et—(t))

—2(J(I — U)x(t), da(t) + Tx(t))

=24 ||(I — U)z@) (" — 2(JU — U)(t), Tx(¢))
=24 |[(I — U)x@)[I* + 2 [[(I — U)x@) ||| T(0)]
0 if ||(I— U)a()]| = d || TO)]] -

Hence, {z in X: ||z|| < 2d7|| T(0)|] + diameter (G)} K, is closed under
{Ut): t in R*}. Take 2 in K, and let H = {U(t)z: t in R*}. If
C(H) > 0,C(H) = C(UQ)H) < ¢*C(H) since

H=UQL1HU{U@s)x: 0 <s=<1}.

A IAIA

Hence, C(H) = 0, and H is relatively compact. Let L ={K: K a
closed convex subset of K,, U1)Kc K and cl(H) N K is nonempty]}.
Since cl(H) is compact, if {K,} is a chain in L, then N (X, N cl(H))
is nonempty, hence, N K, is in L. Therefore, by Zorn’s lemma,
there is a minimal element K, of L. Let K, be the convex closure
of UK,. K,is in L. If C(K,) > 0, then
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C(K,) = C(UOK,) < C(K,) ,

contradicting the minimality of K,. Hence, C(K,) =0, and K, is
compact.

PrOPOSITION 7.8. Under the conditions of Theorem 7.3 or 7.4,
R(T + dI) = X for d > 0.

Proof. By Proposition 7.7 the fixed point set of U(l): K, — K,
F(U@)), is nonempty. F(U(1)) is compact since U(1) is a C — e *-set
contraction by Proposition 7.6

The same proof shows that for n in Z+ the set F(U(@2™)) is
nonempty and compact. Moreover, F'(U((2™)cC F(U(@2™™) for n>m.
It follows that there is an element w, of K, having the property
that for all » in Z+, U@ ™)u, = u,. Therefore, (dI + T)u, = 0. By
translation of 7' we have R(dI + T) = X.

THEOREM 7.9. Under the conditions of Theorem 7.3 or 7.4, T
locally bounded implies R(T) is dense in X, and T proper implies
R(T) = X.

Proof. We consider the operators S: ¢ — T(x + G) and S,: v —
(eI + T)(xz + G). To show R(T) is dense in X, we use R(T) = R(S)
and show R(S) is dense. By Proposition 7.8, R(S,) = R(el + T) = X.
For y in X,

Sy =(l+T)'y+G.

We show S, is semi-invertiable, that is,

(a) for v in X, S,7*(y) is connected, and

(b) S, is u.s.c.
Suppose a and b are in S,7'(y). Then there exist » and v with a — u
inG and b — v in G, such that (e/+ TYu =y and (el + T)v =y. It
follows that

0=(u+ Tu —ev+ Tv, JI — U)(u — v))
zel|— U)u—v)lf*.

Hence, u — v is in G. Now (4 + G) U (v + G) is connected, and is
contained in S, *(y), and contains a and b. Hence, S,7'(y) is connected.
To show S, is u.s.c., it is enough to show y — (eI + T)~'y is u.s.c.
We want to show that if N is a neighborhood of (el + T) 'y, and
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(eI + T)z, converges to y, then z, is eventually in N. Take z in
(eI + T)™'y. Then (I — U)(z, — 2) converges to 0. Hence, a subse-
quence, z,, is convergent to some element w of X. Then (el + T)z,
converges weakly to (el + T)w. Hence, w is in (el + T)™'y. Hence,
z, is eventually in N. Hence, 2z, is eventually in N.

Now S, converges to S uniformly on bounded sets, i.e., if BCX
is bounded, then for a > 0 there is ¢, > 0 such that for # in B and
e = e,

S.(x) < B,S(x)
and

S(z) C B,S.(%) .

Now Theorem 5.1 of Browder [7] says: Let X be a topological space
with a bounding system of subsets {B,}, Y a connected, locally con-
nected uniform space. Let S be a mapping of X — 2%, and suppose
there exists a directed set {S,: ¢ in E} converging uniformly to S on
each B,. Suppose for each y, in Y, there is a neighborhood N of v,
with S™'(IN) bounded with respect to the given bounding system.
Then

(a) R(S) is dense in Y, and

(b) if S(B,) is closed for each m, then R(S) =Y.
We consider the bounding system {B,(0): % in Z*} on X. To apply
the theorem above, we want S~ locally bounded, but

SH{N)=T"N)+ G,

which is bounded if T-*(N) is. By (a), R(S) = R(T) is dense in X.
If T is proper, T(X) is closed, and, therefore, R(T) = X.

8. Solutions by smoothing. We recall that to show the exis-
tence of a zero of A: D(A) — X such that R(A + I) = X and

(Az — Ay, Jx —y)) = clle —y[f, e >0,

we take an arbitrary v in X and solve u(0) = v, du(t)/dt = — Au(t),
and find #(¢) is convergent to x in X with Az = 0.

The same approach is used in this section to give zeros of A
under the conditions of the Nash-Moser inverse function theorem.
For this, see Nash [16] and Moser [14,15]. The results are simpler
and stronger than those given by the smoothed Newton’s method,
and are obtained by adapting the following basic result.
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THEOREM 8.1. Let X be a Banach space and f: B— X a C*
Sunction, where B = {x in X: ||z|| <1}. Suppose L: B—{T in
L(X, X): ||T|| £ M} s locally Lipschitzian, and Lx is a right inverse
of fiin L(X, X) for x in B. Suppose || f(0)|| < M. Then 0 is in
F(B).

Proof. Consider
DL t) = — Lurult
w(0) = 0 .

There is a strong solution «(t) as long as ||u(t)|| < 1, since for = and
y in B

| L@)f () — L) f () || = [| L@)(f @) — f)Il + [ LE@) — L) [ F@)]] -

Now

d s du
’%fu(t) = flw Tt(t)

= — flLoLu(d)fu(t)
= —fu(t) .

The function ¢ — || fu(f)|* is absolutely continuous; hence, d || fu(t)||*/dt
exists except on a set of measure 0, and for any duality map J,

% | Fult) |* < 2(TFult), d%fu(t))

—2(Jfu(t), fu(t))

Il

= —2|[fu@®|] .
Therefore,
I fu@[* = |lfu(0)[[*e™ for t=0.
Hence,
20| = Ml
Hence,

t
0

lu | = | || $(s)fas

= M| A0 1—e)
= M| f0)[] -
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Hence, u(t) is in B and defined for all ¢ in R*. Since
Hu(®) — w(s)|] = M| fO)]] (7* — e7), u(?)

is Cauchy, hence, there is « in B with u(t) — x as t — . Since fu(t)—0,
we have fx = 0 by continuity.

Before giving the main theorems we study smoothing operators.
For an exposition of classical smoothing operators, see Schwartz [21].
For comparison, we give the Nash-Moser theorem as stated by
Schwartz.

Let K be a compact n-dimensional manifold and Cr the space of
7 times continuously differentiable functions w: K — R with norm

[u|, = Jm‘ax max | D*u{x)| .
Let f be a function D(f) — C™* where D(f) = {x in C™: |z|, < 1}.
Suppose there is a constant M such that:

(1) f has two continuous Frechet derivatives, both bounded by M;

(2) there exists a map L with domain D(f) and range
L(C™, C™*), with:

(a) |Lwh|po= M|k, % in D(f),h in C™
(b) fiLwh =nh % in D(f), h in C™**
(¢) [L(w)f(u)|misa = ML + |%|ni10a) 5
(3) 1S(0)|miea = 27° M.
Then f(D(f)) contains the origin.

DEFINITION. Suppose we have two Banach spaces X, and X, such
that the inclusion ¢: X, — X, is bounded and #(X,) is dense in X,. A
smoothing for X, and X, is a family {S({): t =t} c L(X,, X,) with
constants M and ¢, and a function A: R*— R* such that

(a) |IS®l =M in L(X, X,) and L(X,, X,) for all ¢;

(b) [IS@=|l. = Mh@)||z], for z in X;

(¢) IS@z— x|, = Mt ||z|, for x in X,.

ProPOSITION 8.2. Suppose X, = D(A) where A is an unbounded
closed linear operator in X,, and for x in X, ||z|, = ||z]|, + ||4z]||,
or an equivalent norm. Suppose there are constants b, t, and M
such that (I —t*(A — bl))™ s in L(X,, X)) with norm <M for all
t=t,. Then we have a smoothing for X, and X,.

Proof. The conditions on A imply that A generates a semigroup
{U®): ¢t in R*} with [|U(t)|| < Me*, U)U(s) = U(t + s), U0) = I, and
U(t)x converges strongly to z as ¢t — 0™.
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There are a couple of ways of looking at smoothing.

(1) We parody the simplest smoothing by convolution where x
is a locally integrable function R — R, and U(t)x(s) = z(s + t). Let
f be a C= function R — R* with compact support in {s in R: s> 0},

stuch that S f(s)ds =1. For w in R*, set f,(t) = w'f(ut) and put

S(u)x :S +fu(t) Ut)xdt for x in X. It is straightforward to show
R
{S(u): w > 0} is a smoothing for X, and X,.
(2) We use the same construction, but with f(s) = e~ for s = 0.
In this case, S(u) = (I — u'(4 — bI))™", a simpler expression. We
check that this gives a smoothing. Let x be an element of X,.

Sw)x + w (A — b)Sw)x = = .

Hence, S(u) is a bounded linear operator X, — X,.
(a) By definition, ||S(w)|| < M in L(X,, X,). Let z be in X,.

1S, = S|l + || ASw)2]l,
= M|, + M| Az||,
= Ml||z|l, -

Hence, [[S(u)|| < M in L(X,, X)) .
(b) Let z be in X,.

ISwzlle = [[Sw)e |, + [[(A — dI)S(w)x|l, + [[bS(w)xl,
= @+ 0)Mlall, + [Jull — Su)xl;
= (@ + M+ wl + M)l .

(c) Let z be in X,.

IS(we — [, = ™ [|[(A — bI)S(u)x|];
= Mu™|[(A — bD)x]],
= Mu™(1 + b) |[«]]; -

We note that as in case (1), S(u)x is differentiable in w for fixed «
in X;; dS(w)x/du = — A(S(w))*t .

PROPOSITION 8.3. Let X, have a Schauder basis. Then we have
a smoothing for X, and X,, if the inclusion i is compact.

Proof. Suppose {x,: » =1} is a normal Schauder basis for X.
As in Schaefer [20], page 115, the inverse mapping theorem tells us
that there exists C such that for all M and all x = >3 0,2, in X,

Sae = Clloll -
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Since X, is dense in X, there exists for each # =1 an element y,
of X, with ||y, — .|, < (C2"*)~, and ||¥,|l, = 1. Define B: X, — X|

by B \a.x,) = >.a.y,.. B is an isomorphism of X, since for x = >a,x,

| Be — |, = [| X2aa(¥n — @),

= 27|l .

Therefore, {y,: n = 1} is a normal Schauder basis for X,. Rearranging,
we may assume k,=||v,]|. is an increasing sequence. For z = >.a,¥.,
in X, and % in R*, we put T(w)x = 3 -..¥,. T(u) is a bounded
linear operator X, — X,.

(a) There exists M such that || T(w)x|, < M||z||, for ¢ in X,

and % >0, and |[|T(w)z||, < M|lz]|, for # in X, and » > 0, by the

inverse mapping theorem.
(b) Let = >a;y; be in X,.

| T(w)a ], > Y

kisu
2L aky;
ki;su

s u ) al

kisu

< uM||z||, (number of ks < w).

|
|

w

2

IA

2

For ¢ > 0 there exists N such that for all # = N, k,™ < e, since
{k,'y,: n = 1} is bounded in X, and, hence, compact in X,. Therefore,
there is a continuous function ¢g: R* — R* with

g(u) = (the number of %;’s < u) .
Hence, Tz, = Mug(w)||x]], .

(¢c) Let x =>a,k, "y, be in X,. The unit ball in X, is compact
in X,. Hence, for u > 0 there exists N such that

| Saialiery,

=ut.
1
We take N(w) with this property. Then

HT(N(u)e — @l =1 3, ¢ka™Ya

kp2N(u)

sut |z .

For w > 0 we put S(w) = T(N(u)).

By (a) [[Sm)|| = M in L(X,, X)) and L(X,, X;).
By (b) [[S(wxll, = MN(u)g(N(u))||=[l, for © in X..
By (¢) ||Sm)x — x|, < w||z||, for x in X,.
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PROPOSITION 8.4. Suppose X, and X, are separable Hilbert spaces.
Then there exists a smoothing with M = 1 and h(t) = t, if © is compact.

Proof. Let x be in X, and y be in X..

@, v) < llell Myl = 1l el Yl -

Hence, there is an element C(y) of X, with (z, ), = (z, Cy). It is
straightforward to show C is in L(X,, X;). C is positive definite in
X, since X, is dense in X, and self adjoint. Hence, C: X, — X, has
a positive definite self adjoint square root A. There is a complete
orthonormal basis {e;; 7= 1} of X, such that Ae, = he; and the
sequence h; decreases to 0.

We have ||Az||. = ||z]||, for z in X|, and {h;e;: ¢ = 1} is a complete
orthonormal basis for X,. For 2 = D>a,e; in X,, we put

S(w)x = hz, ae; .

S(u) is a bounded linear operator X, — X, for » in R*.
(a) S(u) is a projection with norm 1 in both X, and X..
(b) Let x = >lae; be in X,.

IS@)zll < |

>, ua;hie;
uh;21

> aqe;

wh;z1

= ull@, .

(c) Let x = >ahe; be in X,.

2

=U

1

IS(w)r — w|l, =

>, ashie;
uhigl

1

IA

> wlae;
1

wh;z1

u—l

> ashie; \

uh;z1

=u el .

THEOREM 8.5. Let X, be a separable Hilbert space with the
Hilbert space X; compactly included in X, and dense in X, and X,
the dual of X, under the pairing ( , ). Suppose f: X,— X, is CY,
with f(0) =0 and the graph of f closed in X, — X,. Suppose there
exists a locally Lipschitzian function L:

B, —{T in L(X,, X)) N L(X;, X,): || T”L(XZ’Xl) < R}

where B, = {x wn X, ||z, < 1} such that for = in B, and v in X,
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fiL(xyv = v. If |lylls £ QR)™, then there is © in X, with f(x) = y.

Proof. There exists a complete orthonormal basis {e¢;} of X, and
a sequence h; decreasing to 0 such that {;7'e¢;} and {h;%,} are com-
plete orthonormal bases of X, and X,. Let S, = S(¢'’?) where this is
the smoothing of Proposition 8.4. S, is the projection on the subspace
spanned by {e;: h; = ¢ "%}, Consider a continuous solution, differen-
tiable on (¢, t,..), where ¢, = sup(log 4,7%, 0), to

(a) %(t) = — Lu®)S.(fult) — y)
w(0) =0 .

As long as u(t) is in B,, a solution exists in X, by the locally Lip-
schitzian nature of the r.h.s. of (a).

Writing g(x) = f(x) — y for  in X,, we have from (a) for ¢ in
(t'ny tn+1)’

_d@t—gu(t) = fuw %(t)
= — fuwoLu(t)S,gu(t)
= —S,gu(t) .
Hence,
—%Stgu(t) = —S.gult) .
Hence,

L 1Sgut) = —2|Sgu(d)]? -
S.gu(t) is not continuous in ¢, so that we cannot proceed immediately
as in Theorem 8.1. However, we do have

[Scgu(t) |l = e ||S,,qu(@.) [|.* -
Letting y = Y\y.e;, it follows that
|Segu®) || = >, e y?
h;ze—tl2
— p—2t ‘-4 .2
= higez‘ltlz h.b Y
= e |lylls .

Hence,

HStgu’(t)Hl =e! HyH3 .
From (a),
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H%@Hl < R|IS.qu(®)|l.

= R |[S(S:gu(t))|l;
= Re'? || S.gu(®) ], .

by property (b) of a smoothing
= Re™* " |yl .

Hence, ||u(t)|], = 2R ||y|l; as long as wu(t) is defined, hence, u(t) is in
B,, hence, u(t) is defined for all ¢ in R*.

Since u(t) is Cauchy in X, by the bound on the derivative, there
is ¢ in X, with u(tf) > 2 as ¢t — oo,

From dgu(t)/dt = — S,gu(t) and the continuity in ¢ of gu(?),

qut) = —y — S:ssgms)ds :
Hence,
Sgu(t) = — Sy — S’&gu(s)ds :

Hence,
S.gu(t) — gu(t) =y — S,y .

Now y — S;y—0 as t — o in X, by property (c) of a smoothing.
Also, S.gu(t)—0 as t— o in X,. Hence, gu(t) -0 as t— « in X.
Since the graph of g is closed in X, x X, g(x) = 0, and f(z) = .

THEOREM 8.6 Suppose X is the nuclear Frechet space obtained
as N{H, 1< n} where H; are Hilbert spaces and there exists C:
H, — H, such that for all n, C is an isometry H,— H,., and self
adjoint and compact H,— H,. Suppose f: X — X is differentiable
from || ||, to || ||.—. for all large n. Suppose there exists L: X— L{X,X)
and constants M and R with f.L(x) = I for x in X.

|| L(®)v|], £ R||v||l.s, for v in X and all large =.

(L) — Ly)vll. = M|z — yll, [[v][,e, for @,y, and v in X and
all large ». Then f is surjective.

Proof. As in Proposition 8.4 we take S, the projection onto the
subspace spanned by eigenvectors of C with eigenvalues =e¢ '?. By
translation we have only to show that 0 is in R(f). We consider a
curve % in X with #(0) = 0 and on the intervals where S, is constant,
du(t)/dt = — Lu(t)S.fu(t). Such a curve exists by the Lipschitzian
nature of the r.h.s. in each || ||, for » large. As in Theorem 8.5,
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’ %(t)Hn = R [[f(0) llass

hence, u(t) converges in H, for large n. Hence, u(f) converges in X
to an element 2 of X. By continuity, f(x) = 0.

The existence of such an L(x) for 2 in X seems necessary since
we cannot get f’ surjective by requiring it to be near I. In fact, if
X is a nuclear space, it has the approximation property and, hence,
there is a sequence of finite dimensional elements of L(X, X) conver-
gent to I in any S topology making L(X, X) a topological vector
space (see Schaefer [18], page 79). The relation between the H,
seems necessary to get one smoothing for all the H,, which does not
in general exist. If f was differentiable || ||,., to || ||, for some £,
the surjectivity of f follows from the theorem by considering

THEOREM 8.7. Suppose X, is a Banach space and A: D(A) — X,
is @ closed densely defined linear operator such that (I —t (A —bl))™
s m L(X,, X,) for t = t, with norm <M. Suppose X, = D(A) and
X, = DA with ||zl = [[z]l, + [|Az]l, and [[2|. = [[z], + [|Az].
Suppose f: X, — X, is C', with the graph of f closed in X,x X,. Let
L be locally Lipschitzian B,—{T in L(X, X,) and L(X,, X,):
I Tllrix,x) = R} where

B ={o in X ||oll, < SRM*Q + M1 + M)(L + b))} .

If | A0) |, < e7®), then there is © in X, with f(x) = 0.

Proof. By Proposition 8.3, we have a smoothing for X, and X,
and X, and X, also, since (I — ¢7%(A — bI))™* is in L(X,, X,) for t=>¢,
with norm <M, where A here is the restriction of A4 to (A + b)X,.
Set S, = S(e™*+¥*) and take d <1 with d < (4M*)~'. Consider a
solution of

(a) %(t) = —Lu®S;fult —d) t=t,
u(t) =0 t<t, .

A strong solution exists in X, by the locally Lipschitzian nature of
the r.h.s. as long as w(t) is in B,. Take K = 2(1 + M(1 + M)(1 + b))
and assume, given ¢, that for s < ¢ — d we have

(V) | fu(s)|l. < e**,  and
(U) Il fu(s) ], < Ke™™ .
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dfu(t)/dt = — S.*fu(t — d), hence,
O = 1L £ .+ 2 ! 1] fuls — d) s
< (| 7u@) ) -+ a2 | eve0ds

by assumption (V). But

1)1l < e < e

Hence,
| fu(t)]], < e + e="(e* — 1)

< e,

Hence, (V) holds for all ¢ such that w(t) is defined.
D puty = —ful®) + (I - SHfu) + S || Lfuds -
di t—a ds

Since t — || fu(t)]|,® is absolutely continuous, it is differentiable except
on a set of measure zero, and for any duality map J for X,

d 2 d
L ifu(t) |12 < 2(Jru(t), 2 fult))

Hence,

T;lit_ IFu@ [* + 2(JFu(®), fu(?), < 2(JFu(®), (I — S7)fu(t)

i Z(qu(t), S,zg:_d%fu(s)ds> ‘

Dividing by || fu(t) ||,

o]

L)1l + 1Fu®1 S 11— SFuct)l] + |
Multiplying by e,

—(%(et £l < e [|(I — ST + Sofult),
+ etSES:“d—Sffu(s — d)ds H .
Now .
(I = S + Sofut)|l, < ML + b)e=+* || (I + S)fu(t)|l,

< ML+ B)(L + M)e ¢ || fu) |,
=M1+ b1+ M)e™ by (V).

Also,
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HSf S’_d — S fuls — d)dsHl < M S:_d I Fu(s — )|, ds

< KM*de 22 by (U).
Hence,

%ﬁwm®M§Mﬂ+Mm+MW+KMWWW

Hence,
et | fu@) |, < [|lF0) [, + M1 + M)(1 + b) + 2KM*de’e’”
< 27K + 2-'Ket .

Hence, ||fu(t)|l, £ Ke '”. Hence, (U) holds for all ¢ such that w(¢) is
defined.
From (a),

Lty | < RISHut - D,

= RM* || fu(t — d) ||,
< RM*Keile 2,

Therefore, ||u(t)|l, < 2RM*Ke** as long as w(t) is defined. Hence, u(t)
is defined for all ¢ in R**, and is Cauchy in X, hence, converges to
an element x of X;. Also, fu(t) converges in X, to 0. Since the graph
of f is closed, f(x) = 0.
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