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GENERATING MONOMIALS FOR FINITE SEMIGROUPS
DonaLp C. RAMSEY

In this paper consideration is given semigroups which
arise from a group (G, :-) by defining a binary operation o
on G by the rule

% o y=a¢yp for all z, y in G,

where ¢, ¢ are endomorphisms of G. In particular, the
structure of such semigroups is determined. Also determined
are the structure and number of semigroups that can be de-
fined by

x o y=qaxyt forallz, yinG,

where (G, - ) is a finite abelian group containing a, and s, ¢
are nonnegative integers.

1. Introduction. Let (G, -) be a groupoid and let ¢, + be
transformations of G. A possibly different groupoid (G, o) is defined
by the rule

T oY = TPy for all z, y in G .

In §2 of this paper we assume that (G, -) is a finite abelian
group and define a groupoid (G, o) by the rule

Loy = ax'y’ for all z, y in G,

where s, t are nonnegative integers and aeG. Necessary and suf-
ficient conditions on a, s, and ¢t are found in order for (G, o) to be
a semigroup. Also, we determine the number of nonequivalent (i.e.,
non-isomorphic, non-anti-isomorphic) semigroups that are defined in
this manner. Whenever the rule

x oy = ax'y for all z, y in G,
defines a semigroup, we say that (G, o) is gemerated by the monomial
ax'yt over (G, «).
In §3 it is shown that if a semigroup (G, o) is defined by the
rule
T oy = XY for all z, ¥ in G,

where ¢, 4+ are endomorphisms of the group (G, -), then (G, o)
is an inflation of the direct product of a group and a rectangular
band. Consequently, a semigroup generated by a monomial over a
finite abelian group is an inflation of the direct product of a group
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and a rectangular band. Finally, if (F,, +, ) is a finite field of
order ¢ and if the rule

Toy = ax'y for all z, y in F,,

where a € F, defines a semigroup (¥,, o), then (¥, o) is an inflation
of the direct product of a cyclic group and a rectangular band,
together with a zero element. This is a generalization of the results
obtained in [3] by Plemmons and Yoshida.

2. Generating monomials. Throughout this section let (G, - ) be
a finite abelian group with identity element e, and let M denote the
least common multiple of the orders of the elements of G. Then M
is the least positive integer ¢ such that 27 = ¢ for all # in G. The
following theorem gives necessary and sufficient conditions on a
monomial ax*y‘ over (G, -), in order for it to generate a semigroup.

THEOREM 1. The monomial ax'y’ generates a semigroup over
(G, +) if and only if

(i) a'=c¢ and

(ii) s* — s and * — ¢t are multiples of M.

Proof. The monomial ax‘y’ generates a semigroup over (G, ) if
and only if for all =, y, z in G

a(ax'y?)’z’ = ax’(ay’z’)!
which holds if and only if for all z, ¥, z in G
atHgtyttst = attietyiz?
which in turn holds if and only if for all z, 2z in G
2.1) @ Tt = 2t

Assuming that (i) and (ii) hold, it follows that (2.1) holds since
each side of the equation reduces to e. Thus ax*y® generates a semi-
group. Conversely, if ax'y’ generates a semigroup then equation (2.1)
holds for all 2, z in G, and in particular when ¢ =z = ¢, so that
ot = e. By letting z = ¢ in equation (2.1) and replacing a’~* by e,
we get that #*° = ¢ for all # in G, whence s* — s is a multiple of
M. In a similar fashion it can be shown that ¢* — ¢ is a multiple of
M.

If s= M, then s = ¢gM + r for some integers ¢ and r, where
qg>0and 0<r < M, so that

ax'yt = axmy’ for all z, ¥ in G .
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Hence, in searching for the number of nonequivalent semigroups
generated by monomials over (G, - ) we can assume that 0 <s< M
and 0 <t< M. Also, since the semigroup generated by az'y® is
anti-isomorphic to the one generated by ax*y® we can assume that
t < s. Furthermore, the following lemma shows that we need only
consider monomials with a = e.

LEMMA 1. Suppose ax'y® generates a semigroup (G, o) over (G, ).
Let (G, ) be the semigroup generated by x°y' and let k denote the
order of a in (G, - ). Let m be the solution to the congruence

@2t —-Dxr=1 (mod k).
Then m is unique (mod k) and the mapping & from G into G defined
by
xx =a™  for all x n G,
18 an isomorphism of (G, o) onto (G, * ).

Proof. Since k is the order of a in (G, - ), it follows that k| M.
Since ax’y’ generates a semigroup, M|#* — ¢, whenece k|t* — ¢.
Therefore, the greatest common divisor of 2¢ — 1 and %k must divide
(2t — 1> — 4(t* — t) = 1, whence 2t — 1 and k are relatively prime.

Hence [2, Theorem 3-11, p.34] there exists a unique solution m
(mod k) to the congruence

@2 —-Dx=1 (mod k) .

Therefore k is a factor of m(2t — 1) — 1. Now, the mapping «a from
G into G defined by

a:z—a"2
is a permutation of G. Let z, y be arbitrary elements of G. Then

(xa) * (ya) = (a™x)*(a™y)

— am(s+t)xsyt
= a" o'y
since
a%(8+t)—-(M+1) — aM(S+t—1)—-1 — a'm(s——t)-{-m(zt—-l)—l. —e.,
Therefore,

(za) * (ya) = a™ 2y’
= (ax'y )
= (xoya.
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Thus « is an isomorphism of (G, o) onto (G, * ).

Let n denote the order of (G, -) and let » = pMpZ -.. pir be
the prime power factorization of n, where p;, = p; if 77, and
a; >0 for 1 <4< r. By the fundamental theorem for finite abelian
groups, G has the structure S(p) x S(p;) X --- x S(p,) where each
S(p;) is the Sylow p-subgroup of (G, ) of order p% for 1<t < 7.
The order of any element in S(p;) is a power of the prime p; so that
for each prime p; with 1 <4 <7, there exists an element z;e¢G
having order a power >0 of p,. Thus the prime power factorization
of Mis M= ppjz+-- pir where 0 < v, =a; for 1 <1< 7.

For each integer m let

G, ={reG: 2™ =¢}.

Let s be a positive integer such that M|s(s—1). Since s and s—1
are relatively prime, the prime factors of M which divide s do not
divide s—1, and those dividing s—1 do not divide s. Assume that
the indexing of the primes p; in the factorization of M is such that
paple « e Pl (s—1) and plifiplitz«.. pir|s. Identifying the elements

of G and S(p) X S(») X +++ x S(p,) we get the following lemma.

LEMMA 2. The set G,_, is the subgroup S(p,) X S(p:;) X +++ S(p;)
of G having order pPHp ««+ pi.

Proof. Let xeG,_,. Written as an r-tuple, = (v, @, +++, 2,),
so &t = (a7 a7, ..., 7Y = e,, Where e, is the r-tuple (e ¢, <+, €).
In particular, xi7i=ai7i= .-« =2 =e. Since the orders of
%11, T + ¢+, &, are relatively prime to s—1 it follows that w;,, =
Ljpg = *+° =0, = €. Hence zeS(p) x S(py) X +++ x S(p,;). Con-
versely, let xe S(p) X S(p;) X ++« x S(p;). We write

r = (xly Loy ==, xj) .
Letting e; denote the j-tuple (e, e, - -+, €), we have
ej — xs(s—l) — (xf(s—l), x;(s—l)’ cee, m;(s-—-l)) y

so that 2™ = 2P = o0 = g3V =g, Since the orders of
Xy, &y +++, &; are relatively prime to s, 7' =27t = .0 =23 =g,
whence ' =e¢; and e G,_,.

LEMMA 3. Let s and s’ be positive integers less than M such
that M|s* — s and M|s* — s’. If the order of G._, is the same as
the order of G,_, then s = s'.
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Proof. By Lemma 2 the subgroups G,., and G, _, are direct
products of Sylow p-subgroups of G. Since the order of G,_, is the
same as the order of G,._,, it follows that the prime powers in the
factorization of M which divide s—1 are exactly those which divide
s’—1. Thus M|s(s’—1) and M|s’(s—1), whence

M|[s(s'—1) — s'(s—1)] ,

S0 M|s’—s. Since —M< s —s< M, s’ —s =0, whence s’ =s.

THEOREM 2. Suppose x*y*® and x°'y" generate semigroups over
(G, ), where 0<t<s< M and 0=t <s'"< M. Then these semi-
groups are isomorphic if and only if s=s" and t =1'.

Proof. Clearly if s =s’" and ¢ = ¢ then 2*y* and 2*y" generate
the same semigroup over (G, - ). Conversely, suppose that z*y* and
«*y" generate semigroups (G, o) and (G, *), respectively, and suppose
(G, o) is isomorphic to (G, =). Then the Cayley tables for (G, - ) and
(G, =) must have the same number of distinct rows. That is, (G, o)
and (G, =) must have the same number of distinct inner left transla-
tions [1, p. 9]. The distinet inner left translations of (G, o) are
determined by the distinct elements of the set {¢*: £€ G}. But

{r': 2eG} = G,_,

as defined above. Thus the orders of G,_, and G,_, are equal,
whence by Lemma 3, s = s’ if both s and s’ are positive. If s=0
then G,_, = G,_, = {¢}, so that M|s’, whence s’ = 0. Similarly, if
s’ = 0 then s = 0, so that in any case s = s’. Dually, by considering
columns in the Cayley tables of (G, o) and (G, ), we see that ¢t = ¢'.

We now approach the problem of determining the number of non-
equivalent semigroups of order » generated by monomials over (G, - ).
The integers s with 0= s < M that will serve as exponents in
generating monomials are exactly those such that M|s*—s. Hence
the set H of such integers is the solution set of the congruence

2.2) »¥—2x=0 (mod M) .

LEMMA 4. The cardinality of the solution set H to the com-
gruence (2.2) is 27, where r s the number of distinct primes in the
prime power factorization of M.

Proof. Let M= p[ipj: -+ pir be the prime power factorization of
M. Then x, is a solution to (2.2) if and only if 2, is a simultaneous
solution to the system of congruences
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2.3) r—ax=0 (mod p}¢) 1<t 7r.

For each ¢, 1 <4 < r, suppose ¢; is a solution to 2* — z = 0 (mod pl).
Then, by the Chinese Remainder Theorem, there is a solution x, to
the system

x = ¢, (mod p]1), © = ¢, (mod pl?), -+, x = ¢, (mod p})

which is unique modulo M. Then each r-tuple (¢, ---, ¢,) gives rise
to a unique solution (mod M) to system (2.3). Thus the number of
solutions to (2.2) is the product of the numbers of roots of the con-
gruences in (2.3). But, by § 3.5 of [2], the solution set to each of
these congruences is {0, 1}, whence the cardinality of the solution set
of (2.2) is 27,

Finally, we have the following theorem.

THEOREM 3. The number N, of nonequivalent semigroups gemer-
ated by monomials over (G, - ) is 242" + 1), where r is the number
of distinct primes which divide M.

Proof. The pairs s, t of elements of H yield monomials z*y*
which generate semigroups over (G, - ). Moreover, these are the only
pairs modulo M which will do so. Thus to determine N, we need
only count the ways in which s and ¢ can be picked from H with
t <s. There are

14+2484 oo +27 = __27(2;_’_1) = 212" +1)

ways to do this.

3. Structure theorems. The following definition and facts are
the contents of [1, p. 98, Exercise 10]. Let T be a semigroup. With
each element « of T, associate a set X, containing « such that the
sets X, are mutually disjoint. Let s = {J.erX., and let the product
in T be extended to a product in S by defining ab = ag if ae X, and
be X;. Then S is a semigroup and is said to be an inflation of T.
Now, T is a subsemigroup of S such that S* < 7. If we define a
mapping § from S into T by af = a when ae X,, then

(i) 6 maps S upon T,

(ii) 6* =6, and

(iii) (a6)(b6) = ad for all a, be S.

Let T be a subsemigroup of S such that S*< T, and let ¢ be a
transformation of S having properties (i), (ii), and (iii) above.
Then S is an inflation of T.

By a left zero semigroup we mean a semigroup S such that zy ==
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for all &, yeS. A right zero semigroup is defined dually.

THEOREM 4. Let (S, -) be a semigroup such that for some trans-
formation ¢ of S, xy = x¢ for all x,y€S. Then S is an inflation
of the range S¢ of ¢, and S¢ is a left zero semigroup. Conversely,
each inflation of a left zero semigroup is obtained in this manner.

Proof. Since S is a semigroup, (xy)z = x(yz) for all x, y, ze S,
so x¢* = x2¢ for all xe S, whence ¢* = ¢ on S. Since S = Sp, Sp is
a subsemigroup of S such that S*< S¢. Now ¢ maps S onto Sg
and

agby = a¢® = ap = ab for all a,beS.
Hence, S is an inflation of S¢. Let @, bec S¢. Then a = ag, so
ab = agb = a¢* = ap = a ,

thus Sp is a left zero semigroup. Conversely, let (S, -) be an in-
flation of a left zero semigroup L. Since S is an inflation of L, S is
the disjoint union of subsets X,, where ac L N X,. Define a trans-
formation ¢ of S by x¢ = a if and only if xe X,. Let x, yeS with
ze X, and ye X;,. Then 2y = ab = a = x4.

COROLLARY 1. If (G, o) is generated by x° over a finite abelian
group (G, + ), then (G, o) is an inflation of the left zero semigroup
(L, o), where L = {&*: x € G}.

By the dual of Theorem 4 we get the following corollary.

COROLLARY 2. If (G, o) is generated by y' over the finite abelian
group (G, + ), then (G, ) is an nflation of the right zero semigroup
(R, o), where R = {y": ye G}.

Before investigating the structure of semigroups generated by
the more general monomial x*y* with 0 < ¢ < s < M, we prove the

following lemma.

LEMMA 5. Suppose the semigroup (G, o) is generated by x*y' over
an abelian group (G, «) with 0 <t <s< M. Then o 18 commutative

of and only if s = ¢.

Proof. Suppose s =t. Then for z, ye G we have

Loy =2Y =yx°=yox.
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Conversely, if o is commutative, then 2oy =yoz for all z ye@G,
so that z°y* = y*x* for all x, ye G. Letting y = ¢, we see that z° = a*
for all xe G, so that M|s — ¢t. Thus s — ¢ = 0, whence s = ¢.

Given an arbitrary group (G, - ) and a pair of transformations ¢,
4 of G, a groupoid (G, o) is defined by the rule

T oY = TPYr for all x, y in G.

We say that (G, o) is generated by the pair of transformations (¢, i)
over (G, - ). If we insist that the transformations ¢ and « be endo-
morphisms, the following lemma gives necessary and sufficient con-
ditions in order for (G, o) to be a semigroup.

LEMMA 6. Let (G, - ) be an arbitrary group with identity element
e, and let ¢, « be endomorphisms of (G, ). Define a groupoid (G, o)
by the rule

T oY = XY for all x,y in G.

Then (G, ©) is a semigroup if and only if ¢ and + are idempotent
and commute.

Proof. Assume that the groupoid (G, o) is a semigroup. Then

@oy)oz=2x0(yoz) forall z,y 2zin G,
S0
3.1) (XpYY) g + 200 = XS(YdAr) Y for all #,9,2 in G.
Upon setting ¥y = 2z = ¢ in (3.1), we get
(xp)p = a6 for all 2 in G,

since e = ey = e. In a similar fashion * = . Letting c=2=c¢
in (8.1), we see that

(y¥)¢ = (yg)y  for all y in G,

hence ¢y = +rp. Conversely, assume that ¢* = ¢, ¥* =+, and gy =
Jré. Then for arbitrary «,y, ze G

(@ o y) oz = (BPYy)d + 24
= 2¢" « YPp « 24
=28« Yoy« 2y°
= Xg(Ypaay)yr
=xo(yo?).

Thus (G, o) is a semigroup.
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The following definitions come from [1, p. 98, p.25]. A semigroup
S is called stationary on the right if for all a@, b, ¢ in S, ab = ac im-
plies 2b = x¢ for all xe S. A semigroup S is called E-inversive if for
each a e S there exists e S such that ax is idempotent. Let a, b, 2,
y be elements of a semigroup S. Consider the four elements ax, ay,
bz, by of S. We call S rectangular if, whenever three elements are
equal, all four are equal. Let X and Y be any two sets, and define
a binary operation in S= X x Y by

(xly yl) (xZ) yZ) = (xly y?)

where w, #,¢ X and %, ¥.€Y. Then S is a semigroup called the
rectangular band on X x Y.

THEOREM b. Let (G, o) be a semigroup generated by a pair of
endomorphisms (¢, ) over the group (G, ). Then (G, o) is an in-
Aation of its kernel G o G and its kernel is isomorphic to the direct
product of a group and a rectangular band.

Proof. By Lemma 6, ¢* = ¢, ¥* = 4, and ¢y = y¢. Now (G, o)
is stationary on the right, since if aob =aoc¢ for arbitrary a, b,
ce G then agby = ager, 80 by = cyp. Thus xbyr = xgcyr for all z e G,
so that xcb=xo¢ for all xeG. Let aeG and denote by a™' its
group inverse. Then

aoat = ag(ay).

Now,

(@oa™) o (a°a™) = (ag(ay)™)s « (ag(ay) ™)y
ag’ « (aypg)™" « agy + (ay?)™
= ag(ay)™

=qoa™!

Il

so (G, o) is E-inversive since a was taken to be arbitrary in G. Let
e denote the identity element of (G, - ). Sinee (G, o) is stationary on
the right it is rectangular, whence by Theorem 8 of [4], G o G is the
kernel of G and

GoG=HxE

where E is the rectangular band consisting of the idempotents of
(G, »), and H is the subgroup

eoGoe= {xpy: xe G}
of (G, o). By [5] the mapping 6: G — G - G defined by af = a o f, where
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f is the identity element of the maximal subgroup to which aoa
belongs, is onto, idempotent, and afobfd =aob for all a,beG,
whence (G, o) is an inflation of (G- G, o). Thus (G, o) is an inflation
of the direct product of a group and a rectangular band. (We note
that (H, -) = (H, ©).)

The structure of a semigroup (G, o) generated by the monomial
x*yt is revealed by the following theorem, which is a consequence of
Theorem 5.

THEOREM 6. Let (G, o) be a semigroup generated by the mono-
mial x'y' over the finite abelian group (G, -). Then (G, o) is an
mflation of its kernel G o G, and its kernel is isomorphic to the direct
product of the subgroup

H={x"2ecqG)
of (G, o) and the rectangular band

E={xeG:x=ua"}.

Proof. Let ¢, 4 be defined on (G, -) by ¢ = 2° and y = ¥'.
Then ¢, + are endomorphisms of (G, - ) since (G, - ) is abelian. Also,
#* = ¢ and * = 4 since z* = 2° and 2* = #* for all xe G. Since

@) = z** = (z)° for all xe G,

it follows that ¢ and + commute. Thus ¢ and + as defined above
satisfy the hypothesis of Theorem 5, so (G, o) is an inflation of its
kernel (G- G, o). Since xgy = z* for v e G, and since z is an idem-
potent of (G, o) if and only if «*** = x, it follows that

GoG=Z=HXE

where H and E are as defined in the statement of the theorem.

Let (a, b) denote the greatest common divisor of integers a and
b. We have the following lemma concerning certain subgroups of a
cyclic group.

LEMMA 7. Let G be a cyclic group of order m with identity ele-
ment e, and let s be a nonnegative integer such that n|s*—s. Then
G, ={xecG: o* = e} is a subgroup of G having order (n, s—1).

Proof. It follows immediately that G,_, is a subgroup of G. Let
m denote the order of G,_,, and let d = (n, s—1). Since

xs-l =€ = {Un 5 fOI‘ all &€ G8_1 y
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it follows that m |s—1 and m|n, whence m < d. Now, let a be a
generator of G. Then a"¢ generates a subgroup [a*?] of G, of order
d. But (a"?)*' = (a")*V?=¢, s0o a"?e(@G,.,, whence [a"‘] & G,_,.
Thus d < m, and so m =d = (n, s—1).

The next theorem gives the structure of the group H in Theorem
6, whenever (G, -) is a cyclic group.

THEOREM 7. If (G, o) is a semigroup generated by the mono-
maal x*y® over the cyclic group (G, +) of order n, then (G, o) is an in-
flation of its kernel G o G. Furthermore, its kernel is isomorphic to
the direct product of the cyclic subgroup

H = {x*":x ¢ G}
of (G, °) of order (mn,st—1) and the rectangular band
E={xeG: o =2a}.
Proof. Suppose 2x°y' generates a semigroup over (G, -). Then
the set H defined above is the same as the set
Gy, ={xecG: 2" =¢}.
Since n | s*—s, and n |t*—t, it follows that
n| (Sf—9)t + s(t*—t),

whence n | (st)*—st. By Lemma 7, H has order (n, st—1). The re-
maining part of the proof follows immediately from Theorem 6.

We conclude with a corollary to Theorem 7 which extends the
results obtained in [3].

COROLLARY 3. Let (F,, +, ) be a finite field of order q, and
let (F,, o) be a semigroup generated by z*y*® over (F,, ). Then
(F,, o) is an inflation of the direct product of a cyclic group of order
(g—1, st—1), and a rectangular band, together with a zero element.

Proof. Let F} = F,\{0}. Then (F/}, -) is the multiplicative
group of (F,, +, ), hence is a cyclic group of order ¢g—1. By
Theorem 7, (F}, o) is an inflation of the direct product of a cyeclic
group of order (¢—1, st—1), and a rectangular band. Since

F,=F; U {0}

and 0 is a zero for o, the corollary holds.
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