GENERATING MONOMIALS FOR FINITE SEMIGROUPS

DONALD C. RAMSEY

In this paper consideration is given semigroups which arise from a group (G, \cdot) by defining a binary operation \circ on G by the rule

$$x \circ y = x\phi y\phi$$
 for all x , y in G ,

where ϕ , ψ are endomorphisms of G. In particular, the structure of such semigroups is determined. Also determined are the structure and number of semigroups that can be defined by

$$x \circ y = ax^sy^t$$
 for all x, y in G ,

where (G, \cdot) is a finite abelian group containing a, and s, t are nonnegative integers.

1. Introduction. Let (G, \cdot) be a groupoid and let ϕ , ψ be transformations of G. A possibly different groupoid (G, \circ) is defined by the rule

$$x \circ y = x\phi y\psi$$
 for all x , y in G .

In § 2 of this paper we assume that (G, \cdot) is a finite abelian group and define a groupoid (G, \circ) by the rule

$$x \circ y = ax^s y^t$$
 for all x , y in G ,

where s, t are nonnegative integers and $a \in G$. Necessary and sufficient conditions on a, s, and t are found in order for (G, \circ) to be a semigroup. Also, we determine the number of nonequivalent (i.e., non-isomorphic, non-anti-isomorphic) semigroups that are defined in this manner. Whenever the rule

$$x \circ y = ax^{s}y^{t}$$
 for all x , y in G ,

defines a semigroup, we say that (G, \circ) is generated by the monomial $ax^{s}y^{t}$ over (G, \cdot) .

In § 3 it is shown that if a semigroup (G, \circ) is defined by the rule

$$x \circ y = x\phi y\psi$$
 for all x , y in G ,

where ϕ , ψ are endomorphisms of the group (G, \cdot) , then (G, \circ) is an inflation of the direct product of a group and a rectangular band. Consequently, a semigroup generated by a monomial over a finite abelian group is an inflation of the direct product of a group

and a rectangular band. Finally, if $(F_q, +, \cdot)$ is a finite field of order q and if the rule

$$x \circ y = ax^s y^t$$
 for all x , y in F_q ,

where $a \in F_q$ defines a semigroup (F_q, \circ) , then (F_q, \circ) is an inflation of the direct product of a cyclic group and a rectangular band, together with a zero element. This is a generalization of the results obtained in [3] by Plemmons and Yoshida.

2. Generating monomials. Throughout this section let (G, \cdot) be a finite abelian group with identity element e, and let M denote the least common multiple of the orders of the elements of G. Then M is the least positive integer q such that $x^q = e$ for all x in G. The following theorem gives necessary and sufficient conditions on a monomial ax^sy^t over (G, \cdot) , in order for it to generate a semigroup.

THEOREM 1. The monomial ax^sy^t generates a semigroup over (G, \cdot) if and only if

- (i) $a^{s-t} = e$ and
- (ii) $s^2 s$ and $t^2 t$ are multiples of M.

Proof. The monomial ax^sy^t generates a semigroup over (G, \cdot) if and only if for all x, y, z in G

$$a(ax^sy^t)^sz^t=ax^s(ay^sz^t)^t$$

which holds if and only if for all x, y, z in G

$$a^{s+1}x^{s^2}y^{st}z^t = a^{t+1}x^sy^{st}z^{t^2}$$

which in turn holds if and only if for all x, z in G

$$(2.1) a^{s-t}x^{s^2-s} = z^{t^2-t}.$$

Assuming that (i) and (ii) hold, it follows that (2.1) holds since each side of the equation reduces to e. Thus ax^sy^t generates a semigroup. Conversely, if ax^sy^t generates a semigroup then equation (2.1) holds for all x, z in G, and in particular when x=z=e, so that $a^{s-t}=e$. By letting z=e in equation (2.1) and replacing a^{s-t} by e, we get that $x^{s^2-s}=e$ for all x in G, whence s^2-s is a multiple of M. In a similar fashion it can be shown that t^2-t is a multiple of M.

If $s \ge M$, then s = qM + r for some integers q and r, where q > 0 and $0 \le r < M$, so that

$$ax^{s}y^{t} = ax^{r}y^{t}$$
 for all x , y in G .

Hence, in searching for the number of nonequivalent semigroups generated by monomials over (G, \cdot) we can assume that $0 \le s < M$ and $0 \le t < M$. Also, since the semigroup generated by ax^ty^s is anti-isomorphic to the one generated by ax^sy^t we can assume that $t \le s$. Furthermore, the following lemma shows that we need only consider monomials with a = e.

LEMMA 1. Suppose ax^sy^t generates a semigroup (G, \circ) over (G, \cdot) . Let (G, *) be the semigroup generated by x^sy^t and let k denote the order of a in (G, \cdot) . Let m be the solution to the congruence

$$(2t-1)x \equiv 1 \pmod{k}.$$

Then m is unique (mod k) and the mapping α from G into G defined by

$$x\alpha = a^m x$$
 for all x in G ,

is an isomorphism of (G, \circ) onto (G, *).

Proof. Since k is the order of a in (G, \cdot) , it follows that $k \mid M$. Since ax^sy^t generates a semigroup, $M \mid t^2 - t$, whence $k \mid t^2 - t$. Therefore, the greatest common divisor of 2t - 1 and k must divide $(2t - 1)^2 - 4(t^2 - t) = 1$, whence 2t - 1 and k are relatively prime. Hence [2, Theorem 3-11, p. 34] there exists a unique solution $m \pmod{k}$ to the congruence

$$(2t-1)x \equiv 1 \pmod{k}.$$

Therefore k is a factor of m(2t-1)-1. Now, the mapping α from G into G defined by

$$\alpha: z \to a^m z$$

is a permutation of G. Let x, y be arbitrary elements of G. Then

$$(x\alpha) * (y\alpha) = (a^m x)^s (a^m y)^t$$
$$= a^{m(s+t)} x^s y^t$$
$$= a^{m+1} x^s y^t$$

since

$$a^{m(s+t)-(m+1)} = a^{m(s+t-1)-1} = a^{m(s-t)+m(2t-1)-1} = e$$
.

Therefore,

$$(x\alpha) * (y\alpha) = a^{m+1}x^sy^t$$

= $(ax^sy^t)\alpha$
= $(x \circ y)\alpha$.

Thus α is an isomorphism of (G, \circ) onto (G, *).

Let n denote the order of (G, \cdot) and let $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ be the prime power factorization of n, where $p_i \neq p_j$ if $i \neq j$, and $\alpha_i > 0$ for $1 \leq i \leq r$. By the fundamental theorem for finite abelian groups, G has the structure $S(p_1) \times S(p_2) \times \cdots \times S(p_r)$ where each $S(p_i)$ is the Sylow p-subgroup of (G, \cdot) of order $p_i^{\alpha_i}$ for $1 \leq i \leq r$. The order of any element in $S(p_i)$ is a power of the prime p_i so that for each prime p_i with $1 \leq i \leq r$, there exists an element $x_i \in G$ having order a power > 0 of p_i . Thus the prime power factorization of M is $M = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ where $0 < \gamma_i \leq \alpha_i$ for $1 \leq i \leq r$.

For each integer m let

$$G_m = \{x \in G: x^m = e\}$$
.

Let s be a positive integer such that M | s(s-1). Since s and s-1 are relatively prime, the prime factors of M which divide s do not divide s-1, and those dividing s-1 do not divide s. Assume that the indexing of the primes p_i in the factorization of M is such that $p_1^{r_1}p_2^{r_2}\cdots p_j^{r_j}|(s-1)$ and $p_{j+1}^{r_{j+1}}p_{j+2}^{r_{j+2}}\cdots p_r^{r_r}|s$. Identifying the elements of G and $S(p_1)\times S(p_2)\times \cdots \times S(p_r)$ we get the following lemma.

LEMMA 2. The set G_{s-1} is the subgroup $S(p_1) \times S(p_2) \times \cdots S(p_j)$ of G having order $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_j^{\alpha_j}$.

Proof. Let $x \in G_{s-1}$. Written as an r-tuple, $x = (x_1, x_2, \dots, x_r)$, so $x^{s-1} = (x_1^{s-1}, x_2^{s-1}, \dots, x_r^{s-1}) = e_r$, where e_r is the r-tuple (e, e, \dots, e) . In particular, $x_{j+1}^{s-1} = x_{j+2}^{s-1} = \dots = x_r^{s-1} = e$. Since the orders of $x_{j+1}, x_{j+2}, \dots, x_r$ are relatively prime to s-1 it follows that $x_{j+1} = x_{j+2} = \dots = x_r = e$. Hence $x \in S(p_1) \times S(p_2) \times \dots \times S(p_j)$. Conversely, let $x \in S(p_1) \times S(p_2) \times \dots \times S(p_j)$. We write

$$x = (x_1, x_2, \dots, x_j)$$
.

Letting e_j denote the j-tuple (e, e, \dots, e) , we have

$$e_i = x^{s(s-1)} = (x_1^{s(s-1)}, x_2^{s(s-1)}, \dots, x_j^{s(s-1)})$$

so that $x_1^{s(s-1)} = x_2^{s(s-1)} = \cdots = x_j^{s(s-1)} = e$. Since the orders of x_1, x_2, \cdots, x_j are relatively prime to $s, x_1^{s-1} = x_2^{s-1} = \cdots = x_j^{s-1} = e$, whence $x^{s-1} = e_j$ and $x \in G_{s-1}$.

LEMMA 3. Let s and s' be positive integers less than M such that $M | s^2 - s$ and $M | s'^2 - s'$. If the order of G_{s-1} is the same as the order of $G_{s'-1}$ then s = s'.

Proof. By Lemma 2 the subgroups G_{s-1} and $G_{s'-1}$ are direct products of Sylow p-subgroups of G. Since the order of G_{s-1} is the same as the order of $G_{s'-1}$, it follows that the prime powers in the factorization of M which divide s-1 are exactly those which divide s'-1. Thus $M \mid s(s'-1)$ and $M \mid s'(s-1)$, whence

$$M \mid [s(s'-1) - s'(s-1)]$$
,

so $M \mid s' - s$. Since -M < s' - s < M, s' - s = 0, whence s' = s.

THEOREM 2. Suppose x^sy^t and $x^{s'}y^{t'}$ generate semigroups over (G, \cdot) , where $0 \le t \le s < M$ and $0 \le t' \le s' < M$. Then these semigroups are isomorphic if and only if s = s' and t = t'.

Proof. Clearly if s=s' and t=t' then x^sy^t and $x^{s'}y^{t'}$ generate the same semigroup over (G, \cdot) . Conversely, suppose that x^sy^t and $x^{s'}y^{t'}$ generate semigroups (G, \circ) and (G, *), respectively, and suppose (G, \circ) is isomorphic to (G, *). Then the Cayley tables for (G, \circ) and (G, *) must have the same number of distinct rows. That is, (G, \circ) and (G, *) must have the same number of distinct inner left translations [1, p. 9]. The distinct inner left translations of (G, \circ) are determined by the distinct elements of the set $\{x^s\colon x\in G\}$. But

$$\{x^s: x \in G\} = G_{s-1}$$

as defined above. Thus the orders of G_{s-1} and $G_{s'-1}$ are equal, whence by Lemma 3, s=s' if both s and s' are positive. If s=0 then $G_{s'-1}=G_{s-1}=\{e\}$, so that $M \mid s'$, whence s'=0. Similarly, if s'=0 then s=0, so that in any case s=s'. Dually, by considering columns in the Cayley tables of (G, \circ) and (G, *), we see that t=t'.

We now approach the problem of determining the number of non-equivalent semigroups of order n generated by monomials over (G, \cdot) . The integers s with $0 \le s < M$ that will serve as exponents in generating monomials are exactly those such that $M \mid s^2 - s$. Hence the set H of such integers is the solution set of the congruence

$$(2.2) x^2 - x \equiv 0 \pmod{M}.$$

LEMMA 4. The cardinality of the solution set H to the congruence (2.2) is 2^r , where r is the number of distinct primes in the prime power factorization of M.

Proof. Let $M = p_1^{r_1} p_2^{r_2} \cdots p_r^{r_r}$ be the prime power factorization of M. Then x_0 is a solution to (2.2) if and only if x_0 is a simultaneous solution to the system of congruences

$$(2.3) x^2 - x \equiv 0 \pmod{p_i^{r_i}} 1 \leq i \leq r.$$

For each i, $1 \le i \le r$, suppose c_i is a solution to $x^2 - x \equiv 0 \pmod{p_i^{r_i}}$. Then, by the Chinese Remainder Theorem, there is a solution x_0 to the system

$$x \equiv c_1 \pmod{p_1^{\gamma_1}}, \ x \equiv c_2 \pmod{p_2^{\gamma_2}}, \ \cdots, \ x \equiv c_r \pmod{p_r^{\gamma_r}}$$

which is unique modulo M. Then each r-tuple (c_1, \dots, c_r) gives rise to a unique solution (mod M) to system (2.3). Thus the number of solutions to (2.2) is the product of the numbers of roots of the congruences in (2.3). But, by § 3.5 of [2], the solution set to each of these congruences is $\{0, 1\}$, whence the cardinality of the solution set of (2.2) is 2^r .

Finally, we have the following theorem.

THEOREM 3. The number N_G of nonequivalent semigroups generated by monomials over (G, \cdot) is $2^{r-1}(2^r + 1)$, where r is the number of distinct primes which divide M.

Proof. The pairs s, t of elements of H yield monomials x^sy^t which generate semigroups over (G, \cdot) . Moreover, these are the only pairs modulo M which will do so. Thus to determine N_G we need only count the ways in which s and t can be picked from H with $t \leq s$. There are

$$1+2+3+\cdots+2^{r}=rac{2^{r}(2^{r}+1)}{2}=2^{r-1}(2^{r}+1)$$

ways to do this.

- 3. Structure theorems. The following definition and facts are the contents of [1, p. 98, Exercise 10]. Let T be a semigroup. With each element α of T, associate a set X_{α} containing α such that the sets X_{α} are mutually disjoint. Let $s = \bigcup_{\alpha \in T} X_{\alpha}$, and let the product in T be extended to a product in S by defining $ab = \alpha \beta$ if $a \in X_{\alpha}$ and $b \in X_{\beta}$. Then S is a semigroup and is said to be an inflation of T. Now, T is a subsemigroup of S such that $S^2 \subseteq T$. If we define a mapping θ from S into T by $a\theta = \alpha$ when $a \in X_{\alpha}$, then
 - (i) θ maps S upon T,
 - (ii) $\theta^2 = \theta$, and
 - (iii) $(a\theta)(b\theta) = ab$ for all $a, b \in S$.

Let T be a subsemigroup of S such that $S^2 \subseteq T$, and let θ be a transformation of S having properties (i), (ii), and (iii) above. Then S is an inflation of T.

By a left zero semigroup we mean a semigroup S such that xy = x

for all $x, y \in S$. A right zero semigroup is defined dually.

THEOREM 4. Let (S, \cdot) be a semigroup such that for some transformation ϕ of S, $xy = x\phi$ for all $x, y \in S$. Then S is an inflation of the range $S\phi$ of ϕ , and $S\phi$ is a left zero semigroup. Conversely, each inflation of a left zero semigroup is obtained in this manner.

Proof. Since S is a semigroup, (xy)z = x(yz) for all $x, y, z \in S$, so $x\phi^2 = x\phi$ for all $x \in S$, whence $\phi^2 = \phi$ on S. Since $S^2 = S\phi$, $S\phi$ is a subsemigroup of S such that $S^2 \subseteq S\phi$. Now ϕ maps S onto $S\phi$ and

$$a\phi b\phi = a\phi^2 = a\phi = ab$$
 for all $a, b \in S$.

Hence, S is an inflation of $S\phi$. Let $a, b \in S\phi$. Then $a = a\phi$, so

$$ab = a\phi b = a\phi^2 = a\phi = a$$
,

thus $S\phi$ is a left zero semigroup. Conversely, let (S, \cdot) be an inflation of a left zero semigroup L. Since S is an inflation of L, S is the disjoint union of subsets X_a , where $a \in L \cap X_a$. Define a transformation ϕ of S by $x\phi = a$ if and only if $x \in X_a$. Let $x, y \in S$ with $x \in X_a$ and $y \in X_b$. Then $xy = ab = a = x\phi$.

COROLLARY 1. If (G, \circ) is generated by x^s over a finite abelian group (G, \cdot) , then (G, \circ) is an inflation of the left zero semigroup (L, \circ) , where $L = \{x^s \colon x \in G\}$.

By the dual of Theorem 4 we get the following corollary.

COROLLARY 2. If (G, \circ) is generated by y^t over the finite abelian group (G, \cdot) , then (G, \circ) is an inflation of the right zero semigroup (R, \circ) , where $R = \{y^t : y \in G\}$.

Before investigating the structure of semigroups generated by the more general monomial x^sy^t with $0 \le t \le s < M$, we prove the following lemma.

LEMMA 5. Suppose the semigroup (G, \circ) is generated by x^sy^t over an abelian group (G, \cdot) with $0 \le t \le s < M$. Then \circ is commutative if and only if s = t.

Proof. Suppose s = t. Then for $x, y \in G$ we have

$$x \circ y = x^s y^s = y^s x^s = y \circ x$$
.

Conversely, if \circ is commutative, then $x \circ y = y \circ x$ for all $x, y \in G$, so that $x^s y^t = y^s x^t$ for all $x, y \in G$. Letting y = e, we see that $x^s = x^t$ for all $x \in G$, so that $M \mid s - t$. Thus s - t = 0, whence s = t.

Given an arbitrary group (G, \cdot) and a pair of transformations ϕ , ψ of G, a groupoid (G, \circ) is defined by the rule

$$x \circ y = x\phi y\psi$$
 for all x , y in G .

We say that (G, \circ) is generated by the pair of transformations (ϕ, ψ) over (G, \cdot) . If we insist that the transformations ϕ and ψ be endomorphisms, the following lemma gives necessary and sufficient conditions in order for (G, \circ) to be a semigroup.

LEMMA 6. Let (G, \cdot) be an arbitrary group with identity element e, and let ϕ , ψ be endomorphisms of (G, \cdot) . Define a groupoid (G, \circ) by the rule

$$x \circ y = x\phi y\psi$$
 for all x, y in G .

Then (G, \circ) is a semigroup if and only if ϕ and ψ are idempotent and commute.

Proof. Assume that the groupoid (G, \circ) is a semigroup. Then $(x \circ y) \circ z = x \circ (y \circ z)$ for all x, y, z in G,

so

(3.1)
$$(x\phi y\psi)\phi \cdot z\psi = x\phi(y\phi z\psi)\psi \quad \text{for all } x, y, z \text{ in } G.$$

Upon setting y = z = e in (3.1), we get

$$(x\phi)\phi = x\phi$$
 for all x in G ,

since $e\phi=e\psi=e$. In a similar fashion $\psi^2=\psi$. Letting x=z=e in (3.1), we see that

$$(y\psi)\phi = (y\phi)\psi$$
 for all y in G,

hence $\phi\psi=\psi\phi$. Conversely, assume that $\phi^2=\phi$, $\psi^2=\psi$, and $\phi\psi=\psi\phi$. Then for arbitrary $x,\,y,\,z\in G$

$$egin{aligned} (x \circ y) \circ z &= (x\phi y\psi)\phi \cdot z\psi \ &= x\phi^2 \cdot y\psi\phi \cdot z\psi \ &= x\phi \cdot y\phi\psi \cdot z\psi^2 \ &= x\phi(y\phi z\psi)\psi \ &= x\circ (y\circ z) \ . \end{aligned}$$

Thus (G, \circ) is a semigroup.

The following definitions come from [1, p. 98, p. 25]. A semigroup S is called stationary on the right if for all a, b, c in S, ab = ac implies xb = xc for all $x \in S$. A semigroup S is called *E-inversive* if for each $a \in S$ there exists $x \in S$ such that ax is idempotent. Let a, b, x, y be elements of a semigroup S. Consider the four elements ax, ay, bx, by of S. We call S rectangular if, whenever three elements are equal, all four are equal. Let X and Y be any two sets, and define a binary operation in $S = X \times Y$ by

$$(x_1, y_1)(x_2, y_2) = (x_1, y_2)$$

where $x_1, x_2 \in X$ and $y_1, y_2 \in Y$. Then S is a semigroup called the rectangular band on $X \times Y$.

THEOREM 5. Let (G, \circ) be a semigroup generated by a pair of endomorphisms (ϕ, ψ) over the group (G, \cdot) . Then (G, \circ) is an inflation of its kernel $G \circ G$ and its kernel is isomorphic to the direct product of a group and a rectangular band.

Proof. By Lemma 6, $\phi^2 = \phi$, $\psi^2 = \psi$, and $\phi\psi = \psi\phi$. Now (G, \circ) is stationary on the right, since if $a \circ b = a \circ c$ for arbitrary $a, b, c \in G$ then $a\phi b\psi = a\phi c\psi$, so $b\psi = c\psi$. Thus $x\phi b\psi = x\phi c\psi$ for all $x \in G$, so that $x \circ b = x \circ c$ for all $x \in G$. Let $a \in G$ and denote by a^{-1} its group inverse. Then

$$a \circ a^{-1} = a\phi(a\psi)^{-1}$$
.

Now,

$$egin{aligned} (a \circ a^{-1}) &\circ (a \circ a^{-1}) &= (a\phi(a\psi)^{-1})\phi \cdot (a\phi(a\psi)^{-1})\psi \ &= a\phi^2 \cdot (a\psi\phi)^{-1} \cdot a\phi\psi \cdot (a\psi^2)^{-1} \ &= a\phi(a\psi)^{-1} \ &= a \circ a^{-1} \end{aligned}$$

so (G, \circ) is E-inversive since a was taken to be arbitrary in G. Let e denote the identity element of (G, \cdot) . Since (G, \circ) is stationary on the right it is rectangular, whence by Theorem 8 of [4], $G \circ G$ is the kernel of G and

$$G\circ G\cong H imes E$$

where E is the rectangular band consisting of the idempotents of (G, \circ) , and H is the subgroup

$$e \circ G \circ e = \{x\phi\psi \colon x \in G\}$$

of (G, \circ) . By [5] the mapping $\theta: G \to G \circ G$ defined by $a\theta = a \circ f$, where

f is the identity element of the maximal subgroup to which $a \circ a$ belongs, is onto, idempotent, and $a\theta \circ b\theta = a \circ b$ for all $a, b \in G$, whence (G, \circ) is an inflation of $(G \circ G, \circ)$. Thus (G, \circ) is an inflation of the direct product of a group and a rectangular band. (We note that $(H, \cdot) = (H, \circ)$.)

The structure of a semigroup (G, \circ) generated by the monomial x^sy^t is revealed by the following theorem, which is a consequence of Theorem 5.

THEOREM 6. Let (G, \circ) be a semigroup generated by the monomial x^sy^t over the finite abelian group (G, \cdot) . Then (G, \circ) is an inflation of its kernel $G \circ G$, and its kernel is isomorphic to the direct product of the subgroup

$$H = \{x^{st} : x \in G\}$$

of (G, \circ) and the rectangular band

$$E = \{x \in G \colon x = x^{s+t}\}$$
.

Proof. Let ϕ , ψ be defined on (G, \cdot) by $x\phi = x^s$ and $y\psi = y^t$. Then ϕ , ψ are endomorphisms of (G, \cdot) since (G, \cdot) is abelian. Also, $\phi^2 = \phi$ and $\psi^2 = \psi$ since $x^{s^2} = x^s$ and $x^{t^2} = x^t$ for all $x \in G$. Since

$$(x^s)^t = x^{st} = (x^t)^s$$
 for all $x \in G$,

it follows that ϕ and ψ commute. Thus ϕ and ψ as defined above satisfy the hypothesis of Theorem 5, so (G, \circ) is an inflation of its kernel $(G \circ G, \circ)$. Since $x\phi\psi = x^{st}$ for $x \in G$, and since x is an idempotent of (G, \circ) if and only if $x^{s+t} = x$, it follows that

$$G \circ G \cong H \times E$$

where H and E are as defined in the statement of the theorem.

Let (a, b) denote the greatest common divisor of integers a and b. We have the following lemma concerning certain subgroups of a cyclic group.

LEMMA 7. Let G be a cyclic group of order n with identity element e, and let s be a nonnegative integer such that $n \mid s^2 - s$. Then $G_{s-1} = \{x \in G : x^{s-1} = e\}$ is a subgroup of G having order (n, s-1).

Proof. It follows immediately that G_{s-1} is a subgroup of G. Let m denote the order of G_{s-1} , and let d=(n,s-1). Since

$$x^{s-1} = e = x^n, \quad \text{for all } x \in G_{s-1},$$

it follows that $m \mid s-1$ and $m \mid n$, whence $m \leq d$. Now, let a be a generator of G. Then $a^{n/d}$ generates a subgroup $[a^{n/d}]$ of G, of order d. But $(a^{n/d})^{s-1} = (a^n)^{(s-1)/d} = e$, so $a^{n/d} \in G_{s-1}$, whence $[a^{n/d}] \subseteq G_{s-1}$. Thus $d \leq m$, and so m = d = (n, s-1).

The next theorem gives the structure of the group H in Theorem 6, whenever (G, \cdot) is a cyclic group.

THEOREM 7. If (G, \circ) is a semigroup generated by the monomial x^*y^* over the cyclic group (G, \cdot) of order n, then (G, \circ) is an inflation of its kernel $G \circ G$. Furthermore, its kernel is isomorphic to the direct product of the cyclic subgroup

$$H = \{x^{st} : x \in G\}$$

of (G, \circ) of order (n, st-1) and the rectangular band

$$E = \{x \in G : x^{s+t} = x\}$$
.

Proof. Suppose x^sy^t generates a semigroup over (G, \cdot) . Then the set H defined above is the same as the set

$$G_{st-1} = \{x \in G : x^{st-1} = e\}$$
.

Since $n \mid s^2 - s$, and $n \mid t^2 - t$, it follows that

$$n \mid (s^2-s)t + s^2(t^2-t)$$
.

whence $n \mid (st)^2 - st$. By Lemma 7, H has order (n, st - 1). The remaining part of the proof follows immediately from Theorem 6.

We conclude with a corollary to Theorem 7 which extends the results obtained in [3].

COROLLARY 3. Let $(F_q, +, \cdot)$ be a finite field of order q, and let (F_q, \circ) be a semigroup generated by x^sy^t over (F_q, \cdot) . Then (F_q, \circ) is an inflation of the direct product of a cyclic group of order (q-1, st-1), and a rectangular band, together with a zero element.

Proof. Let $F_q^* = F_q \setminus \{0\}$. Then (F_q^*, \cdot) is the multiplicative group of $(F_q, +, \cdot)$, hence is a cyclic group of order q-1. By Theorem 7, (F_q^*, \circ) is an inflation of the direct product of a cyclic group of order (q-1, st-1), and a rectangular band. Since

$$F_a = F_a^* \cup \{0\}$$

and 0 is a zero for o, the corollary holds.

REFERENCES

- 1. A. H. Clifford and G. B. Preston, *The Algebraic Theory of Semigroups*, Vol. I, Mathematical Surveys 7, Amer. Math. Soc., Providence, R.I., 1961.
- 2. W. J. LeVeque, *Topics in Number Theory*, Vol. I, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1956.
- 3. R. J. Plemmons and R. Yoshida, Generating polynomials for finite semigroups. To appear in Mathematishe Nachrichten.
- 4. G. Thierrin, Demi-groups inverse's et rectangulaires, Acad. Roy. Belg. Cl. Sci. (5) 41 (1955), 83-92, (MR 17, 10).
- 5. M. Yamada, A note on middle unitary semigroups, Kōdai Math. Semi. Rep., 7 (1955), 49-52, (MR 17, 585).

Received October 23, 1970. This research is a portion of the author's doctoral dissertation written at the University of Tennessee under the direction of Dr. R. J. Plemmons.

University of Tennessee