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A GENERALIZATION OF A THEOREM OF F. RIESZ

FrANK N. HUGGINS

In this paper, the concept of bounded slope variation, that
of the derivative of a function with respect to an increasing
function, and the Lane integral are used to obtain a generali-
zation of a theorem of Frédéric Riesz.

In [3], R. E. Lane defined an integral which is an extension of
the Stieltjes mean sigma integral defined by H. L. Smith [5]. If each
of f and g is a real-valued function whose domain includes [a, b] and
D = {x;}7_, is a subdivision of [a, b], then S,(f, ¢g) denotes the sum

[f(@) + fl)llo(@) — g(@:-)] -

|

by
=1

The concepts of singular graph, exceptional number and summability
set are as in [3]. If each of f and g is a real-valued function whose
domain includes [a, b] and if there exists a summability set G for f

and ¢ in [a, b], then the Lane integral Sb fdg is the refinement limit
limit S,(f, g) .
Dc@

In case the entire interval [a, b] is a summability set for f and ¢ in
[a, 8], the Lane integral ' fdg is the Stieltjes mean sigma integral
M| rdg. i

aBy Theorem 4.1 of [2], if f is quasicontinuous on [a, b] and g is
of bounded variation on [a, b], then ' fdg exists. (A function f is
said to be quasicontinuous at (¢, f(c)) if both f(e +) and f(c —) exist.)

DEFINITION 1. The statement that f has bounded slope variation
with respect to m over [a, b] means that f is a function whose domain
includes [a, b], m is a real-valued increasing function on [e, b], and
there exists a nonnegative number B such that if {x;}~, is a subdivi-
sion of [a, ] with » > 1, then

"Z'Z‘I | @) — F®)  f(@) — F(®:) <B.

& Im,,) — m(x;) m(x;) — m(x;—) |

The least such number B is called the slope variation of f with respect
to m over [a, b] and is denoted by Vi(df/dm). [Note: Vi(df/dm) = 0.]
The above sum is nondecreasing with respect to refinements.

In [4], F. Riesz proved that a necessary and sufficient condition
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that a function F' defined on the interval [a, b] be the integral of a
function of bounded variation on [a, b] is that F have bounded slope
variation with respect to I over [a, b], where I is the function defined,
for each z, by I(x) = 2. In this paper, Riesz’s result will be generalized
using the Lane integral instead of the Riemann integral.

By Lemma 3.3 of [6], if f has bounded slope variation with respect
to m over [a, b] and a < ¢ < b, then

. o S @) = flo)
Daf(o = lim o —m(©)

exists and if a <e¢ £ b,

D=f) — lim L@ = £

amse— M(X) — m(c)
exists.

LEMMA 1. If f has bounded slope wvariation with respect to m
over [a, b], ¢ is @ number in [a, b], and m is continuous on the right
(left) at (c, m(c)), then f is continuous on the right (left) at (c, f(c)).

Proof. Let ¢ denote a positive number and let ¢ be a number
in [a, b]. Suppose m is continuous on the right at (c, m(c)). Then
a < ¢ < band Dif(c) exists. Therefore there exists a positive number

o, such that if ¢ < 2 < ¢ + d,, then

M_ Dif(e)| <1

m(x) — m(c)
from which it follows that
| f@@) — fle)| < Dsfe)| + 1] | m(x) — m(c)| .

Since m is continuous on the right at (¢, m(c)), there exists a positive
number §, such that if c<ax<c¢ + 0,, then |m(x) — m(c)| < ¢/[| D% f(c) | +1].
Let 6 = min. [§,, 6;]. Then if e <z <c¢ + 9,

| f@) — flo)| <[ Dnf@)] + 1] | m(x) — m(c) |
<|[IDrf(e)| + 1]-¢/ll D7f(e) | + 1]
= £ .
Therefore f is continuous on the right at (¢, f(c)).

If m is continuous on the left at (¢, m(c)), a similar argument will
show that f is continuous on the left at (c, f(c)).

DEFINITION 2. Suppose m is an increasing function on [a, ], f is
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a function whose domain includes [, b] and ¢ is a number in [a, b].
The statement that f has a derivative with respect to m at the point
(¢, f(c)) means that

— i L@ — f©)
Do) =l oy — (o)

exists.

THEOREM 1. If f has bounded slope variation with respect to m
over [a, b], then D, f(x) exists for each x in [a, b] — E, where E is a
countable set.

Proof. Since f has bounded slope variation with respect to m
over [a, b], D;;f(x) exists for each « in [a, b) and D; f(x) exists for each
2 in (a, b]. Let E, denote the set of all numbers « in [a, b] such that
D, f(x) < Dif(x) and let E, denote the set of all number z in [a, b]
such that D, f(z) > D;.f(x). Let all rational numbers be arranged in
a sequence 7, ¥, 73, +++» Then if ¢ is a number in F, there is a smallest
positive integer k& such that

D, f(c) <7, < Dif(c) -
There is a smallest positive integer A such that r», < ¢ and

@ = 1) _

m@) — mie) >

for r, < x < ¢ and a smallest positive integer % such that r, > ¢ and

f@) — fe)

m(x) — m(c) > T

for ¢ < ¢ < r,. These two inequalities together give
@) F (@) — fle) > rim(x) — m(c)]

for r, < & < r,, x # ¢. Thus to every number ¢ in E, there corresponds
a unique triad (4, k, %) of positive integers. Suppose some two numbers
z, and x, of E, correspond to the same triad (&, k, »). Then, on putting
c= 2 and ¢ = &, in (1), we have

f@) — f(@) > rifm(x,) — m(z)]
and, on putting ¢ = 2, and = = z,,

F@) — f@) > rilm(z) — m(z,)]

or
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flao) — flae) < rifm(a;) — mx)] .

This involves a contradiction. Therefore no two numbers of E, cor-
respond to the same triad. Since the set of triads of positive integers
is countable, it follows that E, is countable. A similar argument will
show that FE, is countable. Therefore E = E, U E, is countable.

THEOREM 2. If the function m is increasing on [a, b], each of the
Sunctions f and g 1is continuous on [a,d] and D,f(x) = D,g(x) for
each x in [a, b] — H, where H is a countable set, then f(x) = g(x) —
g(@) + f(a) for each x in [a, b].

Proof. Let F' be the function defined, for each x in [a, b], by
F(x) = f(x) — g(x). Then F is continuous on [a, ] and D,F(x) = 0
for each z in [a, b)] — H. Let ¢ denote a positive number and let ¢ be
a number in (a, b]. Let HN|[a,c] = {p, D2 **+, Du, +++}. Since F is
continuous on [a, b], for each positive integer n there exists a positive
number 4, such that if « is in (p, — d,, ». + 0,) N [a, ¢], then

| Fx) — F(p,) | <e/2"*.
Let h, = (P, — On, Du + 0,). It follows that if #, and x, are numbers
in &, N [a, c], then

[ F(x,) — F(zs) | < g/2"*" .

For each 7, choose some particular 2, satisfying the above conditions.
Now consider any number ¢ in [a,¢] — HN [a,¢]. Then D,F(t) = 0.
If ¢ is in (a, ¢), there is a positive number §, such that (¢t — d,, t + d,)
is a subset of (a,¢) and if « is in (¢ — 4, t + 0,) and x # ¢, then

F(x) — F(t) €
m(x) — m(t) 12[m(c) — m(a)]

or

el m(x) — m(t) | e- V(1)
12[m(c) — m(a)] 12[m(c) — m(a)]

| F(x) — F(8)| <

where V(t) is the variation of m over [{ — d,,¢ + d,]. Ift = a, there
exists a positive number g, such that if x e and z is in (¢ — d,, @ +0,) N
[a, c], then

e V()
12[m(c) — m(a)]

| F(x) — F(a)| <

where V(a) is the variation of m over [a, @ + 0,]. If ¢ = ¢, there exists
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a positive number o, such that if x #¢ and = is in (¢ — 4, ¢ + d,)N
[a, c], then

e+ Vie)
12[m(c) — m(a)]

| F(x) — F(o)| <

where Vi(c) is the variation of m over [¢c — 4., ¢]. It follows that if ¢
is in [a, ¢] — HN [a, c] and », and x, are numbers in (¢ — 6, ¢t + 6,)N
[a, ¢], then

e V()
6[m(c) — m(@)] *

| Fl@) — F(x,) | <

Let g, = (¢ — 6, t + 0;). For each tin [a, ¢] — HN [a, ¢], choose some
particular g, satisfying the above conditions. Let G denote the collec-
tion to which g belongs if and only if either (1) for some positive integer
n, g = h, or (2) for some ¢ in [a,¢c] — HN [a,c], 9 = g;.. G is a collec-
tion of open intervals covering [a, c¢], hence there exists a finite sub-
collection G’ of G that covers [a, ¢]. Choose a finite chain {R,, R,, - -+, R}
of intervals of G’ covering [a, ¢] and having the property that if B; N
R; + @, then |4 — j| =1. Let a =, «, be a number in R N R, z,
be a number in B, N R;, «+-, 2, be a number in B,_, N R,, and z, = c.
Note that if for every ¢ <k, R; is g, for some ¢ in [a, c] — HN [a, c]
and V; = V(t) for that ¢, then

3 Vi < 3m(e) — m(@)] -

Now
k

F(e) — F(a) = X [F(x) — Fa;-)] .

=1

Therefore

|F©) - F@)| = 3| F@) — F.)|

=2u| F(x) — F(z,_) |
+ 25 [ Flx) — Flx;-y) |
where the first sum is the sum of those terms for which R; is some

h, and the second sum is the sum of those terms for which R; is some
g, Now z;,_, and x; are in R; so that

¢/2" if R, = h,

| Fla;) — F(wi) | < e V(t)
6[m(c) — m(a)]

ifRi:gto
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Hence
S F@) - Flen) | < 3 e/2 = of2

and

5 k
6[m(c) — m(a)] gﬁ Vi
e-3[m(c) — m(a)] ¢
6[m(c) — m@] — 2 °

2u| F@) — F(x,_) | <

<

Therefore |F(c) — F(a)| < ¢/2 + ¢/2=¢. Thus F(c) = F(a). But ¢
was any number in (a, b]. Hence for each x in [a, b], F(x) = F(a) or

f(@) = g9@) — g(a) + f(a).

THEOREM 3. In order that the function F defined on [a, b] be the
Lane integral of a function f of bounded wvariation on [a, b] with re-
spect to a continuous, increasing function m on [a, b], it is mecessary
and sufficient that F have bounded slope variation with respect to m
over [a, b].

Proof. It is easy to see that the condition is necessary. Suppose
that F has bounded slope variation with respect to m over [a, b].
Then F' is continuous on [a, b]. Let f be the function defined, for
each z in [a, b], by

{ f(x) = D}F(x) for each z in [a, b)
f(b) = DLF(b) .

Then f is of bounded variation on [a, b] and is therefore quasicon-
tinuons on [a, b]. Moreover, D,F(x) = f(x) for each z in [a, b] — E,
where E is a countable set. Let G be the function defined, for each
z in [a, b], by G(x) = Sz fdm. Then G is continuous on [a, b] and
D,G(x) = f(x) at each number z in [a, b] such that f is continuous
at (x, f(x)). Since f is quasicontinuous on [a, b], D,G(x) = f(x) for
each z in [a, b)] — K, where K is a countable set. Therefore D, F(x) =
D,G(x) for each x in [a, b] — H, where H is a subset of FU K. It
follows from Theorem 2 that F(x) = Sx fdm + F(a) for each z in [a, b].
That is, F is the Lane integral of a function f of bounded variation
on [a, b] with respect to a continuous, increasing function m over [a, b].

It should be noted that if m = I, then the Lane integral reduces
to the Riemann integral so that Theorem 8 contains Riesz’s theorem
as a special case.
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