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DIAGONAL SIMILARITY OF IRREDUCIBLE MATRICES

TO ROW STOCHASTIC MATRICES

D. J. HARTFIEL AND J. W. SPELLMANN

By using the Perron-Frobenius Theorem it is easily shown
that if A is an irreducible matrix then there is a diagonal
matrix D with positive main diagonal so that DAD'1 = rS
where r is a positive scalar and S a stochastic matrix. This
paper gives a short proof of this result without direct appeal
to the Perron-Frobenius Theorem.

Definitions and Notations* Let % ̂  2 be an integer. Let N —
{1, 2, , n). An n x n nonnegative matr ix A is said to be reducible
if there is a permutation matr ix P so t h a t

PAPT = ( Ώ

L

 Λ) where Aι and A2 are square- If A is not

reducible we say t h a t A is irreducible. By agreement each l x l
matr ix is irreducible.

Denote by

u(A) = min max ai3-
M L »εJί J

3 ίM

where the minimum is over all proper subsets of N.

r(A) = max Σ α»* , p(A) = min Σ α**
ieN keN ieN keiV

D = {d = (dl9 d2, , dn) I each dk > 0 and min dk = 1} .
k

f(d) = max^ eΛ I Σjkeydiancdz1 - Σ f c e Λrdμ i kdi λ \ where each dk > 0 and
A is irreducible. Finally let S(A) denote the positive number so that
S(A)-u(A) - r(A) = f(e) where e = (1, 1, , 1).

RESULTS.

LEMM^ 1: f(d) = /(λ d) /or eαcft λ > 0,

LEMMA 2. // (dlf d2, , d j e Z), α?ιd maxieA. dk > [S(A)]n~\ then
f(d)>f(e).

Proof. Reorder (dιy d2, , dn) to (dh, dh1 , din) so that d^ ;>
di2 ^ ^ di%. Let s denote the smallest integer so that (dis/di$+ί) >
S(A). That there is such an s follows since (dik/dik+1) ^ S(A) for
each fee {1, 2, •••,%— 1} would imply that
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dh = if- = Π

Let M = {diL, dh, ••-, dίβ}. Note that Mφ N. Since A is irreducible
there is an apq = max i e J f l ί e J f α^ > 0. Then since pe M and g g M

^ > S(A), ^- ^ 1 for each & G JV,

Σ dpa^dl1 > S(A) (̂-4) , and Σ d{ a{ kd^1 ̂  r(A) .
keN key n n

From this it follows that

' >S(A).u(A)-r(A)=f(e).

LEMMA 3. / achieves a minimum in D.

Proof. The proof follows from Lemma 2, the fact that / is
continuous on the compact set {d\de D and max^ dk <£ [S{A)\n~l], and
eeD.

THEOREM. The minimum of f in D is 0, i.e., Mindk>0 keNf(d) = 0.

Proof. We first prove the theorem for positive matrices. Suppose
A > 0 and / achieves its minimum at d° = (dj, d% , d°n) e D. Further
suppose f(d°) > 0. Let DQ = diagonal (d?, d°2, , d°n). Let D0AD^ = J5.
If P is a permutation matrix then {PDQP')PAPT(PD^lPr) = PEP7.
Hence we may assume that

Σ k V
Σ &•*^ Σ &•*

Let

Let

Σ 6« = Σ
keN key

Σ bik = Σ
k e V & e Λ'

dfc =

1 - ε

( 1 - ε

A G M ,

ke M2

otherwise .

Consider DBD~ι and let g(ε)
~ Z k y diUikdk

Then

A; 2 3/2

Σ
. .fceil/o

Σ
ft e Λf,

G M i , i G Λf2.

o .
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Hence for sufRciently small ε,

However, this contradicts / having its minimum at d°. There-
fore, if A > 0, mind/c>0 keNf(d) = 0.

Now suppose A is irreducible. For each positive integer Jc, let
Ak = A + (l/k)J where J is the n x n matrix of ones so that limw_oo Am —
A. For each Am there is a diagonal matrix Z>w = diag. (d?, d™, , dZ),
(dΓ, d?, •••, dn)e D, so that DmAmD~ι has equal row sums. Further

1 ^ dΐ ^ [SίAJ]""1 for each fee iSΓ.

The S(AmYs are easily seen to be bounded, and hence the Dm's are
bounded having a limit point D. Let {DWJ denote a subsequence of
{ZU so that l im m _ Dm. = D. Then l im^c Όm,Am,Ώ^ = DAD'1 which
has all its row sums equal. Hence minrf/c>0 keNf(d) = 0.

COROLLARY. // A is an irreducible matrix then there is a
diagonal matrix D with positive main diagonal so that DAD~ι = rS
where S is a row stochastic matrix and r a positive number.

We also include the following corollary to Lemma 2.

COROLLARY. If A is irreducible with Perron eigenvector x =
(xu x2, .--, O then m^ijxijxj ^ [S{A)f~ι - ((2r(A) - v(A)lu{A)γ-\

We include this bound as the bound involves the quantity u(A)
which to our knowledge is new.
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