PACIFIC JOURNAL OF MATHEMATICS
Vol. 40, No. 1, 1972

DIAGONAL SIMILARITY OF IRREDUCIBLE MATRICES
TO ROW STOCHASTIC MATRICES

D. J. HARTFIEL AND J. W. SPELLMANN

By using the Perron-Frobenius Theorem it is easily shown
that if A is an irreducible matrix then there is a diagonal
matrix D with positive main diagonal so that DAD ' =S
where r is a positive scalar and S a stochastic matrix. This
paper gives a short proof of this result without direct appeal
to the Perron-Frobenius Theorem.

Definitions and Notations. Let #n = 2 be an integer. Let N =
{1,2, ---, n}. An n x n nonnegative matrix A is said to be reducible

if there is a permutation matrix P so that

PAP" = (gl ?4> where A, and A, are square. If A is not

reducible we say that A is irreducible. By agreement each 1 x 1
matrix is irreducible.
Denote by
u(4) = min [max ai,]
M

1eM
7€M

where the minimum is over all proper subsets of N.

r(A) = max >, a; , p(4) = min > a;,

teN keN 1eN kenN

D={d=(,d, -+-,d,) |each d, > 0 and mkind,.. =1}.

Sd) = max; jey | ey diindi’ — Diie v diaudi’ | where each d, >0 and
A is irreducible. Finally let S(A) denote the positive number so that
S(A)-u(A) — r(A) = f(e) where e = (1,1, ---, 1).

RESULTS.
Lemmy 1 f(d) = f(\-d) for each N > 0.

LEmmA 2. If (d,d., ---,d,)e D, and max,.,d, > [S(A)]"", then
S(d) > fle).

Proof. Reorder (d, d, :--,d,) to (d;,d;, ---,d;) so that d; =
di,= -+ =d;. Let s denote the smallest integer so that (d;/d; ) >
S(A). That there is such an s follows since (d;/d;, . )= S(A4) for
each ke(l,2, .-+, n — 1} would imply that
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@, =4+ =11 (z=) = s

et Mg

Let M ={d,, d,, ---,d;}. Note that M = N. Since A is irreducible
there is an a,, = max;.y j.» a; > 0. Then since pe M and ge¢ M

d
d,

S dandit > S(A)- u(A) , and kZ dia; A = r(4) .
keN eN

2> S(A4), 1" <1 for each ke N,

From this it follows that

S(d) = k}:v a0 dit — kzv d: @ dit| > S(A)-u(A) — r(4) = fle) .

LeMMA 3. f achieves a minimum in D.

Proof. The proof follows from Lemma 2, the fact that f is
continuous on the compact set {d|de D and max,d, < [S(4)]*"'}, and
ec D.

THEOREM. The minimum of f in D is 0, i.e., Ming, .o ey f(d) =0.

Proof. We first prove the theorem for positive matrices. Suppose
A > 0 and f achieves its minimum at d° = (d), d}, ---, d’) € D. Further
suppose f(d°) > 0. Let D, = diagonal (d’, d3, ---, d%). Let D,AD;*= B.
If P is a permutation matrix then (PD,P")PAP"(PD,'P") = PBP’.
Hence we may assume that

20y = bz e = 3 b
ke

keV

Let

MLZ{i‘Zbik: Zblk} Mz:{i
kev keN re

Let
1—c¢ ke M,
dp, = {1 — &) ke M,
1 otherwise .

Congider DBD™" and let g(¢)
= Dpey ibudit — Dl ydbidy? 1e M, je M,.
Then
g'(0) = —me—22 by — 2>, bjy — 2,0, <0.

kelly kel ey
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Hence for sufficiently small e,
filddl, didsy -+ -, ddi] < J(A) .

However, this contradicts f having its minimum at d°. There-
fore, if A > 0, ming, ., .y f(d) = 0.

Now suppose A is irreducible. For each positive integer k, let
A, =A+1/k)J where J is the n x n matrix of ones so that lim,, .. 4, =
A. TFor each A, there is a diagonal matrix D, =diag. (d7", d}', «++, d7),
(dp, dr, «---,d" e D, so that D,A,D," has equal row sums. Further

1 <dpy <[S(A4,)]** for each ke N .

The S(A4,)’s are easily seen to be bounded, and hence the D,’s are
bounded having a limit point D. Let {D, .} denote a subsequence of
{D,,} so that lim,_. D, = D. Then lim,_. D, A, D, = DAD™' which
has all its row sums equal. Henece min, ., .y f(d) = 0.

COROLLARY. If A s an irreducible matrix then there is a
diagonal matriz D with positive main diagonal so that DAD™ = ¢S
where S is a row stochastic matrixz and r a positive number.

We also include the following corollary to Lemma 2.

COROLLARY. Iff A 1is irreducible with Perron eigenvector x =
(), @, ++e, x,) then max;;x;/z; < [S(A)]" " = (2r(A) — p(A)/u(A))* .

We include this bound as the bound involves the quantity u(A)
which to our knowledge is new.
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