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A GENERAL SOLUTION OF BINARY HOMOGENEOUS
EQUATIONS OVER FREE GROUPS

M. J. WICKS

Let Jτ?~ be the free group generated by variables X, Y9
ctf be any given free group and W, g be elements of *β~, &,
respectively. Then x=(x9 y) is a solution of the binary
homogeneous equation W=g if and only if W(x)=g, where
x9 y are elements of ^ . A general method is obtained which
will determine, for arbitrarily given W, g, the solution set
of W=g. Effectiveness is an essential requirement for the
method. It may be noted that the problem can also be re-
garded as the problem of finding embeddings of J^~ into ^ ' .

The problem of solving an equation splits naturally into
two parts: the existence problem, to determine whether there
are solutions; and secondly, the characterization of the general
solution. The existence problem here is solved by showing
that the equation has a solution if and only if at least one
of a finite set of identities has a solution. The set of ident-
ities may be obtained in an effective (and quite practical) way
from W, g. In order to solve the second part of the problem,
it is necessary to analyse the way in which a solution of an
identity generates solutions of the equation. This is elucidated
by the introduction of a set of mappings Φ(W), the members
of which are (derived from) the automorphisms of J^~\ The
members of Φ(W) serve as parameters for the general solu-
tion. It has not been possible to specify Φ(W) in an effective
way (at least, not according to one interpretation of this re-
quirement), but Φ(W) is a group, and this fact can be used
in applications of the theory.

Two special situations must be mentioned. A solution (a?, y) is
abelian if xy = yx. The set of abelian solutions may be determined
in a completely elementary way. The second matter concerns the
case in which W is the power of a generator of ^ C In such a case
there may be solutions of the equation which involve arbitrary mem-
bers of ^ , but not, of course, in an arbitrary way.

The general background material pertaining to free groups will
be found in [5], but the terminology and notation found there has
been modified. Some references to related problems are also listed
at the end. Of these, [6] deserves further comment.

Schupp has solved the existence problem in a most concise way.
His approach is different from the one that we have followed; the
details are not relevant here, except to note the use of Whitehead's
results [7, 8]. The direct analysis of § 9 allows us to avoid these
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general, and difficult, procedures.

An earlier version of the present work obtained a solution of the
existence problem independently of [6], but in a much more lengthy
way. Subsequently, in correspondence, Paul Schupp suggested an
alternative style of proof, which greatly simplified the work, and
which led, in part, to the present extension. It is a pleasure to
express thanks for these suggestions and to acknowledge the debt
for the improvements that they made possible. A similar acknowl-
edgement is due to the referee. His suggestions, which will be
mentioned at the appropriate places below, have also shortened some
of the original proofs.

The analysis which follows is divided into a number of separate
stages, and it may help to unify these if we conclude this introduc-
tion with a description of the method in general terms. One major
difficulty in solving an equation over a free group is that a solution
(x, y) will generally be such that W(x, y) is not reduced. (If it is
reduced, we have the solution of an identity.) The deletions that
are needed in order to obtain g have the effect of "changing the
shape" of W, and of (x, y). It is an essential requirement, for any
method which attempts to replace the equation by an equivalent set
of identities, that a record of such changes be available. For this
reason, it is more convenient to deal with (substitution) pairs of the
form (U, x), where U is a word in two (or more) variables and x is
a couple (or %-tuple) of elements of ^ . We shall show that the
deletions in U(x), the value of (£7, x), can be implemented by auto-
morphisms. It is these mappings which contain the record of the
deletions.

We deal with matters in a cyclic way. For any automorphism
φ, Uφ and φx are defined so that the following relation holds: the
values of (Uφ, x) and (U, φx) are conjugate, and we say in such a
case that the pairs are equivalent. The relation may also be expressed
in another way. Let ψ be the inverse of φ, then the pairs (U, x)
and (Uψ, ψx) are equivalent.

The next stage is to choose φ, or φ, so that the value of the
second pair is shorter than the value of the first—so that deletions
have indeed been implemented by φ. It was a suggestion of Paul
Schupp's that the same effect could be obtained by requiring that
ψx be shorter than x, where the length of x is the sum of the
lengths of its components. This is so and leads to an obvious simpli-
fication.

There are rather trivial choices for φ in some cases, correspond-
ing to inner automorphisms. Once these are exhausted, we find that
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further choices can be confined to one of a couple of mappings. There
are two such couples and the relevant couple is determined by the initial
Λ\ We arrive in this way at a reduction procedure for pairs: starting
with a given (W, x) a finite number of reductions leads to an equiv-
alent pair (Wl9 xd to which no reduction applies. It may still be the
case that the value of this terminal pair is not a cyclically reduced
word. However, with the help of a single additional variable, an
equivalent inert pair can be obtained by a single step, where a pair
is inert if its value is cyclically reduced.

The method whereby the words W1 can be effectively determined
is not easy to summarize. One point can, however, be made. We
shall ensure that all components of ΛΓX are nontrivial reduced words,
and more generally, that this is true at every stage of the reduction.
It then follows that the value of the terminal pair is at least as long
as Wx.

Finally, we can indicate the way in which mappings are used as
parameters. In the earlier notation, let Θ = φψ. The essential pro-
perty of Θ is not that it is the identity, but simply that Wθ and W
are the same (cyclically). The set of all such θ, which we denote
by Φ(W), is the set of parameters. Then, if it is assumed that ψ
has been chosen, ψ may be taken as any coset representative of ψ"1

modulo the subgroup Φ(W).

2. Definitions and Notation* It should be apparent and must be
stressed that it is the combinatorial presentation of a free group, in
terms of a specified set of generators, that is the working basis
throughout. In addition to ^ , <g% we also require a group which
incorporates an ancillary variable. This is the free group J ^ gener-
ated by X, Y, P. Thus &~ is considered as a subgroup of Szf.

The following notation will be used systematically. The symbols
U, V denote words of J ^ , while W will always be used for a c.r.
word (i.e. cyclically reduced word) of ^ . Words of ^ are denoted
by p, u, v, x, y> and g is always a c.r. word. The symbols i, j , k,
m, n are used for integers. (The modification of a symbol by the
addition of a numerical subscript, without change of denotation, will
be allowed in the usual way.) The length of U (with respect to the
variables) is denoted by Λ(U)9 while \(u) will denote the length of u.

The following definitions refer to Jάf; there are obvious general-
ization to any free group. A word of length 1 is a letter, and the
symbols A, B always denote letters. (We sometimes refer to 1 as
the trivial letter.) The inverse of A is A~K A word of length 2 is
a syllable; AA is pure; AA"1 is trivial; and BA is the transpose of
AB. There are obvious extensions to words in general. We say that
U is a part (or sub word) of V in the usual circumstances.
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We make a clear distinction (notationally) between four equivalence
relations on the set of words. These are the relations of identity,
cyclic identity (being a cycle of), equality and conjugacy; they are
denoted by U = V, U = V, U = V and U ~ V, respectively. The last
two are (assumed to be) defined in terms of the elementary transfor-
mations of deletion and insertion; and the fundamental relation be-
tween deletions, reduced (or c.r.) words, equality and identity is
implicitly involved in many of the proofs. The equivalence relations
have natural extensions to ^-tuples. These are clear in the case of
identity and of equality. The extensions in the cyclic cases will be
explained below.

A harmless ambiguity will be allowed by the use of phrases such
as "the c.r. word conjugate to". It is assumed that in any JC the
components of x are reduced words. In the binary case, we say that
x is a substitution if and only if x is non-abelian; then, certainly,
each component of JC is non-trivial. It is in this latter sense that
we use substitution to refer to w-tuples in general. Finally, in the
pairs (£/, x) which occur below, it is always the case that U is a c.r.
word and JC is a substitution.

3* Some preliminary simplification* We dispose of the problem
of finding abelian solutions of an equation W = g. We can find m, n
and a word U of the derived group of Jf such that W = XmYnU.
Then x = (u\ uj) is an abelian solution if and only if ud = g,
where d — mi + nj. The extraction of roots does not present any
difficulty and, once g is expressed as a power, the determination of
the possible u is straightforward. Finally, the parametric specifica-
tion of % j is a piece of elementary number theory.

There is no loss of generality in assuming that W, g are reduced
words, and indeed, that g is a c.r. word. The same is true of W.
To see this, consider an equation U — g, where Ue^. There are
words V, W, where W is a c.r. word, such that U = VWV~\ Let
(x, y) be a solution of W = g. Put v = V(x, y), #1 = v~ιxv, yγ — v^yv,
then V(x19 y^ — v, and it may be verified that (xlf y^) is a solution of
U = g. The way in which solutions of the latter yield solutions of
W = g is clear.

Finally, we consider a consequence of dealing with matters in a
cyclic way. This has the effect of replacing the equation by the
conjugation W' ~ g. Every solution of the equation is obviously a
solution of the conjugation. Conversely, if JC is a solution of the
conjugation, then W(x) = ugu~\ where u can be found effectively, so
solutions of the equation can be obtained from solutions of the con-
jugation.
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Something must be said, in conclusion, about these simplifications.
The algebraic consequences of the modifications are difficult to express
in a general way. Of course, particular cases (of W for example)
which may have a special interest, are amenable to more detailed
analysis. We do not consider this question further and the remainder
of the work will be concerned with solving binary conjugations in c.r.
words.

4* Automorphisms* A pair of words U, V (which generate
define an automorphism ψ such that Xφ = Uf Yφ = V. We let Wφ

(the image of W under φ) be the c.r. word conjugate to W(U, V);
and for x = (x, y), φx = (u, v), where u = U(x) and v = V(x). (The
definition of φ can then be expressed in the form φX = (U, V), where
X = (X, Γ).) It is immediate that (Wφ, x) and (W, φx) are equivalent
for any W, x.

A simplifying feature, which results from using classes of con-
jugate words, is that if φ is an inner automorphism, then Wφ is a cycle
of W. That the procedure can be iterated is well known: for if θ, φ, ψ
are such that θ = φψ, then Wθ is a cycle of (Wφ)+. The automor-
phisms also act naturally on the substitutions in the sense that
θχ — φ(ψx). However, something further is required if the full advan-
tage is to be gained.

The group of inner automorphisms is a normal subgroup of the
group of automorphisms (of ^~) and we wish to work with mappings
of the factor group Φ. There is a difficulty. Let φ, ψ be mappings
such that φ — ψ in Φ. Then it may no longer be true that φx — ψx.
What is true is that if φx = (u, v) and ψx = (vf, v')9 then there is
p (a member of the subgroup generated by x) such that v! = pup~ι

and v1 = pvp~\
This motivates the extension of the conjugacy relation to ^ 2 .

Let xr = (x\ y') be such that there is u for which x' — uxu~\ yr = uyvr1.
We denote this by writing JC ^ x', or sometimes as x' — uxvr1, where
x = (x, y). It is clear that (W, x) and (W, xr) are equivalent for any
W.

This extension makes it convenient to introduce some further
notation. If x, u and φeΦ are such that u ~ φx, we denote this
by writing

φ: x —> u .

In such a case, the components of u are in a conjugate of the sub-
group generated by x. Thus u is abelian if and only if x is abelian.

After these general matters, we come now to consider the parti-
cular mappings that are needed below. Three of these, which are
of primary importance, are defined by
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aX == {XY~\ Y);τX= (YfX);εX = (X~\ Y) .

It is also convenient to denote or1 by β and τετ by η, so that
βX~ (17, Γ) and ηX ~ (X, Γ"1).

It is well known that a, τ, ε generate Φ and it is also known that
Φ can be generated by two elements, [2, p. 88]. The same result is
contained in

PROPOSITION. aτβ = τaτε .

Proof, It is sufficient to make the calculations:

aτβX = aτ(XY, Y) = a(Y, XY) = (YY~ιX~\ XY)

= (X-1, I F ) .

τaτeX = rαr^" 1, Γ) - ra(Γ, X"1) = r(7X, X"1)

- (X~\ YX) ~ X(X~\ YX)X~ι = (X-1, XY) .

It follows that ε = τβτaτβ, and hence, that a, τ generate Φ.
However, our main interest in the Proposition is that it furnishes a
solution of the word problem of Φ, and this solution was the inspira-
tion of the reduction procedure. The treatment below was suggested
by the referee.

Let Σa be the subsemigroup of Φ generated by a, τa; Σβ the
subsemigroup generated by β, τβ; and Δ the subsemigroup generated
by τ, ε. Then we have

For any φe Φ there exists σ e Σζ, ξ = a or βy and δ 6 Δ such that
<p — σδ.

Proof. Let φ be a word in a, β, r, ε, η. The relations as — εβ,
aη — ηβ, ze = ητ and ε2 = η2 = r2 = 1 show that there is a word σ
in α, /5, T and δ G J such that ψ = σδ. We may assume that σ is
freely reduced, so if σ is not of the required form, either aτβ or βτa
is a part of <7. These may be replaced by τaτε or ετβτ, respectively,
and the ε (or η) moved right ward, leading to an expression for φ in
which the number of occurrences of a and β has been decreased.
The proof is completed by induction.

It is also true that σe Σζ can be uniquely factorized as a product
of ξ and τξ, ξ = a, β. (Unique factorization in Σζ will always refer
to this presentation.) This may be seen as follows:

For any σe Σβ there are positive words U, V such that σX~(U, V).
Let of G Σβ and ξ be one of β or τβ such that a = ξσ'. There are
positive words £7', V such that σ'X~ (IT, V). Then, one of U or
V is conjugate to U'V and the other is conjugate to V. Since the
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words are positive, U or V is a cycle of U'V, etc., and whether ξ
is β or τβ is uniquely determined by whether U is longer or shorter
than V. The proof is completed by induction.

A similar proof can be made for Σa by using different classes
of homogeneous words (see §9). It is clear that Σa and Σβ have
trivial intersection.

5» The classification of pairs. The set of all pairs (U, x) with
Ue J^ is subdivided into various categories. This is mainly to facilitate
the application of the reduction procedure, but there are some other
aspects. The categories parallel, to some extent, the division of Φ
by the subsemigroups Σξ. There are three main divisions: the terminal
pairs, to which no reduction applies; pairs of type 0, which can be
reduced in a trivial way; and pairs of type A or B to which reduc-
tion applies non-trivially. It is assumed that once a category has
been specified, the subsequent definitions refer to the pairs which
remain; so the categories are disjoint.

Two kinds of terminal pairs may be specified at once. The first
is the class of abelian pairs, where (U, x) is abelian if x is abelian
or U is pure. The second is the class of inert pairs. Any pair which
remains is said to be active.

Let (U, x) be an active pair. Since U is a c.r. word and the
components of x are non-trivial reduced words, there must be a syl-
lable S, which is part of a cycle of U, and such that S(x) is not
reduced. (Note that it is indifferent for the conclusion whether S or
S"1 is referred to.) Now consider the terminal letters of the com-
ponents of x; let ai9 b~ι be the initial and final letters, respectively,
of the ίth component, i — 1, 2. (A gloss is needed if one component
is a letter, but this is easily supplied.) Since S is non-trivial, at
least two of a19 b19 a2, b2 are identical.

Suppose at least three of the letters are identical—to the letter a
say—then the substitution x', such that x' = a~ιxa, is shorter than x
and is such that (U, x) and (U, x') are equivalent. A pair of this
kind is of type 0. A sequence of conjugations, which may be regarded
as trivial reductions, will yield an equivalent pair, with a shorter
substitution, which is not of type 0.

Let (U, x) be active and not of type 0. If one of the components
of x is not a c.r. word, then (in the notation above) either a1 = bL,
or α2 ΞΞ b2, and if both be true, aγ and α2 are different. The pair is
terminal of type OT. There must be words u, v and non-trivial c.r.
words x, y such that x is (uxu~\ vyv~ι), and p = v~ιu is a non-trivial
reduced word. An equivalent inert pair is obtained as follows.

Let A = (X, Y, P) and 7 be the automorphism of J^f such that
jA = (PXP~~\ Y, P). The equivalent pair is (Ur, x0), where xQ = (x9 y, p).
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The conditions on u, v, x, y ensure that the pair is inert and that x0

is a substitution.
The active pairs which remain are such that the substitution is

a c.r. substitution, i.e. each component is a c.r. word. Let (U, x) be
such a pair. Then there is S, one of XY or XY~\ such that (S, x)
is active. There is a connection between S and U.

We say that S occurs in U if S or S~ι is part of a cycle of U.
It will be shown in §9 that XY occurs in a c.r. word if and only if
YX occurs; and similarly for XY~\ Y~ιX. Thus the relation between
S and U in the case above is that S occurs in U.

Let S be XY~\ Then either the initial letters of the components
of x are identical, or the final letters are. Let u be the longest word
which is an initial part of each component of x. It may happen that
one component is u, but both cannot be else x is abelian. Also, u
may be trivial. If neither component is u, consider the words obtained
by removing the initial part u from the components of x. Let v~ι

be the longest word which is the final part of each truncated com-
ponent. It may again happen that one of these components is v~\
but both cannot be. Further, v~ι may be trivial, but v~ιu is a non-
trivial reduced word. There are two cases.

The first is that one component of x is uv~~ι and the other is
uxv~ι. Then (U, x) is a pair of type B. It is not assumed that u, v
are necessarily obtained in the way just described, so the factorization
may not be uniquely determined by x.

In the second case, x has the form (uxv~\ uyv~ι), where x, y and
p ~ v~ιu are non-trivial words such that px, xy~ι and py are c.r. words.
Then (U, x) is a terminal pair of type BT. The equivalent inert pair
is again obtained with the help of an automorphism v of Jzf defined
by vA = (PX, PY, P). The pair is (Uu, x0), where x0 = (x, y, p). That
the pair is inert follows from Lemma 4 in §9.

The last case is that of a pair (U, x) which is active, x is a c.r.
substitution, XYΌccurs in U and {XY, x) is active. Then the equiv-
alent pair (U71, ΎJX) is either of type B or BT. The pair (U, x) is of
type A if one component of x has the form uxv1 and the other
is vu"1.

The pair is terminal of type AT if x == (uxv~\ vyu~ι), where x, y
and p = u~ιv are non-trivial words such that xp~\ xy and py are c.r.
words. Let μ be the automorphism of Ssf defined by μA = {XP~\
PY, P). Then (Uμ, x0) is the inert equivalent pair, where x0 = (x, y, p).

The further analysis could be confined to pairs of a single type.
However, there are formal advantages in being able to deal with either
case and this we shall do. Results for one type can be transferred
to the other by using η and we shall usually assume this without
explicit mention.
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6* The reduction procedure* We begin with a procedure for
reduction of substitutions. The terminology for pairs carries over to
substitutions in an obvious way.

Let x be a substitution of type A for which, in the earlier nota-
tion, one component is uxv~ι and the other is vu~K Reduction produces
a substitution x' and a mapping £. If the first component is longer,
ζ — a, while in the contrary case, ξ = τa. In either case, x' = (x, u~ιv).
It is immediately evident that xf is shorter than x and that

ζ: x' —> x .

Certainly, Λ:' is not abelian. Moreover, if the initial letters of
x and vrιv were identical, or the final letters were, then the com-
ponent uxv'1 of x would not be a c.r. word. Hence, x' cannot be of
type 0, B or BT and we have proved:

THEOREM 1. If x is obtained by reduction of a substitution of
type A, then x is either of type A, or it is terminal and inert, or
of type OT or AT.

It may be noted that the second component is a c.r. word so that
Y2(x) is a reduced word.

Reduction of a substitution of type B yields one of the mappings
β or τβ, and the substitution (x, v~~ιu), where it is assumed that the
components of the original substitution are uxv~~ι and uv~\

Suppose a substitution of type B can be factorized as (U^VT1, U^T1),

i = 1, 2. The substitution obtained by reduction will be (xh vτιu^,
i == 1, 2. It is clear that if X(ut) = X(u2), then the factorizations are
identical. If this is not so, we may assume by symmetry that
λ(^i) < X(u2).

The identities

^1 and u{ΰ^γ = u2v\~x

imply, in the first place, that there is w such that UJJO Ξ= U2. It fol-
lows that VT1 = wv2

l, and then that XJJO Ξ= WX2. We then have, for
the substitutions obtained by reduction, that

w~ι{xx, v^ujw = {w^x^w, w^v

= (w~ιwx2, w~ιwv2

ιu2)

- (x2, v2

ιu2) .

Thus the substitutions obtained by reduction satisfy the condition:
they are conjugate and corresponding components are of the same
length. For any pair of c.r. substitutions xlf x2 which satisfy this
condition we write x1 = x2. This is clearly an equivalence relation.
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The relation can be characterized in another way. Suppose first that
there is a letter a such that x2 — α" 1*^. Then it can be shown by
induction that, in the general case, x1 can be taken into x2 by a
finite number of such conjugations by a single letter. It follows in
particular that the substitutions are of the same type.

Let xί9 x2 be substitutions of type B such that JCX = x2, and let
x'i be obtained by reduction, i = 1, 2. We wish to show that x[ ~ x[.
It follows from the remarks above that it is enough to consider the
case xt = (auxv~\ auv~ι) and x2 = (uxv^a, uv~~ιa). The substitution
obtained in each case is (x, v~~ιau) and the result follows. Thus the
reduction procedure is unique in this cyclic sense.

Let Λ:0 be a given substitution of type B. Since reduction is
length decreasing, there is a finite sequence of reductions which,
starting with x0, terminates with a substitution xk which is either
inert or of type BT or OT. If ΛΓ; is the substitution obtained by the
ith reduction, then jĉ  is of type B, 1 ^ i < k. Further, let & be the
mapping obtained from the ith reduction, then with σ0 ~ 1, σ{ = ovA,
1 <̂  i <; k, it follows that σi e Σβ and

We conclude by carrying over the results to pairs. Let (W, x)
be a given active pair. Then there is JC0, which is not longer than
x and either terminal or of type A or B, such that (W, x) and (W, x0)
are equivalent. Let JC4 and <?< be obtained as above, and let TFi be
the image of W under σi9 i — 1, •••, k. The pairs (Wif xt) are all
equivalent, and since (Wk, x*) is terminal, there is a least m, 0 ^ m ^ k,
such that (Wm, xm) is terminal. Then the pairs (Wi9 xt), i = 0, ,
m — 1, are all of type A or all of type B.

7. The fundamental theorem* The results of the preceding
sections may be formulated in terms of conjugations. Let W, g be
given fixed words, W not a pure word. Then we have

THEOREM 2. For any non-abelian solution x of W ~ g there is
σ e Σξ, ξ = a or β, and a substitution x1 such that

( i ) xι is a solution of W° ~ g;
(ii) the pair (Wσ, JCX) is terminal;
(iii) σ: xλ —> x.
A more detailed, and definitive, result can be obtained by con-

sidering the nature of the terminal pair. This is straightforward
except, perhaps, in the abelian case. It cannot be that x1 is abelian,
so W° must be pure. Further, since Ya — Yβ = Y, we may take it
that Wσ is a power of X. Then if xt = (a?, y), y may be arbitrary,
so we may assume that x is a solution of Wσ = ^.
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THEOREM 3. For any non-abelian solution x of W ~ g there are
mappings σ, ψ and a substitution x0 such that

σ: ψx0 —> x ,

and σ, ψ, x0 satisfy either

(I) ψ = 1, σ e Σξ, ζ == a or β, Wσ = Xm, x0 = (#, u), where xm ~ g
and u is an arbitrary {non-trivial) member of ^ .

(II) Let Uo be the image of W under σψ. Then x0 is a solution
of the identity

UQ~ g

and one of the following holds:
(a) ψ = l;
(b) ψ = τ; if σ — 1, either X2 or Y2 occurs in W, while if σ Φ 1,

X2 occurs in Wσ;
(c) ψ = μ; σ e Σa and XY occurs in Wσ;
(d) ψ = v\ σ e Σβ and XY~ι occurs in W\

The converse is obvious. The Theorem needs further modification
before an effective method can be obtained.

8* The parameters* We recall that Φ(W) is the subgroup of
Φ consisting of all the mappings φ for which Wφ is a cycle of W.
Thus, if σ, σf are in the same (left) coset of Φ(W) (so that & — φσ
for some φeΦ(W)) then the images of W under σ, σ' are the same.
Moreover, for any substitution x, σ'x ~ φ(σx). We now define an
(irreducible) set of representatives for Σξ modulo Φ{W), which we
denote by Σξ(W), ξ = a, β.

Some preparation is necessary. Uniqueness of factorization allows
Σξ to be ordered lexicographically as a sequence (assuming, for ex-
ample, that a is before τa). The fact that σ is before σf is denoted
by writing σ < σ\

There is also a partial order of Σξ which is useful. We say that
a precedes σf if σ is a proper factor of &\ The set Σξ(W) is defined
so that if σ is a member, then it is immediately evident that all the
predecessors of σ are also members. The representative property will
be established as a theorem.

The definition of Σξ(W) is inductive, and at the λ th stage two
subsequences of Σξ will be obtained, denoted by Σξk and Σk

ξ, respec-
tively (where reference to W has been omitted). For k = 1, the first
subsequence is 1, while the second is the rest of Σξ.

Suppose, for k ^ 1, that Σξk is σQ = 1, σ19 , σm. If Σk

ς is empty,
then Σξn = Σξk and Σf is empty for all n ^ k.
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Otherwise, let σ be the first member of Σ*, U be the image of
W under σ, and Wi the image of W under σh i = 0, 1, , m. If
there is an i, 0 ̂  i ^ m, such that Z7 ~ Wi9 then σσ' is removed from
Σς for every σf in Σξ(i.e. σ and all its successors are removed). The
resulting sequence is Σ\+\ while Σξk+ι is 2^. In the contrary case,
when there is no such i, only σ is removed from Σk

ζ; then σ is added
to Σξk (as last member) to obtain Σξk+1.

The limit of Σn is ^(TΓ).
We now show that if σeΣξ and σ$Σζ(W), then there is σ'eΣξ,

φeΦ(W) such that σ' < σ and tf = 9><7\
Let σ be as stated. Then there is a greatest k such that σeΣ*

(and from which it is removed). If σ2 is the first member of Σ*9 let
σlf σ3 be such that σ1 e Σζk, σ3 e Σξ, σ = σ2σ3 and ^σx = σ2 for some
φeΦ(W). Since σx < σ29 it is clear that σr = σ^s has the required
property.

THEOREM 4. jPor any σeΣς,ξ = a,β, there is σ'eΣξ(W) and
φeΦ(W) such that σ — φσf; σ' is unique.

Proof. The result proved above assures the existence of the first
σ'eΣξ such that σ = φ<f for some φeΦ(W). It then follows that
σf e Σξ( W) and that it is unique.

The parametric role of Φ{W) is shown by

THEOREM 5. The conclusion of Theorem 3 may be modified by
replacing a by φσ, where σeΣ$(W) and φeΦ(W). Further, if
x1 = σ(ψx0), then

φ: x1-
j>- x .

9* Combinatorial properties of mappings* There is a connection
between the partial order of Σζ introduced in the previous section
and the ordering by length of the set of words Wσ, σ e Σξ. Let σe Σζ

and be of length k; the k + 1 mappings σ09 σί9 , σk such that σ0 = 1,
σk — σ and σ{ precedes σi+lf 0 ̂  i < k, constitute the branch of Σξ to
σ. The branch is uniquely determined by σ, and if σeΣξ(W), then
so does every other member of the branch. The aim of the present
section is to prove

THEOREM 6. Let σlf σ2, σ3 be three successive members of a branch
of Σξ, and let Wi be the image of W under σiy 1 <̂  i <̂  3.

Then Λ(Wd < Λ(W2) implies Λ(W2) < Λ(WS).

The present proof was suggested by the referee. It is reminiscent
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of [3], but was obtained originally in ignorance of that work. Some
further definitions and notation are required.

Since W is fixed, the lengths of W, Wa will be denoted by Λ, Aσ,
respectively. In addition, we make use of some refinements of the
length function; for example, the number of occurrences of X in W,
which is denoted by Λx. Note then that Aσ

x has an unambiguous
interpretation in an obvious sense. Another modification is made for
ease of printing. For example, the number of occurrences of X" 1

(which is, of course, equal to Ax) will be denoted by A-x. The exten-
sion of this notation to other letters—and to words—is clear.

The definition of Λs for a syllable S will illustrate the general
case. Suppose A = m, m ;> 2, and W = Aι Am. The syllable parts
of W are AXA29 A2A3, , AmAλ. Then Λs is the number of these which
are occurrences of S.

There are some obvious properties, e.g. A — Λx + Λy, and Au = Λ-
for any U. For others, we introduce the notion of a homogeneous
word: a positive word is one example, and in general, U is homogeneous
if there is d e A for which Uδ is positive. Positive and negative words
will be denoted by the symbols Q and R, respectively. Any c.r. word
W can be factorised as a product of (non-trivial) positive and negative
factors. Before dealing with this in a general way, it is instructive
to consider first a c.r. word of the form QR, where Q and R are
both non-trivial. We let Q = QQA, R = BR0; then, since QR is reduced,
AB is an occurrence of XY~\ Thus, if W is a c.r. word for which
ΛXy > 0, then there is k ;> 1 and words Qif Rι (possibly trivial) such
that

W = Q&R, QkSkRk ,

where each Si is an occurrence of XY~ι. It is clear that Λxry = k.
Further, by considering parts of the form RQ, it follows that ΛyX — k.
We have

L E M M A 1. (a) Λx-y = A-yx, (b) Λxy = Λyx.

The proof of the following, which is elementary, will be omitted.

LEMMA 2. (a) Λx = Λxx + Λxy + Λxy;

(b) Λs ^ Λas, for any A, S.

We now consider Λβ. It is clear that if Axy — 0, then Wβ =
W(XY, Y), since the latter is a c.r. word.

Suppose now that Axy > 0. We use the notation above and let
Ui = QiSiRi. Let Ql = Q^XY, Γ), so that Q\ is certainly reduced.
Further, if Qt is not empty, the initial letters of Qi and Ql are identical,
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while the final letter of Ql is Y. In a similar way, it follows that
if Ri is nonempty, then the initial letter of R\ is Y~\ while the
final letters of Rt and R\ are identical, where R\ = R^XY, Y). If
Si ΞΞ AS, then S^XY, Y) = X% where e = 1 if A is X and e = - 1
if A is Γ. Hence Ui(XY, Y) = Q'iX'Rl and it is clear that the latter
word is non-trivial and reduced. Let W be the product of these
words (in the obvious order) so that W(XY, Y) is conjugate to W.
To show that W is a c.r. word it suffices to show that products of
pairs of successive words are all reduced. Moreover, since any (ap-
propriate) cycle of W may be taken, it is enough to show that
Q[XeΉlQ2X

e*R'2 is reduced.
This follows immediately from the remarks above if Rx and Q2

are both non-trivial. If R1 = 1, consider Xe'Q2. If SL Ξ XY~\ then
eι = 1 and the initial letter of Q2, and of Q[ also, is X. In the other
alternative, the initial letter of Q2 is easily seen to be Y. The case
where Q2 = 1 is similar. Finally, if Rι and Q2 are both 1, then Sι = S2

and eι — e2.

It follows that W is a c.r. word and thus is a cycle of Wβ.
We note that k deletions of the syllable YY"1 have been made in
order to obtain W from W(XY, Y), and so we have proved the
crucial

LEMMA 3. (a) Λβ

x = Λx; (b) Λβ

y = Λ - 2Λx-y;

(C) Λίy = Λχyy ^ Λχy .

We digress for a moment to state

LEMMA 4. The only syllables which can occur in Wv are PX,
XY~ι, PY and the transposes of these.

Proof. The result is evident by considering the part in W(PX, PY)
corresponding to the part QR in W.

The first three lemmas combine to give

Proof of Theorem 6. In the first place, let ξ = β, replace WΊ by
W and suppose W2 = Wβ. By Lemmas 1, 3

Λβ - Λ = Λβ + Λ - 2Λxl - Λ = Λx - 2ΛXy ,

so the hypothesis is equivalent to

Λ9 - 2Λxlf > 0 .

For the case that Wz = W£ we have

Λββ _ Aβ - A ί - 2Λβ-y ^ Λ x - 2ΛXy > 0 .
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For the case W3 = Wiβ we have

/[βτβ /[β — J\}z$ j\}T

= A - 2AX^ -

> Λ v - 2Aβ

xz

^ Ayy + Aχy ~ 2Aχyy ^ 0 .

The cases in which W2 = Wτβ follow on replacing W by WΓ.
Finally, for ξ = a, W is replaced by Wη.

10* The cyclic identities* We construct now the method which
allows Theorems 3, 5 to be implemented in an effective way.

We dispose first of case (I) and assume that there is σ e Σξ such
that Wσ is a power of X, Xm say. Then there is a word Wo such
that W = Wo

m and Wo

σ = X. Conversely, WQ must be the image of
a letter under a mapping of Σξ. It is clearly sufficient to consider
mappings whose length does not exceed A(WQ). (It may be noted
that this case will only arise if W is in a cyclic free factor of j^~.)

Consider now the identities under case (II). Since x0 is a sub-
stitution, A(UQ) ^ X(g)', moreover, Uo is not shorter than the W° from
which it is obtained. It is sufficient to consider the set of words
Wσ with σeΣς(W), which set we denote by <Jf.

The members of ^Γ are all distinct (even cyclically) so that the
partial order on Σξ(W) induces a corresponding ordering of <J%. We
let the kth level of *>f consist of the final words from all the branches
of length k. Let U be a word in the (k + l)st level and Wo = W,
Wl9 - , Wk = U be the branch to U.

If M is the number of all words whose length does not exceed
that of W, then log M ^ 5 log A(W). Thus, if k > M, there is i such
that A(Wi) < A(Wi+1), 0 ^ i < k. It follows by Theorem 6 that

A(Wj) < A(Wi+ι), ί ^ j ^ k .

Finally, if k > M + X(g), then A{Wk) > X(g). Therefore, the subset
of J?\, of those words U such that U is not longer than g, is a subset
of the first M + λ(g) levels of J?~ξ.

Some further economy is possible in the set of words that need
be considered. For example, if WD, σ e Σa(W), is the word of a
terminal pair, then XY must occur in the predecessor of W\ A
rather minor point concerns the exceptional case, Theorem 3, (I).

Suppose σξ is such that Waξ ~ Xm and σ e Σa(W). Then Theorem
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2 shows that it is necessary to provide for solutions of the form
(uxv~\ vyu~ι) of Wσ ~ g. All such solutions can be obtained, by con-
jugation, from (xv~\ vy), where (xy)m = g and v is arbitrary. This
solution in turn is obtained as a{xy, vy), where (xy, vy) is a solution
of Xm = g. Finally, this last solution is already obtained under case
(I). It should also be noted that no successor of a power of X occurs
as the word of a terminal pair obtained by non-trivial reduction.

We are in a position now to define the enumeration of a set of
words J^{W, g) which clearly satisfies

THEOREM 7. Every word Uo of Theorem 3, (II), is a member of
, g). Moreover, the enumeration is such as to determine the

mappings a e Σζ(W), ψ e {1, 7, μ, v) for which Uo ~ Wσir.

The enumeration is by levels.
The first level consists of W, and W^ if it is not longer than g

subject to: a square occurs in W, then ψ — 7; XY occurs in W, then
ψ — μ; XY"1 occurs in W, then ψ = v.

Now suppose that U is a member of *_ya which has already been
taken into ^{W, g). Then, if XY occurs in U, U contributes the
following: Uζ, ξ — a, τa, provided Uζ is not a power of XY and is a
member of ^ , and further, either Λ{Uξ) ^ Λ(U) or Λ(U) < Λ(Uζ) ^
λ(fif). Further, if Uζ is taken in, so is U** if it is not longer than
g and ψ — 7 if X2 occurs in Uζ; ψ = μ if XY occurs in Uξ.

The words which ^ contributes to ^{W, g) are obtained in a
similar way.

11. The subgroup Φ(W). The problem of specifying the sub-
group Φ(W) may be taken in the form: to determine, for arbitrarily
given W, a presentation of Φ(W) in a finite number of steps. We
have not solved this problem. However, there are some facts about
the parametric subgroups which are worth recording.

The first thing to note is that if W is a proper power, of Wo

say, then Φ(W) and Φ(WQ) are the same. Another observation of the
same kind is that if W is the image of Wx under some φeΦ, then
Φ(W) is the conjugate subgroup φ~1φ(W1)φ. It may be advantageous
to work with a WΊ of minimal length.

One approach to the problem of finding a presentation of Φ(W)
might be to find an irreducible transversal in Φ. It is easily verified
that the Σξ(W) provide such a transversal for a double coset decom-
position of Φ with respect to the pair Φ(W), A. Coset representatives
for Φ can be obtained in a straightforward way.

It had been conjectured earlier that Φ(W) is finitely generated.
This is confirmed by Professor Lyndon (private communication) who
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supplied the reference [10]. He was also able to indicate a proof of
the following: Φ(W) is of finite index only if W is a power of a
commutator of a pair of generators of ^ .

The following question was raised (privately) in connection with
[9]: if it is known that g is a commutator, in how many ways can
g be so expressed** The subgroup Φ(W) can provide some information
in this case. It is easily shown that if W Ξ XYX~ιY~\ then Φ{W)
is of index 2 in Φ; 1 and τ are a pair of coset representatives and
Φ(W) is the subgroup of all elements whose τ-length is even. Thus,
modulo the solution of the fundamental identities, Φ(W) provides a
straightforward way of generating solutions—of the conjugation W~ g.
It may be possible in this way to give an explicit description of the
solution set for a given g; however, to deal with the problem in a
general way would seem to present considerable difficulty.

We mention one conclusive application. If W = X2 Y2, then
^(W9 g) has at most 6 elements for any g. It can then be shown
that if g is a square, g = h2 say, the solutions of Uo ~ h2, Uoe^(W, h2),
lead solely to abelian solutions of W ^ h2. In the notation of Theorem
5, every possible JCJ. is abelian, and hence, all solutions of the form
φxt are likewise abelian. This provides yet another confirmation of
Vaught's conjecture [4]. It would be of interest to know other ex-
amples, of W, for which ^{W, g) is "bounded", and whether this
fact has any further (algebraic) significance.

There are further problems connected with the subgroups. The
subgroup structure of Φ is known to be complicated. Hence, the
question: which subgroups of Φ may appear as Φ(W) for a suitable
WΊ may be of interest. However, it seems to be a difficult problem
even to determine, for a given φ e Φ, whether there exists W such
that Wψ is a cycle of W. One last question is suggested by the
commutator example. What conditions on W ensure that Φ(W) is a
normal subgroup, and what further significance, if any, is there to
this fact?

12* Further problems* There are two more general problems
which immediately arise out of the present work. The problem of
solving an inhomogeneous binary equation, and that of solving a system
of binary equations.

Consider the inhomogeneous equation

where m ^ 2, W* e &~9 g{ e &*, i = 1, , m. This is equivalent to a
system of homogeneous equations. One such system can be obtained
by introducing additional variables Zl9 , Zm^ and letting
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WigiZi = #<_!, i = 1, , m ,

where, for notational convenience, Zo = Zm = 1.
We can say something more substantial about systems of binary

homogeneous conjugations. Suppose x is a solution of

Wi ~ gi9 i = 1, 2 .

Then there will be solutions x{ of a pair of associated identities,
i = 1, 2. If the AT* are derived from terminal substitutions, then by
the uniqueness of the reduction procedure, ψx1 ~ ψx2. If the xt are
not terminal substitutions, then a further sequence of reductions will
determine terminal substitutions x and mappings σ such that

σ\\ xl —> xiy ί = 1, 2 .

It follows that x = xj is a necessary condition in this case. If
σieΣςiW^ΦieΦiWi) are such that

(Pipe. Xi —* x, ί = 1, 2 ,

then the σ̂  and JC* can be determined and it remains to find the φ{.
The reduction of x to ψx{ or xί determines a unique σ, so the con-
dition on ψi is

φ.σ.σ', = σ = φ2σ2σ
f

2 .

This condition requires the solution of a generalized word problem of
the Φ(Wt).

Another generalization of the present problem is to the problem
of solving equations in many variables. The formulation of a reduc-
tion procedure would not appear to offer much difficulty. However,
the degenerate cases, corresponding to the abelian pairs above, would
be of far greater complexity. The methods of [3] may offer a way
of approach to the combinatorial aspects of this problem.

In conclusion, we mention the problem of extending the present
theory to a theory of equations over free products. Such an exten-
sion was made in [9] and it was an attempt on another special case
which led to the present work. It is hoped to deal with the case of
free products in a subsequent publication.
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