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OPEN MAPPINGS ON 2-MANIFOLDS
WILLIAM D. NATHAN

This paper will be concerned with the local structure of
open, continuous functions /: M2 —» N1 from a 2-manifold into
the real line or the circle. The two main results are:

THEOREM 1. Let f:M2-^N1 be an open mapping, and
suppose that / has isolated branch points. Then for each
point p in Mz there are a neighborhood U of p and a posi-
tive integer d (depending on p) such that f\v is topologically
equivalent to the real analytic mapping z-+Re(zd).

THEOREM 2. If /: M2 -* N1 is an open, real analytic map-
ping, then / has isolated branch points, and (hence) the con-
clusion of Theorem 1 holds.

2* Definitions and notation* Let / : X —> Y be any continuous

function. Then / is an open mapping if f{U) is an open subset of
Y whenever U is an open subset of X. If f'\Xf—> Yf is another
mapping then / and / ' are topologically equivalent if there exist
homeomorphisms a:X-~*X'f β: Y—> Yr such that fa = βf.

If A is any subset of X, then f\A will denote the restriction of
/ to A.

Let /: Mn —> Np be a mapping from an %-manif old into a p-mani-
fold, n ^ p. The branch set, Bf, of / is the subset of Mn defined
as follows: a point x is in Mn-Bf if there exists a neighborhood U
of x in Mn such that f\v is topologically equivalent to the canonical
projection of -n-space onto p-space.

If Mn and Np are differentiable manifolds, and /: Mn ~> Np is dif-
ferentiable, then Rq(f) will denote the set of points in Mn at which
the rank of the Jacobian of / is at most q, q = 0, 1, .

The boundary of a set A will be denoted by dA and its closure
by A.

3, Proof of Theorem 1, We first need some lemmas.

LEMMA 3.1. Let f: [0, 1] x [0,1] — [0, 1J with {i} x [0, 1] = f~\i)9

i — 0, 1. Suppose there exists a homeomorphism a: [0, 1] x [0, 1] —>
[0, 1] x [0, 1) which fixes the four vertices of [0, 1] x [0, 1] such that
Πa — /, where Π is the projection (x, y) —* x. Let h: {0} x [0, 1] —>
{0} x [0, 1] be any homeomorphism with h(0, 0) = (0, 0). Then there
exists a homeomorphism β: [0, 1] x [0, 1] —* [0, 1] x [0, 1] such that

= / and β\{o}xio>ίi = h.

Proof. The desired homeomorphism is given by β(x> y) = (f(x9 y),
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h?or\Q, a2(x, y))), where h2 and a2 are the second coordinate functions
of h and α, respectively.

LEMMA 3.2. Let f: [0, 1] x [0, 1] —> [0, 1] be an open mapping.
Suppose that the following conditions are satisfied*.

( i ) f~ι(0) = {0} X [0, 1], Γ ( l ) - {1} X [0, 1],
(ii) if g is the restriction of f to (0, 1) x (0, 1), then Bg = 0 ,
(iii) for each point y in the open interval (0, 1), y Φ 1/2 there is

a neighborhood of the point (1, y) in [0, 1] x [0, 1] on which f is
topologically equivalent to the projection of (0, 1] x (0, 1) onto (0, 1],
and for each point y in the open interval (0, 1) there is a neighbor-
hood of (0, y) in [0, 1] x [0, 1] on which f is topologically equivalent
to the projection of [0, 1) x (0, 1) onto [0, 1),

(iv) for each point x in the open interval (0, 1), there is a neigh-
borhood of the point (x, 0) in [0, 1] x [0, 1] and a neighborhood of the
point (x, 1) in [0, 1] x [0, 1] on which f is topologically equivalent to
the projection of (0, 1) x [0, 1) onto (0, 1), and

(v) if x = 0 or 1, and y = 0 or 1, then there exists a neighbor-
hood of the point (x, y) in [0, 1] x [0, 1] on which f is topologically
equivalent to the first coordinate projection of [0, 1) x [0, 1) onto [0, 1).

Then f is topologically equivalent to the first coordinate projec-
tion of [0, 1] x [0, 1] onto [0, 1].

Proof. Let 77: [0, 1] x [0, 1] -> [0, 1] denote the projection (α?, y) -+
x. Let a0 = [0, 1] x {1}, and let b0 = [0, 1] x {0}. Let {yt} be a mono-
tone decreasing sequence in the open interval (1/2, 1) converging to
1/2, and let {y~} be a monotone increasing sequence in the open interval
(0, 1/2) converging to 1/2.

In [7, p. 16 (3.1)], Timourian showed that a proper mapping
with empty branch set between manifolds of codimension one is a
locally trivial fiber map; hence the restriction of / to [0, 1) x [0, 1]
is topologically equivalent to the projection of [0, 1) x [0, 1] onto
[0, 1). For each positive integer n, let an be an arc in [0, 1] x [0, 1]
whose endpoints are (0, yt) and (1, yi), and let bn be an arc in [0, 1] x
[0, 1] with endpoints (0, y~) and (1, y~) satisfying the following con-
ditions (these arcs exist by the above reference and condition (iii)):

( i ) the collection {al9 blf a2f b2, } is pairwise disjoint, and
(ii) each a{ and each b{ is mapped by / homeomorphically onto

[0, 1].
For each n, let Ar

n denote the closed 2-cell bounded by an (J
αw_! U ({0, 1} x [yίy yϊ^]), and let B'n be the closed 2-cell bounded by
bn U &„_! U ({0, 1} x [y--ι, yΰ]), where yt = 1, and yς = 0.

Let {xn} be a monotone increasing sequence in the open interval
(0, 1) converging to 1, and let An = Af

n Π f~\[x»-ι, 1]) and Bn = B'n Π
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1]), where x0 = 0. Finally, let Cn denote the closure of

f-'dx^u xn]) - (\J (A, U B,)) . (See figure.)

FIGURE l.

By the aforementioned reference to [7], there exist homeomor-

phisms

hi: An —» [xn_v, 1] x [yi, y^_x] ,

hi: Bn -> [xn_i9 1] x [y~_l9 y~\ , and

A£: C» -> [αw_i, α j x |>*, 2/ί]

such t h a t 77Aί - / Un, ΠhB

n = / | 5 Λ and 77A£ - / l ^ . We assume here

t h a t hi((l, yi)) = (1, yi) and A?((l, ^~)) = (1, yτ) for i = n - 1, n.

Clearly, hi agrees with hi on An Π Cn, and A^ agrees with A£ on

.βw Π Cn9 so there exists a homeomorphism

Aw: Aw U S . U C , - ([xn_l9 1] x [^, ^ _ J ) u ([xn-Jf 1] x [i/ή-i, 2/* ])

U ( K - i , a?Λ] X [?/-, 2/+])

such t h a t /7AΛ - f\AnuBnucn, n = 1, 2, . . Clearly, AΛ+1 agrees with A,

on An+1 Π Aw and on Bn+ι Π 5 Λ ; moreover, by 3.1, we may assume t h a t

hn+1 agrees wi th hn on Cn Π (AΛ+1 U 5 W + 1 U CΛ + 1).

Thus, we get a continuous bisection A; [0, 1] x [0, 1] —> [0, 1] x

[0, 1] by

hn{p) , if p e An U Bn U Cn

! Σ] if ^ _ Λ 1^
9 \ 9

satisfying the condition Πh = f.
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LEMMA 3.3. Letf:Mn~>N1 be open, let U <= Mn be open, and
suppose that f(U) is contained in a closed arc on N1. Let qzU, and
let Q be a closed subset of f~ι{f{q)) Π U. Then no component of U-Q
is separated from d U. (Two sets are separated if their closures are
disjoint.)

Proof. If V is a component of U-Q, then V is an open connected
subset of Mn, so f(V) is an open interval (whose closure is a closed
interval). If V is separated from dU, then 8Vc Q. Thus f(V) =
f(V) U f{3V) = {/(?)} U f(V) is not compact.

Proof of Theorem 1. Let Uf be an open disk about p whose
closure is a closed disk such that Bf Π Ur c {p} and f{Uf) is a closed
interval on N1. By 3.3, for each point x in Uf, f~~ι{f(x)) D Uf con-
tains no simple closed curve. Thus, the closure of each component
of {f~ι{f{p)) Γ) U') — {p} is a closed arc with a point of 317' as one
endpoint and either p or a point of dU' as its other endpoint, and
for each point q in Όr — f~ι{f{p)), each component of f~\f(q)) Π Ό'
is a (possibly degenerate) closed arc each of whose endpoints is on dU'

Let Aί9 A2, •••, Afc be the closures of the component arcs of
{f~ι{f{p)) ΓΊ Ur) — {p} which have p as an endpoint, and let a{ be the
endpoint of A{ on dU\ (There are clearly finitely many such Aί#)
Orient 3Ϊ7', and index the a{ in order of increasing argument.

Let R[, " ,Rr

k be the components of Ur — U t i ^ , indexed so
that ajβRl if, and only if, j — i or j = (i + l)(modA;).

For each ΐ = 1, 2, •••,&, there exist a neighborhood ZT̂  of αi and
a homeomorphism al:Ui~~>E2 such that Πal = f\Uif where Π: E2—+
Eι is projection onto the first coordinate. We may as well assume
that Ui Π ί/, = 0 when ΐ ^ i, α{(tfϊ Π 317') is the α -axis, and Πal(q) >
0 for each qeRlf] J7<.

Let {yα} be the collection of all components of {f~\f{p)) Π Uf) —
{p} which do not have p as a limit point, and let Y — U Ya Clearly,
p is not a limit point of Y, so there exists a neighborhood ?7" of p
such that

(*) ( ύ ut) nϋ' = (ύ Ui) n t7" and ϋ" n /-'(/(P)) = U A, .

Let iίi = El Π Z7", and fix i. We claim that there exists a point
ί*G ( ^ n 3[7" Π 17*) - {αj such that if a; is any point in (JB4 Π dU" Π Z7J
with 0 < ZΓαί(a?) ^ /Zαί(ίi) and X is the component arc of /~1(/(^)) Π ί//Λ

containing x, then a;' 6 U3 , where j = (i + l)(mod k), and x' is the other
endpoint of X. For suppose not. Then there exists a sequence {xn}
in (jBi Π 3 U" Π J7f) ~ {αj converging to α̂  such that x\ £ U,, for each
n. There is a convergent subsequence of {x'n} whose limit is in
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f~ι(f(p)) Π3Z7" but is not in (Ji=i^» This contradicts (*), above.
Write f{U") as the closed interval [a\ &'], where α' < f(p) < V.

We may assume that f{p) < /(Q <V if i is even, and a! < /(^) <
f(p) if i is odd. Note that ft is even. Let δ = min{/(£2), f(Q, , f(tk)},
and let a = max {/(ίj, /(-Q, , /(4-i)} Finally, let U = U" Π /-1([α, &]),
let ώ = ft/2, and assume a = 0 and 6 = 1.

If Si = 5<n J7, then / | 5 . satisfies the hypotheses of 3.2. Note
that /(Si) = [f(p), b] if i is even, and f(Si) = [α, /(#)] if i is odd, so
by 3.2 there exists a homeomorphism α :̂ £* —> [ —1, 1] x [0, 1] such that
f\s, = Π'ai} where Π1: [ — 1, 1] x [0, 1] —> [0, 1] is the natural projection.
We may assume that a^p) = (0, 1), and that if j == (i + 1)(mod ft),
then aiiAj) = ad(A3 , i = 1, 2, , k.

Let Xl9 X29 , Xk be disjoint copies of [ — 1,1] x [0, 1] indexed so
that ctiiSi) = Xi Form the disjoint union X = XL + X2 + + X&.
Now, make the following identifications on X: if x5 e ctj(Aj) and i =
(i + 1)(mod ft), then identify x5 with a ^ j 1 ^ ) .

Let Xja denote the resulting identification space, and let Pa: X-^
X/a be the quotient map. Let a: U-^X/a by a(u) — PaCC^u), if ue
S^ Then a is a homeomorphism.

Let Πi'. Xi —> [0, 1] denote the projection mapping, i = 1, 2, , ft,
and let Σί=i #<:-X"—[0, U by (Σ*=i ^)(%) = Πfaj), where ^ e l , .
Then Σf=i Πi can be factored through Pa, obtaining a map G: X/a —>
[0, 1] such that GPa = Σf=i ^ B u t then / | t r - Go:; i.e., f\v is topolo-
gically equivalent to G. Theorem 1 follows.

In [8, Theorem 1], Tδki gives a topological characterization of
mappings on a 2-manifold which are pseudo-harmonic. His results
imply that if /: M2 —* N1 is an open map with Bf discrete, then / is
topologically equivalent to a harmonic function. It is well known (see,
for example, [5, pp. 8-9]) that harmonic functions have the local
structure of (our) Theorem 1. The advantage of the present approach
must lie in its directness and brevity.

4* The real analytic case* In this section we prove Theorem 2.
A few facts from the theory of analytic varieties will be needed, and
we include them here for completeness. For the reader who is un-
familiar with the terminology, we recommend [6].

LEMMA 4.1. Every real analytic variety is locally connected.

LEMMA 4.2. If V is a k-dimensional variety in the real analytic
manifold M, then for every point p e V, there is a neighborhood U of
p in M such that V Π U is the disjoint union Vf + V", where V is
a k-dimensional real analytic submanifold of U, and V" is a variety
in U of dimension at most ft — 1.
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The proof of 4.2 is in [1].

If f:M~+N is a real analytic mapping, then clearly the sets
f~ι{y), ysN, are varieties, as are the sets Rq(f), defined in §2. More-
over, it was proved by Church [2, p. 88 (1.3)] that dim (f(Rq(f))) ^
q9 q = 0, 1, •••.

LEMMA 4.3. Let f: Mn —> N1 be a proper real analytic mapping.
Then f(R0(f)) is discrete.

Proof. Let y be a limit point of f(R0(f)). Let {yn} be a sequence
in f(R0(f)), converging to y, and let xn be a point in f~~\y^ Π R0(f),
n — 1, 2, . By the properness of /, the sequence {xn} has an accu-
mulation point; call it x. Since R0(f) is closed, xeR0(f). Then, if
U is any neighborhood of x, U Π R0(f) — {x}) Φ 0 Then, by the
O-dimensionality of f(R0(f)) (see remark, above), Uf)R0(f) is not
connected; i.e., RQ(f) is not locally connected at x, contradicting 4.1.

Proof of Theorem 2. Let D be an open disk in M2 with compact
closure, and let g = f\D. Then g(RQ(g)) is discrete by 4.3. Let qe
g(R0(g)). It suffices to show that g~\q) Π Bg is discrete.

Since dim {g~ι{q)) = 1, we can remove from g^iq), by 4.2, a dis-
crete set A! such that g~~ι{q) — A! is a 1-dimensional real analytic sub-
manifold of D. Let p be a point in g~\q) — A!, and let U c Z) be a
coodinate chart about #> with real analytic coordinates (x, y) such that
^(g) is the y-sixis and #(i2o(#) Π 17) = {?}. Let h = f\π. By Fox's
Spoke Theorem [4, p. 347 (5.1)], it suffices to show that /rx(g) Π Bh

is discrete.
Suppose W is an open disk about a point on /^(g) Π U such that

each horizontal line in W given by y — constant is mapped homeomor-
phically by h onto h(W). Then WΠ Bh = 0 . For define F:TF-^
^(TΓ) x R by ί7^, 2/) = (h(x, y), y); this will give the desired equival-
ence.

For such fixed y, consider the set X{y) of points (x, y) at which
h\y=y is not interior; i.e., the set of points at which (d/dx)(h\y=y) changes
sign. Now, X = \Jy X{y) is contained in the set A = {(x, y):
(dh/dx)(x, y) = 0}. A is clearly a variety, and the openness of / implies
that dim (A) ^ 1. If A is discrete, then the comment in the last
paragraph applies and there is nothing to prove. Hence, we may as
well assume that dim (A) = 1. Let E be the set of points at which
A is not a 1-submanifold.

Consider the intersection of A with the /̂-axis. It is a variety
of dimension at most one. If it has dimension zero (i.e., if it is dis-
crete), then there is nothing to prove. So suppose it is 1-dimensional,
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in which case it is the entire ^-axis. Now, the openness of h implies
that all points of U with positive abscissa map on one side of q, and
the points with negative abscissa map on the other side of q. Hence,
dh/dx does not change sign at any point of the #-axis. Thus, every
point on the ?/-axis which is not in E has a neighborhood disjoint
from X, and E is discrete.

For more extensive results on the topological properties of real
analytic mappings, see [3].
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