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OPEN MAPPINGS ON 2-MANIFOLDS
WiLLIAM D. NATHAN

This paper will be concerned with the local structure of
open, continuous functions f: M2 — N! from a 2-manifold into
the real line or the circle. The two main results are:

THEOREM 1. Let f; M?— N' be an open mapping, and
suppose that f has isolated branch points. Then for each
point p in M? there are a neighborhood U of p and a posi-
tive integer d (depending on p) such that f|, is topologically
equivalent to the real analytic mapping z — Re(z9).

THEOREM 2. If f: M?— N! is an open, real analytic map-
ping, then f has isolated branch points, and (hence) the con-
clusion of Theorem 1 holds.

2. Definitions and notation. Let f: X — Y be any continuous
function. Then f is an open mapping if f(U) is an open subset of
Y whenever U is an open subset of X. If f: X' — Y’ is another
mapping then f and f’' are topologically equivalent if there exist
homeomorphisms a: X — X’, g8: Y— Y’ such that f'a = gf.

If A is any subset of X, then f], will denote the restriction of
f to A.

Let f: M* — N? be a mapping from an n-manifold into a p-mani-
fold, » = p. The branch set, B;, of f is the subset of M" defined
as follows: a point z is in M"-B, if there exists a neighborhood U
of z in M" such that f], is topologically equivalent to the canonical
projection of m-space onto p-space.

If M* and N? are differentiable manifolds, and f: M™ — N7 is dif-
ferentiable, then R,(f) will denote the set of points in M™ at which
the rank of the Jacobian of f is at most ¢, ¢ =0, 1, .--.

The boundary of a set A will be denoted by 04 and its closure
by A.

3. Proof of Theorem 1. We first need some lemmas.

LeEmMMA 3.1. Let f: [0, 1] x [0, 1] — [0, 1] with {5} x [0, 1] = F~'(3),
1 =0,1. Suppose there exists a homeomorphism a: ][0, 1] x [0, 1] —
[0, 1] x [0, 1] which fixes the four wertices of [0, 1] x [0, 1] such that
Ila = f, where II 1is the projection (®,y) — x. Let h:{0} x [0, 1] —
{0} x [0, 1] be any homeomorphism with h(0,0) = (0, 0). Then there
exists a homeomorphism g: {0, 11 x [0, 1] — [0, 1] x [0, 1] suck that
1B = f and Bleoxwpn = h.

Proof. The desired homeomorphism is given by B(z, ) = (f(@, v),
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Ra (0, a*(x, y))), where A’ and a® are the second coordinate functions
of 2 and «a, respectively.

LEmMMA 3.2. Let f:]0,1] x [0, 1] —[0, 1] be an opern mapping.
Suppose that the following conditions are satisfied:

(i) f70) = {0} x [0, 1], /(1) = {1} x [0, 1],

(ii) 4f g s the restriction of f to (0,1) x (0, 1), then B, = @,

(ili) for each point y in the open interval (0, 1), y = 1/2 there is
a netghborhood of the point (1,y) in [0,1] x [0, 1] on which f is
topologically equivalent to the projection of (0, 1] x (0, 1) onto (0, 1],
and for each point y in the open interval (0,1) there is a meighbor-
hood of (0, ) in [0, 1] x [0, 1] on which f is topologically equivalent
to the projection of [0, 1) x (0, 1) onto [0, 1),

(iv) for each point x in the open interval (0, 1), there is a netgh-
borhood of the point (x, 0) in [0, 1] x [0, 1] and a neighborhood of the
point (x, 1) in [0, 1] x [0, 1] on which f is topologically equivalent to
the projection of (0,1) x [0, 1) onto (0, 1), and

(v) ife=0o0r1, and y =0 or 1, then there exists a neighbor-
hood of the point (x,y) in [0, 1] x [0, 1] on which f is topologically
equivalent to the first coordinate projection of [0, 1) x [0, 1) onto [0, 1).

Then f 1is topologically equivalent to the first coordinate projec-
tton of [0, 1] x [0, 1] onto [0, 1].

Proof. Let I1:]0, 1] x [0, 1] — [0, 1] denote the projection (z, y) —
x. Let a, = [0, 1] x {1}, and let b, = [0, 1] X {0}. Let {y;} be a mono-
tone decreasing sequence in the open interval (1/2, 1) converging to
1/2, and let {y,} be a monotone increasing sequence in the open interval
(0, 1/2) converging to 1/2.

In [7, p. 16 (3.1)], Timourian showed that a proper mapping
with empty branch set between manifolds of codimension one is a
locally trivial fiber map; hence the restriction of f to [0, 1) x [0, 1]
is topologically equivalent to the projection of [0, 1) x [0, 1] onto
[0, 1). For each positive integer =, let a, be an arc in [0, 1] x [0, 1]
whose endpoints are (0, y;) and (1, y;), and let b, be an arc in [0, 1] x
[0, 1] with endpoints (0, y;) and (1, y,) satisfying the following con-
ditions (these arcs exist by the above reference and condition (iii)):

(i) the collection {a, b, a,, b, ---} is pairwise disjoint, and

(ii) each a; and each b; is mapped by f homeomorphically onto
[0, 1].

For each =, let A, denote the closed 2-cell bounded by a, U
@y U ({0, 1} ¥ [y, yi_]), and let B, be the closed 2-cell bounded by
b, Ub,.U ({0, 1} X [y:,, ¥»]), where yi =1, and y; = 0.

Let {x,} be a monotone increasing sequence in the open interval
(0, 1) converging to 1, and let 4, = A, N f(x,-, 1]) and B, = B, N
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S (#,-, 1]), where x, = 0. Finally, let C, denote the closure of

P D) = (U A0 BY) - (See figure.)

=1

FIGURrE 1.

By the aforementioned reference to [7], there exist homeomor-
phisms
hi: A, — [xn—l, 1] x [y:u yai{—1] s
hi: B, — [®,—, 1] X [y, y=], and
R Cp— [,y 2] % [yz, yil

such that 1k} = f|,, Ik} = f|, and IIhS = Sfle,» We assume here
that (1, ¥) = (4, »/) and 25((1, 7)) = (1, ;) for ¢ = n — 1, n.
Clearly, n; agrees with A% on A, N C,, and A” agrees with ¢ on
B,NC,, so there exists a homeomorphism
hi A, U B, UC,—([@,y 1] X [y, yio) U@y, 1] X [y, w2 D)

U ([%0es, @] X [y, wi])

such that /Th, = fl4, 08,00, » = 1,2, --+. Clearly, h,,, agrees with £,
on A,.,NA, and on B,,, N B,; moreover, by 3.1, we may assume that
h,+, agrees with %, on C, N (4, U B,.,UC,..).
Thus, we get a continuous bijection #; [0, 1] x [0, 1] — [0, 1] x
[0, 1] by
h.p), if peA,UB,UC,

DD - (D),

satisfying the condition 77 = f.
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LEMMA 3.3. Let f: M"— N* be open, let U M" be open, and
suppose that f(U) ts contained in a closed arc on N*. Let qe U, and
let Q be a closed subset of f~(f(q)) N U. Then no component of U-Q
1s separated from oU. (Two sets are separated if their closures are
disjoint.)

Proof. If V is a component of U-Q, then V is an open connected
subset of M", so f(V) is an open interval (whose closure is a closed
interval). If V is separated from 46U, then 6V < Q. Thus f(V) =
FV)YU f@V) = {f@} U f(V) is not compact.

Proof of Theorem 1. Let U’ be an open disk about p whose
closure is a closed disk such that B, N U’ < {p} and f(T’) is a closed
interval on N'. By 3.3, for each point = in U’, f~(f(x)) N U’ con-
tains no simple closed curve. Thus, the closure of each component
of (f (f(p) NT) — {p} is a closed arc with a point of 4U’ as one
endpoint and either p or a point of U’ as its other endpoint, and
for each point ¢ in U’ — f~(f(p)), each component of f~(f(q)) N T’
is a (possibly degenerate) closed arc each of whose endpoints is on 6U".

Let A, A, ---, A, be the closures of the component arcs of
(F~(f(p)) N U) — {p} which have p as an endpoint, and let a; be the
endpoint of A; on dU’. (There are clearly finitely many such A4,.)
Orient o0U’, and index the a; in order of increasing argument.

Let R, ---, R, be the components of U’ — |Jli, 4;, indexed so
that a;e R if, and only if, 7 =14 or 7 = (¢ + 1)(mod k).

For each ¢ = 1,2, ---, k, there exist a neighborhood U, of @, and
a homeomorphism «i:U; — E*® such that Ila; = f|;, where [/I: E* —
E' is projection onto the first coordinate. We may as well assume
that U, N U; = @ when 1 % j, (U, N oU’) is the x-axis, and [Tai(q) >
0 for each ge R/ N U,.

Let {Y,} be the collection of all components of (f~'(f(p)) N U’) —
{p} which do not have p as a limit point, and let Y = U Y,. Clearly,
p is not a limit point of Y, so there exists a neighborhood U” of »
such that

@ (Uo)nT=(Uu)n0" and 0705 Gw) = U A

Let R, = R.NU”, and fix 7. We claim that there exists a point
t; e (R;NoU" NU,) — {a;} such that if & is any point in (B; N oU” N U,)
with 0 < Ial(z) < Hal(t;) and X is the component arc of f~'(f(x)) N T”
containing x, then 2’ e U;, where j = (7 + 1)(mod k), and &’ is the other
endpoint of X. For suppose not. Then there exists a sequence {z,}
in (B;NaU” N U) — {a;} converging to a; such that «, ¢ U,, for each
n. There is a convergent subsequence of {x;,} whose limit is in
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Y (f(p) NaoU” but is not in YL, 4;. This contradicts (x), above.

Write f(U”) as the closed interval [/, 8'], where o’ < f(p) < ¥'.
We may assume that f(p) < f(;) < b if 7 is even, and &' < f(t;) <
f(p) if 7 is odd. Note that & is even. Let b=min{f(t,), f (&), ---, (L)},
and let a = max {f(t), f(t), « + +, f(ts—)}. Finally, let U= U"N f(a, b)),
let d = k/2, and assume a = 0 and b = 1.

If S;=R;NU, then f|s, satisfies the hypotheses of 3.2. Note
that 7(S;) = [f(p), b] if ¢ is even, and f(S;) = [a, f(p)] if ¢ is odd, so
by 3.2 there exists a homeomorphism «;: S; —[—1, 1] x [0, 1] such that
fls; = l'a;, where II': [—1, 1] x [0, 1] — [0, 1] is the natural projection.
We may assume that «;(p) = (0,1), and that if j = (¢ + 1)(mod k),
then a;(4;) = a;(A;, 1 =1,2, -, k.

Let X, X,, ---, X, be disjoint copies of [—1, 1] x [0, 1] indexed so
that a,(S;) = X;. Form the disjoint union X=X, + X, + --- + X;.
Now, make the following identifications on X: if x;ea;(4;) and j =
(? 4+ 1)(mod k), then identify z; with a,a;'(x;).

Let X/ denote the resulting identification space, and let P,: X —
X/oo be the quotient map. Let a: U— X/a by a(u) = Po;(u), if we
S;. Then « is a homeomorphism.

Let I1;: X; — [0, 1] denote the projection mapping, ¢ =1, 2, ---, £k,
and let 3F . I1;: X—][0,1] by Ci, I)(x;) = II;(x;), where z;e X,.
Then >, I, can be factored through P,, obtaining a map G: X/a —
[0, 1] such that GP, = >}%., II,. But then f|, = Ga;i.e., f|, is topolo-
gically equivalent to G. Theorem 1 follows.

In [8, Theorem 1], Toki gives a topological characterization of
mappings on a 2-manifold which are pseudo-harmonic. His results
imply that if f: M*— N' is an open map with B, discrete, then f is
topologically equivalent to a harmonic function. It is well known (see,
for example, [5, pp. 8-9]) that harmonic functions have the local
structure of (our) Theorem 1. The advantage of the present approach
must lie in its directness and brevity.

4. The real analytic case. In this section we prove Theorem 2.
A few facts from the theory of analytic varieties will be needed, and
we include them here for completeness. For the reader who is un-
familiar with the terminology, we recommend [6].

LEMMA 4.1. Every real analytic variety is locally conmnected.

LemMA 4.2. If V is a k-dimensional variety in the real analytic
mamnifold M, then for every point pe V, there is a meighborhood U of
p in M such that VN U s the disjoint union V' + V"', where V' 1is
a k-dimensional real analytic submanifold of U, and V' is a variety
wm U of dimenston at most k — 1.
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The proof of 4.2 is in [1].

If £ M— N is a real analytic mapping, then clearly the sets
f*(y), ye N, are varieties, as are the sets R,(f), defined in §2. More-
over, it was proved by Church [2, p. 88 (1.3)] that dim (f(R,(f))) <
,¢=0,1,-.--.

LeEMMA 4.3. Let f: M"— N* be a proper real analytic mapping.
Then f(R,(f)) is discrete.

Proof. Let y be a limit point of f(R,(f)). Let {y,} be a sequence
in f(R,(f)), converging to y, and let x, be a point in f~'(y,) N R, (f),
n=1,2 ... By the properness of f, the sequence {x,} has an accu-
mulation point; call it . Since R,(f) is closed, x € R(f). Then, if
U is any neighborhood of x, UN R(f) — {x}) # @. Then, by the
0-dimensionality of f(R,(f)) (see remark, above), UN R,(f) is not
connected; i.e., R,(f) is not locally connected at %, contradicting 4.1.

Proof of Theorem 2. Let D be an open disk in M* with compact
closure, and let g = f|,. Then g(R,(g)) is discrete by 4.3. Let ¢e
9(Ry(9)). It suffices to show that ¢g~'(¢) N B, is discrete.

Since dim (¢7*(¢)) = 1, we can remove from ¢g~*(¢), by 4.2, a dis-
crete set A’ such that g7'(¢) — A’ is a 1-dimensional real analytic sub-
manifold of D. Let p be a point in ¢g7(¢q) — A, and let Uc D be a
coodinate chart about p with real analytic coordinates (x, ¥) such that
g7'(q) is the y-axis and g(R,(9) NU) = {q}. Let = f|,. By Fox’s
Spoke Theorem [4, p. 347 (5.1)], it suffices to show that A~'(¢) N B,
is discrete.

Suppose W is an open disk about a point on ~7'(¢) N U such that
each horizontal line in W given by y = constant is mapped homeomor-
phically by # onto A(W). Then WN B, = @. For define F:W —
MW) x R by F(x, y) = (h(z, y), y); this will give the desired equival-
ence.

For such fixed 7, consider the set X(¥) of points (x, ¥) at which
hl|,—; is not interior; i.e., the set of points at which (0/05)(%|,—;) changes
sign. Now, X = U; X(%) is contained in the set A = {(x, y):
(0h/ox)(x, y) = 0}. A is clearly a variety, and the openness of f implies
that dim (4) < 1. If A is discrete, then the comment in the last
paragraph applies and there is nothing to prove. Hence, we may as
well assume that dim (4) = 1. Let E be the set of points at which
A is not a l-submanifold.

Consider the intersection of A with the y-axis. It is a variety
of dimension at most one. If it has dimension zero (i.e., if it is dis-
crete), then there is nothing to prove. So suppose it is 1-dimensional,
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in which case it is the entire y-axis. Now, the openness of /& implies
that all points of U with positive abscissa map on one side of ¢, and
the points with negative abscissa map on the other side of q. Hence,
oh/ox does not change sign at any point of the y-axis. Thus, every
point on the y-axis which is not in E has a neighborhood disjoint
from X, and K is discrete.

For more extensive results on the topological properties of real
analytic mappings, see [3].
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