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CONTINUOUS DEPENDENCE ON PARAMETERS AND
BOUNDARY DATA FOR NONLINEAR TWO-POINT
BOUNDARY VALUE PROBLEMS

STEVEN K. INGRAM

Sufficient conditions are given for the continuous depend-
ence of solutions to the two-point boundary value problem

(1) ! =fE, x, x5 p)
(2) wla)=a 2b)=4

on the boundary data and the parameter ..

Previous results given by Gaines and Klaasen for con-
tinuous dependence on the boundary data have assumed con-
tinuity on f and uniqueness to two-point BVP’S. Klaasen
has also shown assuming uniqueness to two-point BYP’S and
the existence of a CZ*solution to (1)—(2) that there exist
solutions z (¢; a’, #/) to (1) with the boundary conditions

z(a) = o 2(b) = B’

for all («/, ) sufficiently close to («, p). Furthermore,
x(t; o/, p/) is a uniformly continuous function of (a/, 5/) at
(a, B) on [a, b]. This same result is shown to be valid under
weaker uniqueness conditions. Sufficient conditions are also
given for existence and continuous dependence on the para-
meter, #, of solutions to (1)—(2).

We consider the BVP

(1) " = f, », 2 )
(2) s0) =a b)) =g
and assume

I.  f(, =, ®; ) is continuous on [a, 8] X R?®
II. There exists a solution x,(¢) to the BVP

(3) o' = f(t, @, )
(4) wa) =a  xb) =B

such that if x(¢f) is any other solution to (3) and x(t;) = x,(t), = = 1,
2, for a < ¢, <, <0, then x(f) = x,(¢) on [t, t.].

Following Jackson, [3], we make the following definition.

DErFINITION 2.1. For any constant C > 0, let

395
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fit x,Cpy if 22=C
Fr@, o 0 p) = 1f@ a5 ) if [o'|=C
SfE e, —Cp if o< -—-C
and define for u(t) < v(t) on [a, b]

F*(, v(t), ;s ) + [x — v@)]'"® if © = v(¢)
(5) Ft, oo pw={F*t,xa; p) if u@) <o =< ()
F*(t, u(), «; 1) — [u(@®) — «]'? if o < u(@) .

Then F'(t, x, o’; £) is called the modification of f(¢, x, 2’; ) with re-
spect to u(t), v(t) and C.

LEMMA 2.2. Under Conditions I and II, given € >0 there exists
constants o >0, C,> 0, C; >0 such that for any t,€[a, b] and any «,
Byt with |x(t) —a|<¢, |ait) — Bl =¢ and |pt— p|<e every
solution xz(t; p) to IVP

(1) 2" = f(t x, 25 1)
(6) w(t) =a  &'(t) =B
or IVP

(7 " = F*(¢, o, 2’5 1)
(6) wt) =a ') =4

exists on [t, — 0, t, + 0] and satisfies |x(t; 1) | £ Ch, |2t )| < C, on
[t, — o, t, + o]

Proof. The proof is an easy application of the Peano existence
theorem ([2], Theorem 2.1,) where

Co=1{1ab>]< 2@ | + ¢+ 1, Co’=r[nab§ [2,(T) |+ e+ 1.

THEOREM 2.3. Assume Conditions I and II. Then there exists a
0 > 0 such that for all p with |p—p| <6, a solution x(t; t) to BVP
(1) — (4) exists. Furthermore, x(t; () — x,(t) in C'-norm on [a, b]
as (t— .

Proof. Let {¢,} be any sequence converging to p. It suffices to
show that there is a subsequence {¢}} such that for all ¢}, a solution
x(t; pf) to BVP (1) — (4) exists.

Denote by Z,.(t; £.) a solution to (1) satisfying

(8) x(a) = a (@) = xy(e) + 1/m .
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Pick ¢ =1 and let 4, C,, C; be the constants assured by Lemma 2.2.
For = sufficiently large, say n = N, | ¢, — #| =<1, and hence the
sequences {Z,(t; M)} o-y and {Z,(t; t.)}r-y are uniformly bounded and
equicontinuous on [a, @ +46]. By Ascoli’s theorem there exists a sub-
sequence {Z:(t; t,)}, which converges in C'-norm on [a, a + é] to a
solution Z,(¢; ¢,) of IVP (3) — (8). Letting m — <o, there exists a
subsequence, {Zi(t; )}, which converges in C'-norm to a solution
2,(t) of (8) satisfying the initial conditions

(9) w@=a  2'(a) = ) .

Case 1. 2z,(t) = ,(t) on [a, @ + 6]. Given any >0, ¢ <1, there
exists an M and N such that for all m = M and all » = N,

” ﬁm(t; #n) - xo(t) H6'1 < € on [a’ a + 5]
and
Tn(a + 0; ) > zo(@ + 90) -

By a similar procedure there exists a sequence {z,(¢; &,)} of solutions
to equation (1) satisfying

(10) x(a) = «a, 2'(a) = x(a) — 1/m

such that for all m and » sufficiently large, (say m = M, n = N with-
out loss of generality),

” CEm(l"‘; #n) - xo(t) Hcl <& on [a, a + 5]
and
u(a@ + 05 ) <m(a + 9) -

By our uniqueness assumption in II, there exists an N, = N such
that for all n = N,,, Z.(¢; t.) = 2.(E t)-

Now let F,(t, x, «'; ¢t,) be the modification of f(¢, z, «; p,) with
respect to Z,(t; M), Z.(t; tt,) and C, for any n = N,.. By Theorem 2.5,
[3], there exists solutions 7,(t; f.; j) and y.(¢; ,; j) to BVP

" = F,(t 2, o' )
x(a) = a, x(a + 0) = x(@ + 0) = 1/7,
respectively, for all j = J where
Zu(@ + 05 1) = wola + 0) — 1/j <xpa + 0) + 1/ = Z(a + 65 ) -
Furthermore,

Tu(t; 1) = Uu(65 a3 J) = Tt 1) on [a, a + 0]



398 STEVEN K. INGRAM

and hence
| 7i(@; fty 5) — @(@) | = 1/m
implying by Lemma 2.2
| 7.5 tta; )| = C, on [a, a + 4] .
Thus 7.(¢; ¢.; 7) is in fact a solution to
(11) a’ = f(t, x, 2 ) -

Similarly v,(t; . 7) is a solution to (19).

Now fix j. The sequences {¥.(t; . J)7-y, and {F.(t ta; Div-x,
are uniformly bounded and equicontinuous, and hence a subsequence
converges to a solution #,(¢; ¢; 7) of (3) satisfying the boundary
conditions

12) z(a) = a, z(a + 0) = x(a + 0) + 1/5 .

Similarly a subsequence of {#,(t; tt; J);=,} converges in C'-norm on
[a, @ + 6] to x,(t) by II. By Lemma 2.2, then, there exists a J' = J
such that 7,(¢ t; j) may be extended to [a, @ + 26] for all 7 = J'.
Then also for = sufficiently large the solutions #%,(¢; t,; 7)) may be
extended to [a, & + 20].

Similarly for » and j sufficiently large the solutions ¥,(¢; &.; 7)
may be extended to [a, & + 20]. We now use the solutions 7,(¢; t.; 7)
and ¥,(¢; t.; 7) in place of Z,(¢; #,) and z,(¢; #,) and argue as above
on the interval [a, a + 24].

We continue in this way until we may assume that there are
sequences of solutions ¥(¢; t.; 7) and Y(¢; f.; j) to equation (11) satis-
fying

13) x(a) = a, x(b) = B, = 1/7, respectively ,
with  7(¢; s 9) = Y@t s 7) on [a, b]. Using the modification of
f(t, %, o5 1) with respect to §(t; p.; 3), Y(&; s ), and C,, and arguing
as above we may assume that for some subsequence {¢}} of {¢,} there
exists solutions x(f; p£F) to BVP (11) — (4).
Case 2. 2z(t) = x,(t) on [a, @ + 6]. Then by II,
2@ + 0) > x4(a + 0) .
Let
0 <e<min (1, z(a + 6) — (@ + 9)) .

Similarly, if #,(f; ¢,) does not converge to x,(t) on [a, a + §], then for
n and m sufficiently large
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gm(a‘ + 5; #n) <x0(a + 5) - 8/3 .

Now we may obtain the solutions #,(t; &,; j) and w.(t; (¢, j) and pro-
ceed as in Case 1.

Case 3. In Case 1 we considered the possibility that the sequences
(Z..( 1)} and {z,(¢; )} had subsequences which converged to x,(f) on
[a, @ + 6]. In Case 2, these sequences converged to functions not
identically equal to x,(f) on [a,a + 6]. In Case 3, then, we must
consider the possibility that one of these sequences converges to x(?)
and the other converges to some function not identically equal to
2o(t) on [a, @ + 6]. The proof for Case 3 is thus just a combination
of the proofs of Case 1 and Case 2.

To complete the proof of the theorem we must show that x(¢; ££) —
2,(t) in C'-norm on [a, b] as n -— co. By construction we have

[w(t; 1) | = max [2o(t) | + 1
and
|2'(t; i) | < C, on [a, b] .

Thus the sequences {x(¢; )} and {a'(t; 1¥)} are uniformly bounded
and equicontinuous on [a, b] and hence by Ascoli’s Theorem there
exists a further subsequence which converges in C'-norm on [a, b] to
a solution of BVP (3) — (4) which by II must be x,(f). Similarly
any subsequence of {x(f; 1)} has a further subsequence which con-
verges to x,(t) implying that the original sequence itself must con-
verge to ().

Note. We have proven only a weak form of continuous dependence
on the parameter; i.e., we have shown only that the solutions w(¢; 1)
must converge to w,(t). It is still unknown whether all solutions to
BVP (11) — (4) must converge to w,(f) as f¢t— .

Theorem 2.3 is of interest when considering nonlinear eigenvalue
problems. If an eigenvalue problem satisfies Conditions I and II,
then the set of eigenvalues is dense in itself.

We now seek sufficient conditions for existence and continuous
dependence of solutions to BVP’s in which we vary not only the
parameter but also the boundary data.

LemMMA 3.4. Assume I and II. Then there exists sequences of
solutions {u,(t)}, {v.®)}, {w.(@)} and {2,(t)} that converge to x,(t) in the
C*-norm on [a, b] and such that

(@) = (@) (D) > Upin(b) > 2o(b)  Sfor all n,
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2,(b) = w,(b) V(@) > v,4.(a) > () for all n,

wo(@) = 2(@)  wa(B) < Wosr(B) <@o(b)  for all m,
and,

2,(b) = @o(b) 2u(@) < 2p1.(@) <wo(@)  for all m,

Proof. The proof is contained in the proof of Theorem 3.7, [5].

THEOREM 2.5. Under Conditions I and II, there exist sequences
{Z,@)} and {2.(t)} of solutions to (3) which converge to x,(t) in C'-norm
on [a, b] from above and below, respectively, with

—x_n(a) > §n+1(a) > a7<)<a’) > &n%—l(a) > &n(a)
and

for all n.

Proof. We will show the existence of {Z,(t)}. Let S, be the set
of all ¢,¢[a, b] such that there exists a second solution x,(f) to IVP

(3) = f(t, @, "5 )
(14) 2(ty) = @(%0) x'(t,) = wo(to)

with x,(¢) > x,(t) on (A, &) N [a, b] for some N\ <t. Let ¢ =infS,.
If S, =94, let t, = b. Similarly, let S, be the set of all ¢, € [a, b] such
that there exists a second solution =,(t) to IVP (8) — (14) with
2(t) > o(t) on (&, M) N [a, b] for some \; >, and let ¢, = sup S,. If
S, = ¢, let ¢, = a.

Case 1. t,<t,, Then there are solutions z;(¢), ¢t = 1,2 to IVP
(3) — (14) for ¢, e[t, t.] satisfying

x,(t) > 24(t) for some t<t,

and
() > () for some t>¢,.

By Lemma 2.2 all solutions to IVP (3) — (14) exist on [¢, — 9, ¢, + 9]
for some 6>0. Assume ¢, + 6>t, and hence x,(t, + 0) > z,(t, + 9).
By Knesser’s Theorem, ([2], Theorem 4.1, page 15), there exist solu-
tions {u,(t)} to IVP (38) — (14) on [t, &, + 0] such that wu,(¢, + ) —
x(t, + 0) as m— . By Kamke’s convergence theorem, ([2], Theorem
3.2, page 14), and our uniqueness assumption, there exists a sub-
sequence {u}(t)} which converges to w,(¢) in C'-norm on [t, b] with
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U (D) > Uy iy (B) > 24(D) for all »n .

If 2,(t) = x,(t) on [t, t, + 6] we continue to the right until there is an
interval [t,, ¢; + 6] such that z.,(f) = x,(f) on [¢, ¢] and

@y(ts + 0) > @yt + 0) .

Then argue as above.
Similarly there are solutions v,(t) to IVP (3) — (14) which con-
verge to z,(t) in C'-norm on [a, ¢,] with

V(@) > v,1.(a) > x(a) , for all » .
Then define

,vn(t) on [a/y tO]

E"b(t) - {u’n(t) on [tOy b] *

{z,(t)} is the required sequence.

Case 2. t, =t,. We claim in this case that there exist solutions
{u.(®)} and {v,(¢t)} as given in Lemma 2.4 with

U, (L) = v,(to) for some t,€[t, t.], for all »

sufficiently large. To see this, given ¢’ >0, let ¢’, C,, and C,; be the
constants assured by Lemma 2.2. Choose ¢ >0 so small that

(i) e<e
and
(ii) b= 28 o,

o
Thus there exists an N such that
Hux(®) — (@) [l <e  on [a, t)]
Since t, = ¢, we may assume uy(t,) > %,(t,) and hence
2o(to) < v,(t) <uy(t,) for all n sufficiently large,

say n = N’'. By [3], Theorem 2.5, there exists a solution z,(t) to
BVP

' = F(t, x, 25 1)
z(a) = a x(t,) = V,(t,) for all »n = N’

where F'(t, z, '; tt,) is the modification of f(¢, x, «'; ¢,) with respect
to x,(t), uy(t) and C,. Furthermore
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() < 2,(8) = uy(t) on [a,t] .
Hence
[2.(t) — a3(t) | Z €

on any subinterval of [a, t,] of length 6 = 2¢/¢’. But this in turn im-
plies that

lz.t) | = G,
on any subinterval of length 6 and hence
l2.(0) | = C, on [a, )] .

By definition of F'(t, x, «’; tt,), «,(¢) is a solution to (3). Now for =
sufficiently large we may extend the solution z,(f) to [a, b] and use
them as the solutions u,(t) assured by Lemma 2.4.

Let ¢ >0 be arbitrary, but fixed, and let 4, C,, and C, be the
constants assured by Lemma 2.2. There exists an N >0 such that
for all n = N

Hua(®) — @o(t) [l <e
and
| va(®) — zo(®) llor <€ -
Suppose for definiteness that ) (¢,) = vy(¢,). Define
Fo=A{(, @) on(te) = uy(t) = @, vit) = @ = up(ty)} -

CY is a compact connected set in R%. Let CY be the set of all (g, 8
such that there exists a solution z(¢; a, @) to (3) with 2(¢) = a,
2'(t,) = a', where

(o, a)eCF, z(t,— 0; a, @) = B
and
@', — 0; a, ') =B

By an extension of Knesser’s Theorem, ([6], page 386), CY is a compact
connected set in R® containing the two points (uy(¢, — 0), uy(t, — 0))
and (vy(t, — 9), vy(t, — 0))-

(1) C C N.(@y(to — 0), @(to — 0)) -

In this case |B— o, —d)|<e and |8 — zi(t, — d)|=¢ for all
(B, B)eCl. Hence the solutions «(t; @, &) may be continued to
[t, — 26, t,]. Similarly, we may continue these solutions to the left
by 6 intervals as long as the end points of each solution lie inside
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the e-tube about x,(t). Let n, be such that
to— (Mg — )0 =a>t, — no

and suppose that

Cil C N.(zoft, — (n — 1)o), zi(t, — (n — 1)9))

for all » < n, Thus all solutions x(¢; @, &) may be continued to
[CL, tO]'

We now perform a similar procedure to the right of ¢, Define
DY = C¥ and DY analogously to C¥. Assume also in (i) that

DY < N.(xy(t, + (n — 1)0), zi(t, + (n — 1)9)) for all n < ng,
where
b+ (g — 1o<b=t+ no .

Define CY to be the set of all (v, v') such that there exists a solution
x(t) to IVP

37" = f(t7 wy (l?’; #O)
x(to - (n~1)5) = B, x,(to - (’”’——1)5) = /8,

with (8, B') e Cy -, and x(a) = v, «/(a) = ¥'. Analogously, define Dj.

Now for each (v, v’)eCY with v> x,(a), there exists a solution
(¢, ¥') on [a, b] such that x(a; v, v) = v, &'(a;7, V) =7, ety 7,7) =
uy(ty) = vy(t,) and (@(b; v, v, «'(b; v, ") e DF. If x(b; v, v) > x,b),
we’ve found an Z(t). Hence suppose x(b; v, ¥') < x,(b) for all (v, v') e C¥
with v > #y(a). Pick {v,} — z,(a), v, >x,(a) for all n. By Lemma 2.2,
we have

[a(t; Yy 72) | <CJ
and

[2'(E; Yy T2) | < C, for all te]a, 0] .

By Ascoli’s Theorem there exists a subsequence {x*(t; 7., 7.)}
which converges in C'-norm to a solution z(f) on [a, b]. But 2(a) =
wo(a), 2(b) < x,(b), and z(t,) = uy(t,) > x,(t,) contradicting our uniqueness
assumption. We may thus assume that we have an Z,(f). Also by
II and the definition of ¢, Z,(t) > %,(t) on [a, b]. Now let

e = min (Z,(£) — x,(£)) >0 .
[a,b]

Using this ¢’ in place of ¢ we may procede to find an Z,(t) as long as
(i) occurs.
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(ii) Suppose for some n,

Ci & Nty — (n — 1)9), xi(ty(n — 1)9)) «

Then all solutions x(¢; «, &) for («, a’) € C¥ may not be extendable to
[a, t]. However, if we let “CY¥ and "CY be the components of

Ci N Nty — (n — 1)), @i(t, — (n — 1)d))

which contain (uy(¢, — (n — 1)6), ui(t, — (n —1)d)) and (vy(t, — (n — 1)d),
Vy(t, — (n — 1)d)) respectively, then we may continue the solutions
ending in “CY or "CY as before.

Let CYV = {(a, @'): (o, ') e C¥ and «(t; o, o’) exists on [a, t,] by
the extension procedure above}. It is easy to see that C}' is a com-
pact interval. Analogously we define the compact set DY

(a) CY =CY = DY =DY. Thus x(t; a, &) exists on [a, b] for all
(o, @) e C, = D,. Suppose no 2(t; a, ') satisfies x(a; o, a’) > x(a) and
x(b; a, a) > w,(b).

Let a; = sup {a’: uy(t,) = a’ = vy(t,), x(a; a, &’) > x(a), and (a, a’) e
C¥}. By an application of Ascoli’s Theorem, there exists a solution
2,() with 2,(b) = @4(), 2.(a) > @4(a), 2:(t) > @(to), and 2{(t) = «. By uni-
queness @, < u'(¢,) and hence there exists a sequence {«,}— a; with
ay < o, < un(t) and a sequence of solutions x(t; a, @,) such that
x(a; @, ay) = 2(a). By Ascoli’s Theorem again there exists a sub-
sequence converging in C'-norm to a solution z,(f) with z(¢,) = af and
2(a) < z(a). The solution

_ z(t) on [a, t)]
“O=1ety on [t 8]

contradicts our uniqueness assumption. We must conclude that there
exists an 2(¢; o, a’) such that a(a; a, &') > x(a) and z(b; a, ') > x,(b).
We then define Z(t) = «(¢; a, «’) and continue as before.

(b) CY = CY, DN = D¥. Let a; = sup{a’: vy(t,) < &’ < u)y(t,) and
such that there exists a solution 27(¢; @, a’) to IVP

(3) o’ = f(t, @, 5 )
(15) w(t) = uy(t)  @'(t) =

which exists on [t, 8] and satisfies x7(b; a, @’) < x,(b)}. Then aj<uj(t,)
by uniqueness. Let a),—a;, aj<al, < wiy(t,) for all m. Let '(¢; a, al,)
be a solution to IVP (3) — (15) on some interval [\, ¢,]. By Kamke’s
convergence theorem a subsequence of {x'({; «, a;,)} converges to a
solution x,(¢; @, a;) at least on [t — 4§, ¢]. If x,(¢ @, a;) exists on
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[e, b], then =#'(t; a, ) exists on [a, b] for m sufficiently large and
(a; a, a,) > x(a) since xy(a; a, af) > x(a). But @(b; a, ) > z,(b) by
definition of af and we have our Z(t).

At this point let us do a similar analysis with wu, x(¢) and vy x(¢)
for K=1,2,---. We wish to show that x,,x(¢; ax, ay,) fails to exist
on [a, t,] for at most a finite number of indices K. Suppose for con-
tradiction x,,x(¢; @k, a%) does not exist on [a,¢] for K=1,2, ...,
relabeling if necessary. Since (ax, ay)— (%(%), 2i(¢)), by Kamke’s
convergence theorem a subsequence of {wy.x(f; @k, @k )}z-, converges
to a solution z(¢) of the IVP (3) — (14) in C'-norm on some interval
(w—, t,]. By definition of ¢, 2(¢f) < x,(f) on (w™, t,] and by uniqueness
of w,(t), 2(t) = x,(t). Hence 2(t) = x,(t) and thus for K sufficiently
large @y, x(t; ax, a%,) exists on [a, ], which is a contradiction. Thus
for all but perhaps a finite number of cases in which (b) occurs we
obtain an Z,(t).

(¢) CY = C¥ and DY # D¥ with
[CY = (*CYUCHINIDY — (“DYU°DM] # ¢ «

Again we claim (¢) can happen for at most a finite number of indices
K without obtaining a suitable Z,(f). Suppose for contradiction that
(c) occurs for K = 1,2, --.. Pick ay such that

Vv x(te) < A < Uyix(to)

with aj e [CYE — (*CY*E* U CY* ") N [D¥** — (*DY+* y'DY*¥)]. Then
if we assume x(t; @k, a%) does not exist on [a, b] and argue as in (b)
we arrive at a contradiction.

(d) C¥ = C¥, DY = DI with
[Cr— (CruChHIN[DY — (DY UDN)] = ¢ .

In this case C¥ — (*C¥ U *CY) is a subset of “D¥ U DY and we may
proceed as in (b) to show that this can occur without obtaining a
suitable Z(t) for at most a finite number of indices K.

Hence (b), (c), and (d) are inconclusive for at most a finite number
of indices. We may thus conclude that an Z,(f) exists, and as before
Z,(t) > x,(t) on [a, b]. Letting &' = ming, ;(Z,(t) — 2,(¢)) >0 and using
¢’ in place of &, we may repeat the above procedure to obtain an Z.(t)
with 2,(f) < Z.(t) < Z,(t) on [a, b] and so on.

Similarly we may construct {x(¢)}.

Theorem 2.5 generalizes a result of Klaasen, [4], Corollary 7,
where he assumes uniqueness to two-point BVP’'S (3) — (2). The
following example shows that Condition II does not imply uniqueness
to two-point BVP’S in any neighborhood of ().
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ExAMPLE 2.6 Define
2.33/4.#.193’]1/4]:1;[1/6 fax=0
0 feg0.

S @, a5 1) = {

Then f(t, «, «'; ) is continuous on [—1, 1] X R? and

t—c) iftze

-1,1
(c—¢8 ift=<e cel-1.1]

nt) = {

is a solution to the differential equation
x"(t) = f(ta x, x’; 1)

on [—1,1] for any ce[—1,1]. Also z,(t) = 0 is a solution satisfying
Condition II. However, x.(f) = ¢ is a solution for any >0 and «.(¢)
intersects «.(f) twice if ce[—1+¢€'3, 1.

DEFINITION 2.7. Let x(f; ) be a solution to (1). We will say
that solutions to (1) are unique with respect to 2(¢; ) on [a, b] if 2(¢)
is any other solution to (1) with x(;) = x(t; 1), ¢ = 1,2 for any ¢, ¢,
satisfying a < ¢, <, < b, then

x(t) = x(t; 1) on [t, t)] .

THEOREM 2.8. Assume, in addition to I and II, that solutions to
BVP’s (38) — (2) are unique if they exist. By Theorem 2.3, there
exist a 6> 0 such that for all | gt — p,| <9, a solution x(t; ¢2) to BVP
(1) — (4) exists. Assume also that solutions to (1) are unique with
respect to x(t; ) for all | ¢ — pt,| <d. Let €>0 be given sufficiently
small. Then there exists a ¢ <06 such that for all |y — p,| <9,
there exists a solution x(t; p; @, B) to BVP (1) — (2) where

la —a,l<e, |8—Bl<e.

Furthermore, z(¢; t; a, 8) — x,(t) in C'-norm on [a, b] as ft— pt,
a— &, and B8— B,

Proof. If suffices to show that if {¢,} is any sequence converging
to p,, then there is a subsequence, relabeled the same, such that for
all n, there exists a solution x(¢; pt.; @, B) to BVP (11) — (2) for any
la — a,|<e and | B — B,]| <&, and that x(t; p,; @, B) — %y(t) a8 n— oo,
a—a, and B— B,

Since solutions to BVP’s (8) — (2) are unique if they exist, by
Theorem 2.5 there exist sequences {Z,.(t; t)}o-, and {z,.(¢; tt)}n-, which
converge to ,(¢) in the C'-norm on [a, b] with
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zm(a; #0) > wo(a) > Qm(a’; #O)
and
Tu(; o) > 2o() > (b5 L) -

Let 6” and C, be the constant assured by Lemma (2.2) for ¢ = 1, and
let ¢’ = min (1/2, §”/4). Then there exists an M such that for m = M

| Zalts tte) — @o(8) |lex <€
and

[| Zalts o) — @o(t) [|lr <&«
Fix m > M and let

0 <e<min (&, 1/2(F.(a) — #:(a)), 1/2(Z.(b) — 2,(D)) -
1/2(zy(@) — (@), 1/2(x(b) — (D)) -

(This puts an upper bound on the possible choices of ¢). By Theorem
2.3 there exists a subsequence of {t,}, relabeled the same, and an
N > 0 such that for n = N there exist solutions Z,(¢; ¢.) and z,.(t; ¢,)
to equation (11) satisfying

w(@) = Ta(a; t)  #(D) = Tu(bith)
and
(@) = (a3 1) x(b) = x(b; 1) » respectively .
with
| Zn(ts 112) — Tn(ts 1) [l <e
| Zu(ts tn) — @ults 1) llor <e -

Let F(t, z, 2'; ¢t,) be the modification of f(¢, z, 2’; 1,) With respect
to Z(t; pt,), x(t; p.) and C,. By Theorem 2.5, [3], there exists a solu-
tion (¢; . a, B) to 2" = F(t, z, «'; p,) satisfying (2) for all » = N,
provided |a — x(a) | <e and | B — x,(b) | < ¢, with

Tt M) = 0t tas @, B) = T(ts M) on {a, b] .

Again it is easy to show that x(¢; u,; a, B) is a solution to (11).

It remains to show that x(¢; p.; «, B) — 2,(t) as n— =, a—a,
and 8— B, Let {a,} be any sequence converging to «, and {B,}
any sequence converging to S By construction the sequences
{2(63 1103 Ay B)} and {2'(; M5 Ay Bm)} are uniformly bounded and equi-
continuous on [a, b]. Henece there exists a subsequence which con-
verges in C'-norm on [a, b] to x,(t) by the uniqueness of w,(t). This
implies that x(f; y; a, B) — x,(t) as p— pt,, @ — a,, and B — L.
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