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ON COMMUTATIVE P.P. RINGS

M. W. EVANS

The purpose of this paper is to study further the ideal
and module structure of a commutative ring with identity,
in which every principal ideal is projective. Results concern-
ing particular modules being projective are also obtained, e.g.
if R is a commutative ring with identity, then ZR(RR) = 0
and every finitely generated nonsingular i?-module is projective
if and only if R is semihereditary and K, the classical ring
of quotients of R, is selfinjective.

A ring R is said to be a right P.P. ring if every right principal
ideal of R is projective. These rings have been considered by Hattori
[6] and by Endo [4], [5].

If R is a commutative ring with identity it can be shown that
R is a P.P. ring if and only if for each x e R, r(x) = {t e R \ xt = 0} = eR
for some idempotent ee R. This latter property was used by Kist
[9] to define 'commutative Baer rings'. In this paper, however
by a Baer ring we will mean a ring R, with identity, such that for
each subset SξΞ=R, r(S) — {t e R | St = 0} = eR, where e is an idempotent
of R. This is the definition used by Kaplansky [8, p. 2].

1* Notations and terminologies* Throughout this paper, unless
otherwise indicated, a ring R is an associative ring with identity; all
modules are unitary.

Given a subset S of a module M we set, as usual, r. ann^(S) =
{xeR\Sx = 0} and we abbreviate this to r(S) if no ambiguity arises.
The notion I. anni2(S) = l(S) is similarity defined; over a commutative
ring no distinctinction is made between l(S) and r(S). If N is a
submodule of M we set (N: M) = r.armR(M/N).

For fall homological notions used in this paper, the reader is
referred to [10].

Throughout this paper, K will denote the classical ring of quotients
of a commutative ring R. Spec R will denote the space of prime
ideals of commutative ring R, while Minp R will denote the space of
minimal prime ideals of R. Details of Minpi? may be found in [7].
If R is a commutative P.P. ring, let ex be the unique idempotent such
that r(x) = exR.

By a regular ring we mean a von Neumman regular ring, that
is a ring with the property that every finitely generated right (left)
ideal is generated by an idempotent. Regular rings, thus are in
particular P.P. rings.
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2* Quasi-regular rings* Quasi-regular rings were first discussed
by Endo in [5]

DEFINITION 2.1. A commutative ring R is said to be quasi-regular
if the classical quotient ring K of R is a regular ring.

THEOREM 2.2. For a commutative ring R, the following are
equivalent:

(1) For all x e R there exists xr e R such that rr(x) = r(xf) and
R is a semiprime ring.

(2) For all xe R there exists a nonzero divisor de R such that
xd = x\

(3) R is a quasi-regular ring.

Proof. (1) implies (2). It will first be shown that x + xf is a
nonzero divisor of R. If (x + x')s — 0, then o:s = — x's and hence
xs e rr(x) n r(x). It is a consequence of R being a semiprime ring
that rr(x) Π r(x) = 0 and hence s e r(x). Similarily s e r(xf) — rr(oή and
so s = 0. The result follows by observing x(x + xr) = x2-

(2) implies (3). Let xd~ι e K where xeR and d is a nonzero
divisor of R. By (2), there exists a nonzero divisor ueR such that
xu = x2. Hence x2(d~ιfdu~ι = xd~\ which implies K is a regular ring.

(3) implies (1). Let xeR^K. Then, as if is a P.P. ring
r.&rmκ(x) = (sd~])K where sd~ι is an idempotent of K, se R and d a
nonzero divisor of R. Hence r.ann^ (r.&nnR(x)) = r.annA(r.annA(α;)) Π
R = r.&rmκ(sd~ι) Π R = r.annΛ(s). Finally R is semiprime as K is.

REMARK 1. Since every quasi-regular ring is semiprime, condition
(2) expresses the fact that for each x e R there is a nonzero divisor
de R such that x ^ d, where ^ is the partial ordering defined on
any semiprime ring by x ^ y if and only if xy = x2, [1].

REMARK 2. Condition (1) was introduced in Theorem 3.4 of [7].
If R is a semiprime ring this condition implies Minp R is compact. It
has been stated in the paper of Henriksen and Jerison [7] and later
in the paper of Mewborn [12] that an example of a semiprime ring
R with Minp R compact, but which does not satisfy condition (1) of
the Theorem, has not been found.

COROLLARY. Every commutative P.P. ring is a quasi-regular ring.

Proof. For each xe R, rr(x) = r(ex) where r(x) — exR and the
other half of condition (1) of the Theorem 2.2 is proved in the following
lemma.
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LEMMA 2.3. Let R be a commutative ring in which every principal
ideal is flat. Then R is a semiprime ring.

Proof. Let x2 = 0. Consider the exact sequence 0 —> r(x) —> R —>
xR —• 0. As #i2 is flat 0 —+r(#) 0 ^ xR—>R®R xR —>^i?®^ xR is an
exact sequence. Hence by Proposition 1 of §5.4 of [10] it follows
that 0-*r(x).xR-+xR-+a?R-+0 is exact: i.e. 0 — 0 ->xR->x2R-+ 0
is exact and as x2 = 0, x = 0.

REMARK 3. The above Corollary is contained in Endo's Proposition
1 [4, p. 168], which we record here as we shall have occasion to
remark on it again.

PROPOSITION 2.4. If R is a commutative ring, then R is a P.P.
ring if and only if K is regular and Rv is an integral domain for
each maximal ideal V of R.

Quasi-regular rings are analogous to distributive *-lattices [16].
The following proposition has an analogue in distributive lattices.
This has been given in [16] and so the proof will not be given here.

PROPOSITION 2.5. If R is a semiprime ring, then the following
are equivalent:

(1) For all xeR, there exists xf eR such that rr(x) = r(xr).
(2) For all x e R, there exists an x' e R such that xxr — 0 and

x + xf is a non zero divisor.
( 3) If P is a prime ideal of R, which contains only zero divisors

then P is a minimal prime ideal.

REMARK 4. The Baer extension [9, p. 46] of a quasi-regular ring
is simply the ring generated by R and the idempotents of K.

3* Modules in which every cyclic submodule is projective*
A right R module is said to be a C.P. module if every right cyclic
submodule is projective.

PROPOSITION 3.1. If R is a ring and AR is a right R-module,
then the following are equivalent:

(1) AR is a C.P. module.
( 2) For each x e AR, r(x) = eR for some idempotent ee R.

Proof. (1) implies (2). Consider the exact sequence 0—>r(α?)—*
η

R —* xR —> 0, where i is the imbedding map and j : a —> xa. Then, as
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xR is protective, the exact sequence splits and r(x) is a direct summand
of R.

(2) implies (1). Suppose xR is a cyclic submodule. Then xR ^
R/r(x) = R/eR. As R/eR ~ (1 - β)J? by the correspondence r/eR —>
(1 — e)r, xR ~ (1 — e)iϋ. Hence #jβ is projective.

THEOREM 3.2. jFor a ring R the following are equivalent:
( 1 ) R is right P.P.
( 2 ) Every free right R-module FR is a C.P. module.
( 3 ) Every projective right R-module PR is a C.P. module.

Proof. (1) implies (2). It suffices to prove (2) in the case FR =
R{n) = {(#!, x2 xn))fXi e R} for some positive integer n. Thus suppose
n > 1 and let xR C Rin) where a; = (α ,̂ . . . , xn) e R{n). Let π: R{n) ->
ϋϊ be the map given by π(rl9 , rn) = r1 (i.e. the projection on to the
first component of R[n)) and let π = π\xR. Then the exact sequence

0 —* ker π —> xR —• Im π —> 0 splits as Imjr is a principal right ideal
of J?. It follows that xR ~ ker π 0 Im TΓ, where ker π is a cyclic
submodule of Rn~ι and so projective by the induction assumption.

xR is a projective iu-module as it is a direct sum of two projective
right i?-modules.

(2) implies (3). Trivial.
(3) implies (1). Trivial.

Next in this section we obtain a characterization of commutative
P.P. rings. The following lemma will be required for the proof of
this characterization. For modules N^M we write N£'M when
M is an essential extension of N. For the definition of essential the
reader is referred to the book of Lambek [10, p. 90].

LEMMA 3.3. Let R £ S be rings (with the same identity) such
that RRξΞ:'SR. Then for each seS, r.annR{s) is generated by an
idempotent of R if and only if r.anns(s) is generated by an idempotent
of R.

Proof, Let s e S and suppose r.ann^(s) = eR, where e2 = e e R.
Since r.annΛ(s) S'r.ann 5(s) (as .β-modules) it follows that eSϋ'r .ann Λ (s)
(as S-modules) and so r.ann5(s) = eS.

Next suppose r.ann5(s) = eS for some e2 = ee R. We then have
eR £ ' eS (Ί R = r.ann^s) and so eR = r.annΛ(s).

THEOREM 3.4. For a commutative ring R with total quotient ring
K the following are equivalent:

( 1 ) R is a P.P. ring.
( 2 ) K is a P.P. ring and every idempotent of K is an element
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Of R.
( 3 ) Any ring A such that R £ A £ K, is a P.P. ring.

[Note: All rings in (3) share the identity of R.]

Proof. (1) implies (2). By Proposition 3.1 it suffices to that for
each k e K, r.ann^(fc) = eK where e is an idempotent element of R.
Thus let ke K and so k = ad~ι where ae R and d is a nonzero divisor
of R. The map kR-+R given by kr—>dkr is a module imbedding
and so kR is projective. It follows that the epimorphism R—*kR
given by r —> kr, splits and so r.ann^fe) = ker(i? —> &i?) = eiϋ for some
e2 = ee R. Lemma 3.3 now gives r.annx(fe) = eiL

(2) implies (3). This is a clear consequence of Lemma 3.3.
(3) implies (1). Trivial.
We now have a corollary to Proposition 2.4. [Endo].

COROLLARY. Suppose R is a quasi-regular ring. For any ring
A such that R ϋ A Q K the following are equivalent:

( 1 ) Rv is an integral domain for every maximal ideal V of R.
( 2 ) Av is an integral domain for every maximal ideal V of A.

4. Baer ideals and torsion free iϊ-modules* Throughout this
section R is assumed to have a right ring of quotients as defined by
Levy [11, p. 133]. Any commutative ring has such a ring of quotients.

If M is a right .ff-module, let T(M) = {meMJfmd = 0; for some
nonzero divisor d of R). T(M) is a submodule of R [11, Theorem 1.4].
M is said to be torsion-free if T(M) = 0.

If J is a right ideal of R, let JB be the right ideal of R such
that T(R/J) = JB/J. Ideals such that JB = J, have previously been
used by Cateforis and Sandomierski [2, p. 162].

PROPOSITION 4.2. Let R be a ring, S the right ring of quotients
of R and J a right ideal of R. Then the following are equivalent:

( 1 ) T(B/J) = 0.
(2) There exists a right ideal J' of S such that Jf Π R — J .
( 3 ) JB = J.

Proof. (1) implies (2). Clearly J £ JS Π R. Conversely if xe
JS D R, then x = asd~\ where aeJ,seR and d is a nonzero divisor
of R. Hence xd = as e J. Thus as TCR/J) = 0, x e J.

(2) implies (3). If xd e J, then xdd~ι e JS £ J ' which implies .τ e J;
i.e. J# = J.

(3) implies (1). If M is any right i2-module T(M/T(M)) = 0.
Hence Γ(i2/Js) = 0.
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PROPOSITION 4.3. Let R be a ring, J a right ideal of R. Then
(1) JB — R if and only if J contains a nonzero divisor.
( 2 ) T(R/JB) = 0, and if J S I a right ideal such that T(R\I) =

0, then JB s I-

Proof (1). Since T(R/J) = R/J if and only if J contains a non-
zero divisor, the result follows.

( 2 ) From Proposition 4.2. T(R/JB) = 0. Now suppose x e JB.
Then xdeJξ^I for some nonzero divisor d of R. Hence as T(R/J) =
0, x e I.

We now look at ideals J of a ring R such that T(R/J) = 0 when
R is a quasi-regular or commutative P.P. ring. Properties of these
ideals in quasi-regular rings have been looked at by Endo [5, p. 111-
112]. From Proposition 3.5 we have the following.

COROLLARY 4.4. If R is a commutative semiprime ring then the
following are equivalent:

( 1 ) R is a quasi-regular ring.
( 2 ) If P is a prime ideal of R, T(R/P) = 0 if and only if it is

a minimal prime ideal.

COROLLARY 4.5. If R is a commutative quasi-regular ring then
the following are equivalent:

( 1 ) If J is an ideal of R, then R, then T(R/J) = 0.
( 2 ) R is a regular ring.

Proof. (1) implies (2). From Corollary 4.4 this means that every
prime ideal of R is a minimal prime ideal, and hence maximal ideal
of R. Hence Rv is a field for each maximal ideal V of R. The
result follows from Theorem 1 of Endo [5].

(2) implies (1). Every nonzero divisor of a regular ring is a unit.

PROPOSITION 4.6. Let R be a commutative P.P. ring, J an ideal
of R then the following are equivalent:

(1) T(R/J) = 0.
(2) If x — y e J then ex — ey e J.
( 3 ) R/J is a flat R-module.
(4 ) If xeJ then rr(x) S / .
( 5 ) J = Π {Me Minp R\J g M}.

Proof. (1) implies (2). It will first be shown that if s,xeR,
then sx e J if and only if sex — s e J. If sex — s e J then — xs = x(sex —
s) e J. Hence xs e J.

Conversely if xs e J, then (sex — s)(x + ex) = — sx + sex — sex =
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sx e J.
Now if x — y e J, then x + J = y + J. From the above it can be

seen that this implies (ex + J)R/J = r.annRU(x/J) = r.a,nnR/J(y/J) =
(ey + J)R/J i.e. ex - y e J.

(2) implies (3). Let xeJ. Then 1 — exeJ and x(l — ex) = x.
Thus B/J is flat [11, Ex 3, p. 135].

(3) implies (1). If xdeJ, then by [11, Ex 3. p. 135] there exists
a c e J such that xdc = xd, which implies x = xce J.

The equivalence of (2), (4) and (5) has been shown by T. P. Speed

[17].

REMARK 1. Conditions (1), (4) and (5), of the above theorem, are
equivalent for a quasi-regular ring. Furthermore it can be shown as
a corollary of Theorem 3.1 of Mewborn [12], that conditions (4) and
(5) are equivalent for a semiprime ring R if and only if Minp R is
compact.

In [18] ideals satisfying property (2) were called Baer ideals. We
will continue to use this name.

REMARK 2. In [18] a Baer homomorphism between two commuta-
tive P.P. rings, R and Rr was defined to be a ring homomorphism /
satisfying the additional property f(ex) = ef(x), where r.annR.(f(x)) =
ef{x)B\ for all x e R. It was shown that an ideal / of R is the kernel
of a Baer homomorphism if and only if J satisfied condition (2) of
the above theorem.

The Baer ideals of R, a commutative P.P. ring, form a pseudo
complemented lattice [17], which we will denote by Iβ(R). If S is a
commutative ring, denote the lattice of ideals of S by I(S) and let
B(S) denote the Boolean algebra of idempotents of S.

PROPOSITION 4.7. Let Rbe a commutative P.P. ring. Then I(K) =
I(B(K)) = I(B(R)) ~ Iβ(R), where the isomorphisms are lattice isomor-
phisms.

Proof. It can be seen from Proposition 4.2 (2) that I(K) = P(R).
It is well known that I{K) = I(B(K)) and I(B(K)) = I(B(B)) as B(K) =
B(R) (Theorem 3.4).

Finally in this section we look at the decomposition of commutative
P.P. rings.

A submodule M of a right iϋ-module AR is said to be large if
M Π N Φ 0 for each nonzero submodule N of AR. A large ideal is a
large submodule of R. If R is a commutative semiprime ring, J is
a large ideal if and only if r(J) = 0. A right J?-module AR is said
to be nonsingular if ZR(AR) = 0 where ZR(AR) = {x e R \ r(x) is a large
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ideal of R).

THEOREM 4.8. Over a commutative P.P. ring the following are
equivalent:

( 1 ) R has the a.c.c. on Baer ideals.
(2) R is a finite direct sum of integral domains.
( 3 ) Every torsion-free R-module is a C.P. module.
(4) Every torsion-free R-module is a nonsingular module.
( 5 ) Z(M) = T(M) for every module M.
(6) Every large ideal contains a nonzero divisor of R.

Proof. (1) implies (2). This follows from the lemma of Hattori
[6, p. 156].

(2) implies (3). If AR is a torsion-free i2-module then each cyclic
submodule of R is a torsion-free iϋ-module. Hence if xe R, r(x) is a
Baer ideal, (Proposition 4.6). It is a consequence of R being a finite
direct sum of integral domains that all Baer ideals of R are idem-
potently generated.

(3) implies (4). Free modules over nonsingular rings are non-
singular modules.

(4) implies (5). If an ideal J contains a nonzero divisor d then
J g ' i ί a n d s o T(M) S Z(M). Now Z(M)/T(M) S Z(M/T(M)) and since
T(M/T(M)) - 0 we have Z(M/T(M)) = 0 or Z(M) s T(M).

(5) implies (6). If J is a large ideal of R, then Z(R/J) = R/J
and so T(R/J) = R/J. Hence there is a nonzero divisor d e R such
that d(l + J) = 0 or d e J.

(6) implies (1). If B is a large ideal of K then B Π R is a large
ideal of R and so I? contains a nonzero divisor of R. It follows that
B — K, as d"1 exists in ίΓ, and so has no large ideals Φ K. K is
thus artinian semisimple. Hence the ideals of K satisfy the a.c.c.
It now follows from Proposition 4.7 that the Baer ideals of R satisfy
the a.c.c.

COROLLARY 4.9. If R is a commutative hereditary (semihereditary)
ring R with identity, then R is a finite direct sum of Dedekind
(Prίifer) domains if and only if R has the a.c.c. on Baer ideals.

5* Finitely generated nonsingular R~modu.les of a commuta-
tive semiprime ring* In this section we introduce a third torsion
theory. If AR is an i?-module of a commutative ring R, let U(A) —
{xe A\lr{x) — 0}. This is the definition of 'torsion submodule' used
by Pierce [13, p. 80-83]. Note that if R is an integral domain U(A) =
0 if and only if T(A) — 0. Also, if R is a semiprime ring U(A) = 0
if and only if Z(A) = 0 [11, Ex. 1. p. 108].
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It was mentioned in the introduction of this paper, that by a Baer
ring, we will mean a ring R with identity, such that for each subset
S S R, r(S) = {t G R)fSt — 0} = eiϋ, where e is an idempotent of R.
A commutative P.P. ring is a Baer ring if and only if its Boolean
algebra of idempotents is complete. We will need the following lemma
of Sandomierski [15, p. 226]. For the definition of closed submodule
the reader is referred to [15].

LEMMA 5.1. // BR is a submodule of an R-module AB, such tvht
Z(A/B) — 0, then B is closed in A.

THEOREM 5.2. Let R be a commutative ring. Then the following
are equivalent:

( 1 ) R is a Baer ring.
( 2 ) ZR{R) = 0, and if AR is a nonsingular R-module, then AR

is a C.P. module.
( 3 ) If AR is an R module such that U(A) — 0, then A is a C.P.

module.
( 4 ) // S C R, then R/r(S) is a protective R-module.

Proof. (1) implies (2). Since R is a semiprime ring, the closed
ideals of R are exactly the annihilator ideals of R. If AR is a non-
singular i?-module, then xe AR implies r(x) is an annihilator ideal of
R (Lemma 5.1). The result now follows by Proposition 3.1 as R is
a Baer ring.

(2) implies (3). Since Z{R) = 0, U{A) = 0 if and only if Z(A) = 0.
(3) implies (4). Let S S R, where S is an arbitrary subset of

R. It will first be shown that U(R/r(S)) = 0. Suppose that r(S) Φ
R. Then there is an xeR, such that x$r(S). Now r(x + r(S)) —
{teR\xter(S)} = r(xS). Hence if rr(x + r(S)) = 0, then r(xS) = R,
which implies xS = 0, i.e. xer(S). Thus U(R/r(S)) = 0 for r(S) Φ R.
Hence as R/r(S) is a cyclic j?-module it is projective.

(4) implies (1). Since R/r(S) is projective the exact sequence
0 —* r(S) —> R —> R/r(S) —> 0 splits. Hence r(S) is a direct summand
of R, i.e. r(S) = eR for some idempotent e e R.

K. M. Rangaswamy and N. Vanaja have also considered the
condition that every cyclic nonsingular iϋ-module is projective. The
above result generalised Proposition 1 of [14] for the commutative case.

The following proposition will be used in the proof of Theorem 5.4.

PROPOSITION 5.3. Let J be a finitely generated ideal of a commu-
tative quasi-regular ring R. Then if J does not contain a nonzero
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divisor, r(J) Φ 0.

Proof. Let J = Σ?=i α ; ^ a n ( ϊ suppose Jx = 0 implies α; = 0. Then
J is a large ideal of R and so JK is a large ideal of K. Since if is
regular and JK is a finitely generated i£-ideal (generated by the α*)
it follows that JiT - IT. Thus 1 e JK and 1 = Σ?^i ^ = Σ?=i ^(MΓ 1 )
where XiβJ, d{ is a nonzero divisor of i?. Now by [12, Lemma 1.3]
there exist biβ R and a nonzero divisor d e R such that a{d~ι —
b^1 and so 1 = Σ^δiCZ"1. It follows that de J, a contradiction.

Let Q denote the complete ring of quotients of R[1O, p. 40].
Cateforis and Sandomierski have introduced the condition ZR(Q ® β Q) =
0. [2, p. 151]. The next proposition gives an equivalent condition to
this when R is a quasi-regular ring.

THEOREM 5.4. Let R be a quasi-regular ring, Q the complete
ring of quotients of R, then the following are equivalent:

(1) ZR{Q ®R Q) = 0.
( 2 ) Q = K, the classical ring of quotients of R.

Proof. (1) implies (2). Q is a flat i?-module as Minp R is compact
[12, Thm 3.1]. As R is also semiprime it is possible to use Theorem
1.6 of [3]. Hence Z(Q.φBQ) is equivalent to the condition that for
each qeQ, (R\Rq) — {reR\rqeR} contains a finitely generated large
submodule, J. Q is an essential extension of R and therefore J is a
large ideal of R. Now if J is a finitely generated large ideal of R,
r(J) = 0 and hence by Proposition 5»3 J must contain a nonzero divisor
d. Finally, if q e Q there exists a nonzero divisor d of R such that
dqe R S K which implies q e K.

(2) implies (1). As K®RK ~ K it follows that ZR{Q®RQ) = 0.

If J? is a semiprime ring with Minp R compact and ZR(Q ® β Q) =
0, where Q is the complete ring of quotients of R, then Q = K, the
classical ring of quotients of the Baer extension of R. The Baer
extension has been introduced in [9].

The following Proposition is due to Catef oris [3].

PROPOSITION 5.5. For a ring R, the following are equivalent:
(1) Z(RR) = 0 and every finitely generated nonsingular right

R-module is projective.
(2) R is semihereditary, QR is flat and Z(Q ® β Q) = 0.

COROLLARY 5.6. Let R be a commutative ring. Then the following
are equivalent:
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(1) If AR is a finitely generated R-module and U(A) = 0, then
AR is projective.

( 2) ZR(RR) = 0 and every finitely generated nonsingular R-module
is projective.

(3) R is semihereditary and K the classical quotient ring of R
is self injective.

Proof. The proof is derived from Theorem 5.2, Theorem 5.4 and
Proposition 5.5.

Theorem 24.5 of Pierce [13] can be obtained directly from this
corollary. For if R is a regular ring, R is semihereditary and R = K.
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