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POLYNOMIAL RINGS OVER FINITE
DIMENSIONAL RINGS

ROBERT C. SHOCK

A ring is right finite dimensional if it contains no infinite
direct sum of nonzero right ideals. We prove that polynomial
over finite dimensional rings are finite dimensional rings.
The (Goldie) dimension of a ring is unaffected by adjoining
to it an arbitrary number of indeterminates. Several appli-
cations are given.

!• Introduction* In 1960 A. W. Goldie gave necessary and
sufficient conditions for a ring to have a classical ring of right quo-
tients which is a semiprime Artinian ring [1]. Following Goldie, a
ring is right finite dimensional if it does not contain an infinite direct
sum of nonzero right ideals. The class of right finite dimensional
rings properly contains the class of right Noetherian rings. The
Hubert Basis Theorem states that if R is a right Noetherian ring
then the polynomial ring in a finite number of indeterminates over
R is also a right Noetherian ring. We extend this theorem to finite
dimensional rings. Furthermore, the requirement of a finite number
of indeterminates is dropped. We prove that if R is a right finite
dimensional ring then the polynomial ring in an arbitrary number
of indeterminates over R is also a right finite dimensional ring. We
cite one application. An order theorem of A. W. Goldie is generalized
to polynomial rings. We also prove that if a ring R has a classical
ring of right quotients which is a semiprime Artinian ring, then so
does every polynomial ring over R.

Throughout this paper let R always denote an associate ring
which need not have an identity. For a subring K of R let
K[xl9 x2, •••] denote the ring obtained by adjoining an arbitrary
number of indeterminates xly x2, which commute with all elements
of K and with each other. Let Z(S) denote the right singular ideal
of the ring S [2].

For a right finite dimensional ring R there exists an integer n
such that R contains a direct sum of n — summands and the number
of summands of any other direct sum in R is at most n. This unique
integer n is called the dimension of R and we write dim R = n.
Theorem 2.6 states that dim R = n if and only if dim (R[xx, x2, •]) —
n. In § 3 we prove that R is a semiprime Goldie ring if and only if
the same is true of R[xly x2, •••]« We also generalize to polynomial
rings an order theorem of L. Small: If a ring R has a classical ring
of right quotients which is Artinian then so does R [xu x2, ]
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(Theorem 3.7).

2* The main theorems* In this section we prove our main
results. Theorem 2.6 states that dim R — dim R[xlf x2, •••] for any
right finite dimensional ring R. Theorem 2.7 states that Z(R[xiy

x2, •••]) = Z(R)[xl9 x2, •••] for any ring R.
We denote the right annihilator of a subset S of R by r(S), that

is, r(S) = {y e i2: βy = 0 for all s e S}.
Imbed a ring R into a ring with an identity in the "standard

way" (this follows Dorroh). We denote this ring by R1. For b e R
we equate bR1 with the principal right ideal generated by the element
b in R.

Let R = {x, 0} where α? + x = a;2 = 0. In i?1 the sum (α?, O)^1 +
(0, 2)Rι is direct. Hence dim R = 1 ^ dim J?1 = 2. We proceed under
the assumption that a ring i? need not have an identity.

LEMMA 2.1. Let al9 ***,an be in R. Then either r(an) = r{a5)
for all j where 1^ j ^ n or there exists beR and an index j where
1 ^ J ^ n such that aόb Φ 0 and r{a$) — r(akb) whenever akb Φ 0 where

Proof. Assume all the right annihilators r(ak) are not the same.
Consider the set of right annihilators r{ai) subject to a3- Φ 0 where
1 ^ i ^ n. If two of these annihilators are different say r(ak) and
r(ak) then choose x e r(akl) and x ί r(ak). Hence ak2x Φ 0 and akl =
0. The new set of annihilators r(akx) subject to akx Φ 0 has fewer
members than the original set r(ai) subject to a{ Φ 0 where 1 ^ i ^ n.
We repeat this process until we obtain a multiplier b in R and an
index j such that Lemma 2.1 is satisfied.

Let 0 Φ g(x) = α0 + + α ^ w be in i? [&]. It is understood that
an Φ 0. If r(αΛ) = r(aj) in iZ whenever α̂  Φ 0 where 1 ^ j ^ ?ι then
we say that the right annililators of the coefficients of g(x) are equal.

PROPOSITION 2.2. For a nonzero polynomial p(x) in R[x] there
exists b e R1 such that the right annihilators of the coefficients of the
nonzero polynomial p(x)b are equal.

Proof. Let p(x) = α0 + + anx
n. If r(an) — r(ak) where ak Φ 0

and 1 ^ k ^ n then let b = (0, 1) in R1 and the proposition follows.
Suppose r(an) Φ r(ak) for some ak Φ 0 and 1 ^ Λ ̂  w. By the previous
lemma there is an element d e R and an index j such that aόd Φ 0
and r(ajd) = r(αAcZ) whenever α^d ^ 0 and 1 ^ h ^ n. Let 6 = (d, 0) e
JB1, Then p(x)b satisfies the proposition.
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LEMMA 2.3. Let p(x) = akx
k + + ak+nx

k+n be a polynomial in
R[x] where k Ξ> 0. Assume that ak Φ 0 and r(ak) £ r(ak+i) for 1 <*
i <L n. Let q(x) = bQ + btx + + bmxm be in R[x\. Then p(x)q(x) =
0 if and only if the coefficients b0, bly •••,&» are in r(ak+i) for 1 ^
1 ^ n.

Proof. Let h(x) = p(a?)g(a?) = c^* + + c/c+%+wα;&+w+m where c* =
dkK *"> cfc+̂ +m = ak+J)m. Clearly c& = 0 implies δ0 e r{aά) and hence
bQ e r(ak+1) for 1 ^ i <£ w. Now 0 = cι = αfc+160 + α ^ forces δL e r ^ )
since 60 G r(αΛ + 1). Hence bλ e r(ak+ι) for 1 <, i <^ n. It follows that

0 = c2 = αfc+2&o + α*+i&i + %&2 implies 62 e r(αλ). Continuing in this
fashion each b3- e r(ak) for 1 ̂  i ^ m. Since r(αfc) S r(ak+ί) for
1 ^ i <; n the implication follows. The reverse implication is clear.

A right ideal K is said to be uniform in R if x and 2/ are in
K - (0) imply xRι Π i/i?1 ̂  (0).

PROPOSITION 2.4. A Wg/zi ideal K is uniform in R if and only
if K[x] is uniform in R[x].

Proof. Assume that K[x] is not a uniform right ideal in R[x].
Suppose that the sum ^(^^[α;] 1 + q(x)R[x]1 is direct, where p(x) and
q(x) belong to K[x] — (0). By Proposition 2.2, we can choose p(x)
[and q(x)] such that the right annihilators of the coefficients of p(x)
[and q(x)] are equal. Let p(x) = a0 + axx + + akx

k and q(x) —
b0 + btx + + 6%a;w, where α< ̂  0 and 6y ̂  0 imply r(αA) = r(αj and
r(6w) = r(bj) for l g i ^ ί : and 1 ^ i ^ w. Furthermore, we may
assume n Ξ> k. Since the nonnegative integers are well ordered, we
may assume that for any other direct sum of the form p{x)R\x\ι +
t(x)R[xY we have degree t(x) ̂  degree q(x), where t(x) 6 K[x] — (0)
and the right annihilators of the coefficients of t(x) are equaL Recall
next that ak and bn are in a uniform right ideal and there exist y
and z in R1 such that 0 Φ aky — bnz. Let h{x) — p(x)yxn~~k + g(^)( — z).
Clearly degree of h(x) < degree of q(x). Also h(x) Φ 0; otherwise the
sum p(x)R[x}1 + q(x)R[x\ι would not be direct. We claim the sum
h(x)R[x]1 + p(x)R[x]1 is not direct. The right annihilators of the
coefficients of h(x)b Φ 0 are equal, where b is an appropriate element
in R1; such a b exists by Proposition 2.2. Clearly degree of h(x)b <
degree of q(x). If h{x)R[x\ι + p{x)R[x\ι were direct, then [h(x)b]R[xY +
p(x)R[xY would be direct, a contradiction of the choosing of the
degree of q(x). Hence 0 Φ h{x)m{x) = p(x)g(x) for some m(x) and g(x)
in R[xγ. If q(x)( — z)m(x) = 0, then the coefficients of m(V) are in
r(bnz) by Lemma 2.3. But r(bnz) — r(aky) implies that p(x)yxn~km{x) — 0,
again by Lemma 2.3. Thus 0 Φ h(x)m(x) — [p(x)yxn~k + q(x)( — z)]m(x) —
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0, a contradiction. We conclude that q(x)( — z)m{x) Φ 0. This forces
q(x)( — z)m(x) — p(x)g(x) — p(x)yxk~km(x), which contradicts our assump-
tion that the sum q(x)R[x\ι + p(x)R[xγ was direct. We conclude that
K[x] is a uniform right ideal. The reverse implication is clear.

A right ideal is said to be essential in R if it has nonzero inter-
section with each nonzero right ideal of R. Assume K is an essential
right ideal. For nonzero elements aly α2, •••, an in R there does exist
beR1 such that a$ e K — (0) for some i where 1 <̂  i ^ n and afi e
K for 1 ̂  j ^ n. This follows from the definition.

PROPOSITION 2.5. A ring R is right finite dimensional if and
only if the polynomial ring R[x] is. Furthermore, dimi? = dim .#[#].

Proof. Assume R is right finite dimensional. There exists a
finite set of nonzero uniform right ideals {Lly L2y , Lk) such that
the sum JJ - LL + β + Lk is direct and U is essential in Ro Clearly,
L'[x] — LL[x] + ° + Lk[x] and this sum is direct. For 1 ^ i ^ k
each Li[x] is uniform in R[x] by Proposition 2.4. AVe claim that U
is essential in R implies that Π[x] is essential in R[x]. Let p(x) be
a nonzero polynomial in R[x\. Then there is some b e Rι such that
p{x)b Φ 0 and each coefficient of p{x)b belongs to ZΛ Hence v(x)b e
L'[x\. Also note that drmi2 = άimR[x]. The reverse implication is
clear.

THEOREM 2 βδ. A ring R is right finite dimensional if and only
if R[xly x2, '

 β] is. Furthermore, dim R = dim R[xl9 x2? •].

Proof. Assume that dim R = n. First, dim R = dim ^([a;!, , %])
for any nonnegative integer h» This follows by finite induction on
the number of indeterminates and by Proposition 2.5. Let S —
R[xl9 x2, •••]. Suppose that the sum pβ1 + ••• + PnS1 + Pn+iS1 is
direct where pi e S for 1 ̂  i ^ n + 1. Each term of each polynomial
Pi for 1 ^ i ^ % + 1 involves only a finite number of indeterminates
and for 1 ^ i ^ n + 1 each pt e R[x[, , tτ'-] where α;[, P ,̂ , x'k is
an appropriate finite subset of the indeterminates xly x2y . Let
T = R[x[, •••,.<] and the sum p,Tι + ••• + p^^T 1 is direct. This
forces dim Γ > n = dim i2, a contradiction. Clearly dim S ^ dim i?
and hence, dim R — dim S. The reverse implication is clear.

THEOREM 2.7. We have Z(R[xly x2y •]) = Z(R)[xL, x2y •] /or

Proof. Let S = -R[ !̂, a?2, •]• Let aly ° - , an denote the coefficients
of some polynomial p in S. If each α* e Z(iϊ) for 1 ^ i ^ ^ then the
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finite intersection Π r ( α ; ) f ° r 1 ̂  i ^ n is essential in R. Clearly r(p)
contains f\r(ai)[xu x2, •] for 1 ̂  i ^ n and Γ\r(ai)[xly x2y •] is essen-
tial in S. Therefore, Z(R)[xu x2, •] S Z(S). Let h be a polynomial
in ^(S). Write & as a sum of two polynomials hγ and h2 such that
&! G Z(R)[xl9 x2, •] and each nonzero coefficient of h2 does not belong
to Z(R). Also ht and &2 are in Z(S). If h2φΰ then let an be the
leading coefficient of h2. Now αw e R — Z{R) implies r(an) Π bRι = (0)
for some nonzero b in R and r(fe2) Π bS1 — (0) a contradiction. There-
fore, h2 = 0 and /̂  £ ^(12) [#i, #2, •••] which completes the proof.

3* Applications* In this section we extend to polynomial rings
certain order theorems of A. W. Goldie and L. Small. Henceforth,
assume that R is a ring with unity. A right ideal K is called a
right annihilator if K — r(S) for some appropriate subset S of R. A
ring is called a Goldie ring if it is a right finite dimensional ring
which satisfies the maximum condition on right annihilators.

PROPOSITION 3.1. A ring R is a semiprime Goldie ring if and
only if R[xlf x2, •] is.

Proof. It is well known that a semiprime Goldie ring is a semi-
prime right finite dimensional ring with a zero singular ideal. Let
S = R[Xi, #2, *••]• Theorem 2.6 implies R is right finite dimensional
if and only if S is. Theorem 2.5 implies Z(R) — (0) if and only if
Z(S) = (0). It is clear that R is semiprime if and only if S is. This
completes the proof.

COROLLARY 3.2. (Small [5]) A ring R is a semiprime Goldie
ring if and only if R[xly x2, , xn] is for all n.

Proof. The proof is clear.

THEOREM 3.3. (R. C. Shock [3]). Let R denote a right finite
dimensional ring. A nil subring S is nilpotent in R if and only if
the subring S Π Z(R) is nilpotent. Furthermore, if Z{R) is nilpotent
with index k then each nil subring is nilpotent and has index of
nilpotency g fc(dim 12+1).

Proof. See [3].

THEOREM 3.4. Let R be a right finite dimensional ring. Let
S = R[xu xz, •]. A nil subring K is nilpotent in S if and only if
K Π Z(R)[xly x2, " ••] is nilpotent. Furthermore, if Z(R) is nilpotent
with index k then each nil subring is nilpotent in S and has index
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of nilpotency ^ k(άim R + 1).

Proof. The proof follows immediately from Theorem 3.3, Theorem
2.6, and Theorem 2.7.

For a subset K of a ring i? we equate ϊ(ίΓ) with the set {x e
R: xk = 0 for all & 6 # } .

We refer to [7] for notation and definitions used below.

THEOREM 3.5. (L. Small). Let N denote the prime radical of
R. Assume R satisfies the following properties:

(1) The prime radical N of R is nilpotent and R/N is a Goldie
ring.

(2) Each factor ring R/Tk where Tk = l(Nk) Π N is right finite
dimensional for all nonnegative integers k.

(3) There is an exhaustive set S(M) consisting of nonzero divisors
of R. Then R has a classical ring of right quotients which is an
Artinian ring.

Proof. See [5], [6], and [7].

THEOREM 3.6. If R has a classical ring of right quotients which
is Artinian then so does R[xly x2, •••]•

Proof. Let S — R[x19 x2y ] and we verify that S satisfies the
hypothesis of Theorem 3.5. Let N(R) be the prime radical of R, N(S)
the prime radical of S. It is wellknown that N(S)k = N(R)k[xlf x%9 •]
for all k ̂  1. Since R/N(R) is a semiprime Goldie ring, S/N(S) which
is isomorphic to R/N(R)[xu x2, •••] is also a semiprime Goldie ring
by Proposition 3.1. Let Tk = l(N(S)k) Π N(S) where k is a nonnega-
tive integer. If p e Tk then py — 0 for all y e N(R)k. The coefficients
of p lie in l(N(R)k) Π N(B) and hence Tk = (l(N(R)k) n N(R))[xlf x*, •].
The factor ring S/Tk is right finite dimensional because S/Tk is
isomorphic to R/l(N(R)k) Π N(B)[xl9 x2, •••] land R/l(N(R)k Π N(B) is

right finite dimensional. Let S(M) denote the set of polynomials in
S whose leading coefficients are nonzero divisors. The set S(M) is
an exhaustive set in S, as the proof is an easy modification of the
proof of Lemma 2 and Theorem 2 of [7]. This completes the proof.

COROLLARY 3.7. (L. Small [5]) If R has a classical ring of
right quotients which is Artinian then so does R[xlf α?2, , #Λ for a^
n.

Proof. This is clear.
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