ON THE ABSOLUTE MATRIX SUMMABILITY OF A FOURIER SERIES

ARIBINDI SATYANARAYAN RAO

In this paper, the author gives sufficient conditions for a Fourier series at an arbitrary but fixed point to be absolutely matrix summable.

1. Introduction. Let $\sum_{0}^{\infty} u_n$ be an infinite series with partial sums s_n , and let $A = (a_{nk})$ be a triangular infinite matrix of real numbers (see Hardy [2]). The series $\sum u_n$ is said to be absolutely summable A, or summable |A|, if

$$\sum_{1}^{\infty}|\tau_{n}-\tau_{n-1}|<\infty,$$

where

$$\tau_n = \sum_{k=0}^n a_{nk} s_k$$
.

Let f(t) be a Lebesgue-integrable function of period 2π , with Fourier series

(1.1)
$$\frac{1}{2}a_0 + \sum_{1}^{\infty} (a_n \cos nt + b_n \sin nt) \equiv \sum_{1}^{\infty} A_n(t)$$
.

With a fixed point x, we set

(1.2)
$$\phi(t) = \phi_x(t) = \frac{1}{2} [f(x+t) + f(x-t)],$$

$$\Phi(t) = \int_0^t |\phi(u)| du.$$

We establish the following theorem for the absolute matrix summability of the Fourier series (1.1) of f(t) at t = x.

THEOREM. Let $A=(a_{nk})$ be a triangular infinite matrix of real numbers such that $\Delta a_{nk}=a_{nk}-a_{n,k+1}$ is monotonic with respect to $n\geq k$ for each fixed $k\geq 0$.

Let $\alpha(t)$ be a positive function such that $t^r/\alpha(t)$, for some r with 0 < r < 1, is nondecreasing for $t \ge t_o$. Suppose that

(1.5)
$$|\Delta a_{m,0}| + \sum_{n=1}^{m-1} \frac{n |\Delta a_{mn}|}{\alpha(n)} = O(1)$$
 as $m \to \infty$.

Further, let

(1.6)
$$\Phi(t) = O\left[\frac{t}{\alpha(1/t)}\right] \quad \text{as } t \to 0 + .$$

If all of the above conditions hold, then the Fourier series (1.1) of f(t) at t = x is summable |A|.

We shall require the following lemmas.

LEMMA 1. If $\alpha(t)$ is defined as in the theorem, then

(2.1)
$$\int_{t_0}^t \frac{du}{\alpha(u)} = O\left[\frac{t}{\alpha(t)}\right] \quad \text{for all } t \ge t_o.$$

Proof.

$$egin{aligned} \int_{t_0}^t rac{du}{lpha(u)} &= \int_{t_0}^t rac{u^r}{lpha(u)} \cdot rac{du}{u^r} \ & \leq rac{t^r}{lpha(t)} \int_{t_0}^t rac{du}{u^r} &\leq rac{t^r}{lpha(t)} \cdot rac{t^{-r+1}}{1-r} &= O\Big[rac{t}{lpha(t)}\Big] \ . \end{aligned}$$

LEMMA 2. If $A = (a_{nk})$ is defined as in the theorem and if

$$\sum_{n=0}^{\infty} |t_n| \cdot |a_{nn}| < \infty ,$$

$$(2.3) \hspace{1cm} \sum_{n=0}^{m-1} |t_n| \cdot |\varDelta a_{mn}| = O(1) \hspace{1cm} as \hspace{1cm} m \to \infty \hspace{1cm} ,$$

where

$$t_n = \sum_{k=0}^n s_k$$
 ,

then $\sum u_n$ is summable |A|.

Proof. By Abel's transformation,

$$egin{aligned} au_n - au_{n-1} &= \sum\limits_{k=0}^n (a_{nk} - a_{n-1,k}) s_k \ &= \sum\limits_{k=0}^{n-1} (\varDelta a_{nk} - \varDelta a_{n-1,k}) t_k + a_{nn} t_n \; . \end{aligned}$$

Now

$$\begin{split} &\sum_{n=1}^{m}\sum_{k=0}^{n-1}|\varDelta a_{nk}-\varDelta a_{n-1,k}|\cdot|t_{k}|\\ &=\sum_{k=0}^{m-1}|t_{k}|\cdot\left(\sum_{n=k+1}^{m}|\varDelta a_{nk}-\varDelta a_{n-1,k}|\right)=\sum_{k=0}^{m-1}|t_{k}|\cdot|\varDelta a_{mk}-a_{kk}| \text{ .} \end{split}$$

Thus,

$$\begin{split} \sum_{n=1}^m |\tau_n - \tau_{n-1}| & \leqq \sum_{n=0}^{m-1} |t_n| \cdot |\varDelta a_{mn}| + 2 \sum_{n=0}^m |t_n| \cdot |a_{nn}| = O(1) \\ & \text{as } m \to \infty \text{ , by (2.2) and (2.3).} \end{split}$$

This completes the proof of the lemma.

3. Proof of the Theorem. We write

$$s_n(x) = \sum_{i=0}^{n} A_k(x), t_n(x) = \sum_{i=0}^{n} s_k(x)$$
.

By (1.6), there exists $\delta(0 < \delta < 1)$ such that

where K is a positive constant (not necessarily the same at each occurrence). Now, for $n > \delta^{-1}$,

$$egin{align} \pi t_n(x) &= \int_0^\pi \!\! \phi(t) \! igg[rac{\sin{(n+1)(t/2)}}{\sin{(t/2)}} igg]^{\!2} \! dt \ &= \int_0^{n^{-1}} + \int_{n^{-1}}^{\delta} + \int_{\delta}^{\pi} = I_1 + I_2 + I_3 \; , \; ext{say.} \end{align}$$

We observe that

(3.3)
$$\left[\frac{\sin{(n+1)\cdot(t/2)}}{\sin{(t/2)}}\right]^2 = \begin{cases} O(n^2) & \text{for } \sin{t/2} \neq 0 \text{ and } n \geq 1, \\ O(1/t^2) & \text{for } 0 < t \leq \pi. \end{cases}$$

So, by (3.1),

(3.4)
$$|I_1| \leq K n^2 \int_0^{n-1} |\phi(t)| \, dt \leq K \frac{n}{\alpha(n)} .$$

Further, assuming $t^r/\alpha(t)$ nondecreasing for $t \ge \delta^{-1}$,

$$\begin{split} |I_{2}| & \leq K \int_{n^{-1}}^{\delta} \frac{|\phi(t)|}{t^{2}} dt \\ & = K \Big\{ \Big[\frac{\varPhi(t)}{t^{2}} \Big]_{n^{-1}}^{\delta} + 2 \int_{n^{-1}}^{\delta} \frac{\varPhi(t)}{t^{3}} dt \Big\} \\ & \leq K \Big[\frac{\varPhi(\delta)}{\delta^{2}} + \int_{n^{-1}}^{\delta} \frac{dt}{t^{2} \alpha(1/t)} \Big] \\ & = K \Big[\frac{\varPhi(\delta)}{\delta^{2}} + \int_{\delta^{-1}}^{n} \frac{du}{\alpha(u)} \Big] \\ & \leq K \frac{n}{\alpha(n)} \quad \text{as } n \to \infty \text{ , by (2.1).} \end{split}$$

Obviously,

$$(3.6) I_3 = O(1).$$

From (3.2), (3.4)–(3.6), it follows that

$$(3.7) t_n(x) = O\left[\frac{n}{\alpha(n)}\right] \text{as } n \to \infty.$$

Hence

$$(3.8) \qquad \qquad \sum_{n=1}^{\infty} |t_k(x)| \cdot |a_{kk}| = O\left[\sum_{n=1}^{\infty} \frac{k}{\alpha(k)} |a_{kk}|\right] = o(1)$$
 as $n \to \infty$, by (1.4).

Moreover,

$$(3.9) \quad \sum_{0}^{m-1} |t_n(x)| \cdot |\Delta a_{mn}| = |t_0(x)| \cdot |\Delta a_{m0}| + O\left[\sum_{1}^{m-1} \frac{n}{\alpha(n)} \cdot |\Delta a_{mn}|\right]$$
$$= O(1) \quad \text{as } m \to \infty \text{ , by (1.5).}$$

Now the theorem follows from Lemma 2.

4. Note. Let $A=(a_{nk})$ be a triangular infinite matrix of real numbers such that $a_{nn}\geq 0$ for all $n\geq 0$ and Δa_{nk} is nondecreasing with respect to $n\geq k$ for each fixed $k\geq 0$. Let $\alpha(t)$ be defined as in the theorem, and let

Then, if the condition (1.6) holds, the Fourier series (1.1) of f(t) at t = x is summable |A|.

Proof. Let

$$\tau_n(x) = \sum_{k=0}^n a_{nk} s_k(x) .$$

Then

$$\sum_{n=1}^{m} |\tau_{n}(x) - \tau_{n-1}(x)|
\leq \sum_{n=1}^{m} \sum_{k=0}^{n} |\Delta a_{nk} - \Delta a_{n-1 k}| \cdot |t_{k}(x)|
= \sum_{k=1}^{m} |t_{k}(x)| \left(\sum_{n=k}^{m} |\Delta a_{nk} - \Delta a_{n-1,k}| \right) + |t_{0}(x)| \sum_{n=1}^{m} |\Delta a_{n 0} - \Delta a_{n-1 0}|
= \sum_{k=1}^{m} |t_{k}(x)| (\Delta a_{mk}) + |t_{0}(x)| (\Delta a_{m 0} - a_{0 0})$$

$$\leq |t_0(x)| (\Delta a_{m,0}) + O\left[\sum_{k=1}^m \frac{k}{\alpha(k)} (\Delta a_{mk})\right], \quad \text{by (3.7)}$$

$$= 0(1) \quad \text{as } m \to \infty, \text{ by (4.1).}$$

So the required result follows.

I thank Professors A. Meir and A. Sharma for providing me financial support from their N.R.C. grants during the preparation of this paper.

REFERENCES

- 1. S. N. Bhatt, An aspect of local property of $|N, p_n|$ summability of a Fourier series, Indian J. Math. 5 (1963), 87-91.
- 2. G. H. Hardy, Divergent Series, (Oxford, 1949).
- 3. L. McFadden, Absolute Nörlund summability, Duke Math. J., 9 (1942), 168-207.

Received May 7, 1971.

University of Alberta Edmonton, Canada