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ON THE ABSOLUTE MATRIX SUMMABILITY OF
A FOURIER SERIES

ARIBINDI SATYANARAYAN RAo

In this paper, the author gives sufficient conditions for
a Fourier series at an arbitrary but fixed point to be absolutely
matrix summable.

1. Introduction. Let 3 u, be an infinite series with partial
sums s,, and let A = (a,,) be a triangular infinite matrix of real
numbers (see Hardy [2]). The series >, u, is said to be absolutely
summable A, or summable |A], if
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Let f(t) be a Lebesgue-integrable function of period 27, with
Fourier series

(L.1) —;-ao + 3 (a, cos nt + b,sinnt) = S, AL() -
1 0

With a fixed point z, we set
t2) 40 = 6.0 = U@+ ) + fw — 9],
(1.3) o) = 10w du .

We establish the following theorem for the absolute matrix sum-
mability of the Fourier series (1.1) of f(¢) at t = z.

THEOREM. Let A = (a,,) be a triangular infinite matric of real
numbers such that da,, = Q. — G, 18 Mmonotonic with respect to
n =k for each fixed k = 0.

Let a(t) be a positive function such that t"/a(t), for some r with
0 < r <1, is nondecreasing for t = t,. Suppose that

(1.4) > 2l o
=1 a(n)
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m—1

(1.5) dap,| + S 240l _ 01y as m—s oo .
£ " an)

Further, let

(1.6) o(t) = o[ a(;/t)] as t—0 + .

If all of the above conditions hold, then the Fourier series (1.1) of
f@) at t = x is summable |A|.

We shall require the following lemmas.

LEMMA 1. If a(t) is defined as in the theorem, then

2.1) S:a% - 0[—af_t)] for all t=t, .
Proof.
S‘ du  _ S‘ w . du
to () wa(u) U

IA

2w = aw 1=~ aw)

LEMMA 2. If A = (a,,) s defined as in the theorem and if

(2.2) IIAREMESS
(2.3) S It [4a,,] = O01)  as m— oo,
where

ly = kﬁ_l Sk »

then >, u, is summable |A]|.

Proof. By Abel’s transformation,
Ty = Tpey = é.o (O — Cusb)Si
= g‘,: dan, — da, )t + e, .
Now
S S A — A0yl ]

1 m m—1
= Itkl<n2 Idank'—'dan—l,kl> = k2=.0|tk|‘ldamk—‘akk .
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Thus,

Ms

as m— o , by (2.2) and (2.3).

n

1

This completes the proof of the lemma.

3. Proof of the Theorem. We write

5.(0) = 3 4,0), t.(0) = 3 5.0) -
By (1.6), there exists 6(0 < 0 < 1) such that

(3.1) D(t) < K-m for 0<t<5,

where K is a positive constant (not necessarily the same at each oc-
currence). Now, for » > o7,

sin (n + 1)(¢/2)
mh(@) = 3 (t)[ sin (4/2) ]dt

(3.2) - ,
=S +S_1+86:I1+Ig+13,say.

0 n

We observe that

(8.3) [sin (n +1)-(t/2) ]2 _ {O(nz) for sint/2 = 0 and n =1,

sin (¢/2) O/t for0<t<m.
So, by (3.1),
(3.4) !I|<Kn§ l6(t)| dt < K—"
a(n)

Further, assuming ¢"/a(t) nondecreasing for ¢ = 674,
JAEY g

- kf[20T 1o 204

(3.5) = K [ @é‘f) + Sn—l tzat(i;/t)]

L

& Jratu)

<K ™ as n— <o, by (2.1).
a(n)
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Obviously,

(3.6) I, = 0Q1).

From (3.2), (3.4)-(3.6), it follows that

3.7) mm:%&%] as n— oo .

Hence

o

_ o5 _k _
58) S (1) Jau| = 0] £ ol anl] = o)

as n— o , by (1.4).

Moreover,

S 1601+ 40ms] = 601+ 14an] + O T s 400

= 0(1) as m— o« , by (1.5).

(3.9)

Now the theorem follows from Lemma 2.

4, NoTE. Let A = (a,,) be a triangular infinite matrix of real
numbers such that a,, = 0 for all # = 0 and 4a,, is nondecreasing
with respect to n = k for each fixed £ = 0. Let «a(t) be defined as
in the theorem, and let

(4.1) dan, + 3 M%) _ 01y as m— oo .
=" a(n)

Then, if the condition (1.6) holds, the Fourier series (1.1) of f(f) at
t = x is summable |A[.

Proof. Let

w(@) = 3 ausi(@) -

Then

3 12a(®) = 7uni@)|

n

[Aank - Aan—l ki * [tk(x)l

k=0

6@ (3 1400 = daual) + 16@)| 3 140, — da,.|

A
Mz M=

1

(4.2)

I
Mz

Itk(x) l (damk) + l to(x) I(Aam 0o — o o)
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= 1@ ([dan) + 0|5 o an)], by 6.7
£ alk)
= 0(1) as m— o , by (4.1).

So the required result follows.
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