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A REMARK ON TONELLΓS THEOREM ON

INTEGRATION IN PRODUCT SPACES

A. MϋKHERJEA

This paper is concerned to show a connection between the
validity of Tonelli's theorem on integration in the product of
two measure spaces and the semifiniteness of the product
measure. The classical Tonelli theorem is usually stated in
a sigma-finite setting. It is shown in this paper, among other
things, that in a product measure space, where one of the
measures is sigma-finite and other one semifinite (not neces-
sarily sigma-finite), Tonelli's theorem is valid only if the
product measure is semifinite and on the other hand, if the
product of any two measures is semifinite, then Tonelli's theo-
rem is valid.

1* Let (X, U, /9J and (Y, V> β2) be any two arbitrary measure

spaces where U and V are sigma-algebras of subsets of X and Y,

respectively, and /Si and β2 are two nonnegative measures on U and
V respectively. Let U x V be the smallest sigma-algebra containing
all the measurable rectangles of I x 7. The product measure βλ x β2

(we call it β*9 for simplicity) is the restriction to U x V of the outer
measure induced by the measure β on the algebra W consisting of
the measurable rectangles of X x Y and their finite disjoint unions
where for every measurable rectangle P x Q, β(P x Q) = β1(P)β2(Q).
(See [4], p. 254). βx is called semifinite if given A in U with β^A) =
oo, we can find B in U, B c A and 0 < β{B) < °o. This definition,
which at first glance seems to be less restricted than semifiniteness
as defined in [4], p. 220, is actually equivalent to Royden's definition,
as Lemma 1 in the next section shows. Every sigma-finite measure is
semifinite, but not conversely. (For example, consider any non-sigma-
finite regular Borel measure on a locally compact space or a counting
measure on an uncountable set). The product measure βι x β2 may
not be semifinite even when βt is sigma-finite and β2 semifinite, as
Example 1 shows. For the purpose of reference, let us state the
following two well-known Theorems in a form, which is slightly dif-
ferent from that given in [2] or [4].

FUBINI'S THEOREM. Let f(x, y) be β*-integrable on Ux V. Then
both the iterated integrals of f are well-defined and

fdβ* = \\fdβγdβ2 = \^fdβ2dβx .
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The proof of this theorem follows easily from Theorem C, p. 147
in [2], if we observe the following points. First, since / is /3*-integra-
ble on U x V, the set

E = {(x, y) e X x Y: f(x, y) is nonzero}

is sigma-finite with respect to β*. Second, it follows from Proposi-
tion 6 on p. 256 in [4] that we can find a measurable rectangle P x Q
such that EczP x Q where P and Q are sigma-finite with respect to
βγ and β2 respectively.

TONELLI'S THEOREM. Let β1 and β2 be both sigma-finite. Let
f(x, y) be a nonnegative U x V measurable function. If one of the
iterated integrals of f is well-defined and finite, then the other one
is also and

\fdβ* =

This Theorem is precisely Theorem B in [2], p. 147.

The main purpose of our note is to present the following version
of Tonelli's Theorem, which certainly is more informative than the
classical version and tells us more about product integration of non-
negative measurable functions. The proof of this Theorem is given
in the next section.

THEOREM 1. Suppose one of βx and β2 is sigma-finite and the
other one is semifinite. Then Tonelli's Theorem is valid if and only
if β* is semifinite. The sigma-finiteness assumption can be replaced
by semifiniteness if we assume one of the following two conditions:

(a) for all U x V measurable sets A, the function βι{Av) is
measurable, where Ay = {x: (x, y)eA};

(b) for all U x V measurable sets A, the function βί(Ax) is
measurable, where Ax — {y: (x, y) e A}.

Berberian in [1] defines product measure in a different way. In
§3, we show that for his product measure, Fubini's theorem does not
hold for non-sigma-finite βx and β2 and only a part of Tonelli's theo-
rem holds. This answers, at least partly, a question of Berberian
[2, Problem 4, p. 144].

Finally, we take this opportunity to record our thanks to the
referee for his useful comments and also for pointing out that Example
1, Lemma 2, with a slightly different proof, and Proposition 1 (only
its first sentence) appeared in [3].

2 First, we consider an Example showing that β* need not be
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semifinite even when βx is sigma-finite and β2 is semifinite

EXAMPLE 1. Let X= Y= [0, oo) and U= F = t h e Lebesgue
measurable subsets of [0, oo). Let βι be the Lebesgue measure and
β2 be the counting measure. Let D be the diagonal of X x Y. Then
IUD(#, y)Λβιdβ2 = 0 and HIDOB, y)dβ2dβ1 = oo, where ID is the charac-
teristic function of D. Hence β*(D) is oo, since otherwise, by Fubini's
Theorem, the iterated integrals will be equal. If Dx c D, D1 e U x V
and /9*(A) < °°> then by Fubini's Theorem,

β*(Dτ) = I Unfo, y)dβ1dβ2 = 0 .

Hence β* is not semifinite.
The proof of Theorem 1 will follow from the following four

Lemmas.

LEMMA 1. Let βι be semifinite. Then given Be U with β^B) =
oo and any positive integer n, there exists C e U, C c B and n <

Proof. Let T be the family of all collections Q of βι measurable
subsets of B with finite positive /9i-measure such that any two distinct
sets in Q are disjoint. Then clearly T is nonempty, since βx is semi-
finite. We partially order the collections Q in T by inclusion. Every
linearly odered subset of T has a upper bound, namely the union of
all the collections in this subset. Therefore, by Zorn's Lemma, this
set T has a maximal element, say Qo. If QQ is a countable collection,
then we must have /Si(UAeQQA) — oo; for, otherwise, we can find
D c B - UAZQO A with 0 < β^D) < oo and then Qo U {D} will contradict
the maximality of Qo. The Lemma then follows clearly when Qo is
countable. Now let QQ be uncountable. Let us define QQU = {Ae QQ:
βx(A) > 1/n). Then for some positive integer m, QQm is uncountable.
From this observation, the Lemma is clear again.

LEMMA 2. Let β* be semifinite. Then TonelWs Theorem is valid.

Proof. Suppose f(x, y) is a nonnegative U x V-measurable function

such that \\/(#, y)dβ1dβ2 is well-defined and equal to some nonnega-

tive-number k < oo. We claim that the support of / is /3*-sigma-finite.

If our claim is false, we can find a positive integer n such that if

An = {(», y}: f(x, y) > 1/n} ,

then β*(An) = oo. Since /3* is semifinite, we can find BaAn,Be
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U x V and 2kn < β*(B) < °°, by Lemma 1. Then by Fubini's Theo-
rem,

2k < β*(B)/n = JJlM I*(α, V)dβ1dβ2 ̂

which is a contradiction. Hence, the support of / is sigma-finite so
that we can find a measurable rectangle P x Q containing the support
of / such that P and Q are sigma-finite with respect to /SΊ and β2

respectively. (This can be done using Proposition 6 on p. 256 in [4]).
Now the Lemma follows from the classical Tonelli Theorem.

LEMMA 3. Let β1 be sigma-finite and β2 semifinite. If Tonelli9s
Theorem is valid, then β* is semifinite.

Proof. Let A be a U x V measurable set such that β*(A) is
infinite. Since βι is sigma-finite, β^A^ is a measurable function of
y. (This follows from the proof of the classical Tonelli theorem).
Therefore, by hypothesis,

where S = {y: β£Ay) > 0}.
We separate the proof into two distinct cases.

Case 1. Suppose β2(S) < oo.

Subcase (i). Suppose β2(B) = 2p > 0, where

B= {y.β^Aη = oo}.

Since βί is sigma-finite, there are sets d in U such that d c Ci+1,
-X"=Ui=i Ci a n ( i βi(Ci)<°° for every positive integer i. Now βJJJi Π Ay)
is a measurable function of y since by the sigma-finiteness of β19 the

function \lA{x, y)Ici(%)dβ1 is measurable. Since for any arbitrary posi-

tive number k,

B c O {y: βtfi Π Ay) > k) ,
i = i

there exist an i and D in F such that

V < β*(D) < oo and Da {y: β^d Π Ay) > £;} .

Let £7 = A Π (C< x D). Then by Fubini?s theorem,

0<kp<\ β,(d Π Ay)d/32 = β*(E) ^
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Subcase (ii). Suppose β2(B) = 0, where B is as above. Now if
C, = {y:n< /SxίA ) ^n + 1}, then S = U«=o C». Therefore,

Σ

Since /32(S) < °° and /S2 is semifinite, given an arbitrary positive
number m, we can find Dn in V such that Dn c Cw and β2(Dn) < oo
and for some i,

m < Σ nβ2(Dn) < oo .

Let £ = 4 ί l ( I x Uΰo •£>»)• Now, we have

Hence, since Tonelli's Theorem is valid, β*(E) < oo. Since β*(E) > m,
semifiniteness of β* follows.

Case 2. Suppose β2(S) = oo.

Subcase ( i ) . Suppose /92(-B) = 0, where B is as in Case 1. By

the semifiniteness of β2, we can find G c S, G e V and 0 < β2{G) < °°

such that 1 /3i(Ay)ώ/92 > 0. This is possible since for every y in S,
JG

βx(Ay) > 0. Now if

Gn = {ye G: βx(Av) < n} ,

then using the monotone convergence Theorem, we can find n such

that 0 < f βι{Ay)dβ2 < oo. Let # = A Π (-3Γ x GΛ). Then since

Tonelli^s Theorem is valid, β*(E) < oo. Clearly,

β*(E) = jj/^(α?, y)dβίdβ2 = \Q βi(Ay)dβ2 > 0 .

Subcase (ii). Suppose /S2(5) > 0, where B is as before. Then since
β2 is semifinite, we can find C c B, C e V and

0 < β2(C) < oo and ( β1(Av)dβ2 = ^ .
Jc

Now, if we replace t h e set B in the proof of Case 1, Subcase ( i ) ,by
t h e set C above, t h e proof of this Subcase follows.

LEMMA 4. Let βt and β2 be semifinite. Suppose for every U x
V measurable set A, the function βι{Ay) is a measurable function of
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y. Then the validity of Tonelli's Theorem implies the semifiniteness
of β*.

Proof. Let S = {y: βi(Ay) > 0}. We separate the proof into two
distinct cases. (Here A is as in Lemma 3).

Case 1. Suppose β2(B) > 0, where

B={y:β1(Ay) = «>} .

L e t C c ΰ , C e F a n d O < β2(C) < oo. Let AQ = A n (X x C), and let
the measure /93 be defined by βz(M) = β2(M Π C) for every M in F
If βί x /93(Λ) < °°> then by Fubini's Theorem,

0 0 ^ /5i x /93(-Ao) ~

atnd this is a contradiction. Therefore, βt x /93(A0) = °° Now we

observe that \βd(Aox)dβ1 = oo, since, otherwise, we have

(x, y)Ic(y)dβ2dβi < oo

and therefore, by the validity of Tonelli's Theorem,

which means that \ β^A^dβz < °°, which is a contradiction. If F =

{x: β3(A0x) > 0}, then β^F) > 0. Since β1 is semifinite, we can find
DeU, Da F and 0 < βx{D) < °°. Then

0<

which means that

o < \\IA(X, y)ic{y)iD{χ)dβ2dβ1 < oo .

Hence if E = A Π (D x C), then by the validity of Tonelli's Theorem,

Case 2. Suppose β2(B) = 0, where B is as above. The proof in
this case follows exactly as in the corresponding situation in Lemma 3

3* In this section, we consider a question of Berberian. In [1,
p. 129], the product measure β, x β2, where (X, U, βd and (Γ, V, β2)
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are any two arbitrary measure spaces as defined in § 1, has been de-
fined to be the unique measure π on U x V having the following two
properties:

(i) for every finite measurable rectangle P x Q,

π(P χQ) =

and (ii) for every A e U x V,

π(A) = sup {π(A n (P x Q))} ,

where the supremum is taken over all finite measurable rectangles
P x Q. (Here 'finiteness' means that each side of the rectangle has
finite measure). When βι and β2 are sigma-finite, π coincides with
the usual product measure β*. In fact, Proposition 2 below tells us
more than this. In [1, p. 142-3], the proofs of Fubini's and Tonelli's
Theorems are given in the sigma-finite case. On p. 144, in Problem
4, Berberian asks the following question:

"What part, if any, of the Fubini theory survives for the product
of arbitrary (not necessarily sigma-finite) measures? Does it help
to assume that the measures are semifinite?"

In Example 2 and Proposition 4, we answer this question, at least,
partly.

Let β* and β* be the outer and inner measure (see [4], p. 254
and p. 274) induced by the measure β (defined in § 1). First, we
state a few results (omitting their proofs which would be obvious to
the serious reader) showing some connections between TΓ, β* and β*.

PROPOSITION 1. If BeUxV and β*{B) < oo, then β*(B) = π(B).
If βi o/nd β2 are semifinite, then /3* = π on U x V.

PROPOSITION 2. If β* is semifinite, then β* = π.

PROPOSITION 3. There exists a measure β' on U x V, taking only
the values 0 and oo such that β* = π + β'.

Now we consider Fubini's Theorem for the product measure 7Γ
The following Example gives a negative answer even when βλ and β2

are semifinite.

EXAMPLE 2. Consider βt, β2, U, V and D as in Example 1 in §2.
We note that if /2*(P x Q ) < o o , then Q is a finite set if β,{P) > 0.
This means that β*(D Π (P x Q)) = 0 for every finite rectangle P x Q.
Then ID(x, y) is clearly τr-integrable since π(D) = 0. But the iterated
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integrals of ID(x, y) are not equal.
However, as the following Theorem shows, we can have a partial

converse of Fubini's Theorem for measure π.

PROPOSITION 4. Suppose f(x, y) is a nonnegative U x V-measur-

able function and either \ \fdβ2dβί or \ \fdβιdβ2 is well-defined and finite.

Then f is π-integrable.

Proof. Suppose \\fdβ1dβ2 is well-defined and equals k which is

finite. Assume that \fdπ — <*>. We will get a contradiction to this

assumption to prove the proposition.
By the monotone convergence theorem, there is a nonnegative

simple function g(x, y) = 5>=1 GJA^, y) such that

g ^ / and 2k < \gdπ .

By the property (ii) of π, we can find a finite measurable rectangle
P x Q such that for each i,l<^ί<Zn, π(At) is so close to π(Bi), where
Bt = A, Π (P x Q), that

k < Yhdπ <

where h(x, y) = Σ?=i ^/^(a?, 2/). Now we define for every Pr in £7, Q'
in F and A in £7 x V, the measures

7Γ0(A) - 7Γ(A Π ( P X Q)) ,

βs(P') = β^P'Π P) and

Since B3 and ^4 are both finite measures and since πQ coincides with
βs x /54 (defined as in § 1) on all the U x V measurable sub-rectangles
of P x Q, by the uniqueness of the product measure in this case (see
p. 257 in [4]), πQ is the product measure β3 x β4. Since the function
h is 7Γ-integrable, it is also τro-integrable and so by Fubini's Theorem,
we have

k < \hdπ = \hdπ0 = \\hdβsdβ4
J J J J

which contradicts that \\fdβ1dβ2 = k. This proves the Proposition.
J J
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