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SOME CLOSURE PROPERTIES FOR TORSION CLASSES
OF ABELIAN GROUPS

B. J. GARDNER

In an earlier paper (B. J. Gardner, Pacific J. Math., 33
(1970), 109-116) the torsion classes of abelian groups which
are closed under pure subgroups were characterized, and
§§3-6 of the present paper are devoted to generalizations of
results appearing there. If & is a homomorphically closed
class of objects in an abelian category, a subobject A of an
object B is called Z=pure if it is a direct summand of every
intermediate subobject X for which X/A€%. (This termi-
nology is due to C. P. Walker). In particular, & may be a
torsion class. The following question is investigated: If .7
and Z/ are torsion classes of abelian groups, when is .7~
closed under Z-pure subgroups? Although ordinary purity
is not Z/-purity for any torsion class 2, a torsion class .7~
is closed under pure subgroups if and omly if it is closed
under _Z;-pure subgroups, where &, is the class of all
torsion groups.

In §5, for an arbitrary torsion theory (2, &) a rank
function (Z/-rank) is defined for nonzero groups in &. It is
shown that every torsion class closed under Z/-pure subgroups.
is determined by its intersection with 22 and the groups of
Z/-rank 1 it contains. When % = &7, the groups with 2/~
rank 1 are the rational groups, so the earlier results for
ordinary purity suggest that in general some refinement of
the representation should be possible.

A further special case of the general problem is also
solved: Let X and Y be rational groups, 7'(X), T(Y) the
smallest torsion classes containing them. If X is a subring
of the rationals then 7(X) is always closed under 7'(Y)-pure
subgroups; if not, the condition is satisfied if and only if X
has a greater type than Y.

§7 is devoted to proving the following result: A torsion
class is closed under countable direct products, i.e. direct
products of countable sets of groups, if and only if it is
determined by torsion-free groups.

1. Preliminaries, The basic ideas on torsion classes and theo--
ries are contained in Dickson’s papers [2], [3], [4]. Every class &
or object A is contained in a smallest torsion class (denoted T(%")
or T(A) respectively). This torsion class is said to be determined.
by the class or object in question.

We shall use the notation of [14] for subfunctors of the identity;
thus such a functor » is called a radical if r(A/r(4)) = 0 for every
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A and an idempotent radical if in addition »(r(4)) = r(A) for every
A. Each torsion class .7~ is associated with an idempotent radical
7+ which assigns to each object its largest subobject from 7. Con-
versely the class of objects fixed by an idempotent radical is a torsion
class. The assertion in [3] that a subfunctor of the identity is an
idempotent radical if and only if its class of fixed objects is a torsion
class is false — the functor need only be a radical, e.g. if 7(G) =
N»nG,n=123, -.- for every abelian group G, then »(G) =G if
and only if G is divisible, but » is not idempotent.

The notion of generalized purity we shall be using was introduced
in [17].

2. Notation.

B category of abelian groups

Z group of integers

Q group of rational numbers

Q(p) group {m/p"™ | m, ne Z} where p is a prime

Q(P) group {m/n | me Z, ne Z with prime factors in P}
where P is a set of primes

I(p) group (or ring) of p-adic integers

Z(n) cyclic group of order n

Z(p>) quasicyclic p-group (p prime)

[2, | N e 4] group generated by set {u;|\e 4}

[#] smallest pure subgroup containing x, where x is
an element of a torsion-free group

7(x) type of an element x of a torsion-free group

7(X) type of a rational group X

T(hy Pay oo ¢) type of a height (h, Ay <)

ADB @A, direct sum (= coproduct = discrete direct sum)

I 4; direct product (= product = complete direct sum)

(ay) element of @ A4; or [] A4

[A, B] group of homomorphism (morphisms) from A to B

T class of torsion groups

F class of torsion-free groups

= class of divisible groups

=, class of p-divisible groups, where p is a prime

Dy class of P-divisible groups, where P is a set of

primes.

A torsion class of abelian groups is called a t-torsion class if it

contains only torsion groups. Throughout the paper, “group” means
“abelian group”.

For unexplained terms see [7] or [15].



SOME CLOSURE PROPERTIES FOR TORSION CLASSES 47

3. Products of idempotent radicals. It is shown in [2] that
a group A belongs to a torsion class .7~ if and only if both A, and
A/A, do. In this section we shall discuss some generalizations of this
result. We shall work in a locally small abelian category .22~ satis-
fying the conditions of [3], i.e. if {K;|Ae 4} is a set of subobjects
of some Ke 9%; the direct sum @ K, and the direct product [I K/K;
both exist in 2. 7] and 7, are torsion classes, 7, and r, the as-
sociated idempotent radicals.

PRroPOSITION 3.1. The statement
*) Ke 7, —r(K), Klr(K)e 7,
holds for every Ke 2¢ if and only if ro, is idempotent.

Proof. If (*) holds, then for every Ke .9, ry(K) belongs to .7;
so rr(K) does also, i.e. 77 (K) = rr(K), or since K is arbitrary,

Py, = 11y 80 that r(rgrr.) = ri(ra) = rir, ie. (rpy)? = rr,..  Con-
versely, let (rm,)* = r7,. Then for any Ke 9%,

rrK) = rrarr(K) & rrr(K) & r7(K )
i.e. r#, = ryrr,. Thus if Ke 7, we have
r(K) = rry(K) = rr7y(K)

which is also in 7,. Since .7, is closed under homomorphic images
and extensions, the proof is complete.

COROLLARY 3.2. If 77, = v, then

Ke 7, — r(K), K/r(K)e 7,
and
Ke 77— r(K), Klr(K)e 7~

Proof. If »rr, = ry, then
(1) = ri(rar)ry = ri(rr)r, = (rr)(rars) = 77,

and similarly (r.r)* = rr..
Let r be the idempotent radical for the torsion class 77N .75.
PROPOSITION 3.3. 77, is idempotent if and only if ror, = r.

Proof. Let rr, be idempotent with torsion class %. Then for
every Ke 7, N 7, we have r7r(K) =r(K) =K, so 9,0 .7,< %.
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Since »r7, = rryrr, S rrr, S vy, we have 7y, = 11y, 80 7(L) = L
for each Le %, i.e. % < 7,. Since also for every Le Z,

r(L) = r(rr(L)) = riry (L) = ro(L) = L,

we have Z# = .7, so % = .7,N .7, and 7r7, = r. The converse is
obvious.

Using Corollary 3.2, we obtain

COROLLARY 3.4. 77, = 77, if and only if rr, and r.,r, are both
wdempotent, 1n which case rr, = r,r, = 7.

We now give an example (for .20 = .o7<Z) to show that »pr,
and 7,7, need not be equal. Note that by Corollary 3.4 this is suf-
ficient to show that idempotence is not preserved by products in
general.

ExamMpPLE 3.5. We consider a group which has been discussed by
Erdos [6] and de Groot [11], [12]. Let {z, y} be a basis for a 2-
dimensional rational vector space, and let

G=[p"2,q'ny, tT7"@+yln=123, -]

where p, ¢ and t are distinct primes. Let 7, and 7, be the idempotent
radicals for &7, and T(G) respectively. From an examination of the
type set of G (see [11] p. 295), it is clear that

/rl(G) = [p~nm[,n = 17 2: 37 ”.] = Q(p) .

Let f be any homomorphism from G to 7(G). Since »(G) has no
nonzero elements of infinite g-height or t-height, we have f(y) =0 =
f@+ vy = f(x) + f(y). But then f(x) =0 and thus f = 0. Hence
[G, r(G)] = 0, so 7r(G) = 0. But r7r(G) = Q(p).

4. A simplification of the problem. In this section we shall
work in an abelian category .27 satisfying the conditions of §3 and
in addition having enough projectives and global dimension 1. The
extra conditions are necessary for some results from [17] which will
be used.

LEMMA 4.1. An exact sequence

(") 0 A B c 0

is Z-pure, for a torsion class 7z if and only if the induced sequence
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(**) 0—[K, A] — [K, B] — [K, C] — 0
18 exact for every Ke 7.

Proof. By Theorem 2.7 of [17], (*) is Z-pure if and only if
the induced sequence

0—[L, A] —[L, B] — [L, C] — 0

is exact whenever L is Z/-pure projective. Theorem 2.6 of [17], the
closure properties of %~ and our assumption concernig the global
dimension of .27 jointly imply that the Z/-pure projectives are the
objects of the form M &P K, where M is projective and Ke Z/. For
such objects, (*) induces a homomorphism

[M, B] @ [K, Bl 22 M, C) B K, C]

where f is an epimorphism, so if (**) is assumed exact for every
Kez/, f @ g is an epimorphism, so (*) is Z~-pure. The converse is
obvious.

COROLLARY 4.2. Let s be the idempotent radical for Z/. Then s(K)
18 Z-pure in K for every Ke 5%

COROLLARY 4.3. Let (%, &) be a torsion theory for &
K' &S Ke%. Then K' is Z-pure if and only of K/K'e Z.

The principal result of this section is a generalization of Theorem
3.2 of [9], in which Z/-purity replaces purity. Proof of this requires

PRrROPOSITION 4.4. Let (7, %) and (%, &) be torsion theories
for 2%, with associated idempotent radicals r and s. If T 1is closed
under Z/-pure subobjects, then sr is idempotent.

Proof. Since for any Ke 27 s(K) is a Z~pure subobject, in
particular sr(K) is always % -pure in r(K). By assumption on .7,
therefore, we have rsr(K) = sr(K) for each K. But then

(sr)? = s(rsr) = s(sr) = sr = sr.

THEOREM 4.5. Let (7, F ) and (%, &) be torsion theories for
2% with associated idempotent radicals r, s respectively. Then 7 is
closed under Zr-pure subobjects if and only if sr is idempotent and
T N <Z is closed under Z/-pure subobjects.

Proof. We first show that .7 N % is always closed under Z/-pure
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subobjects. If K' is Z/-pure in Ke .9 N %/, then K/K'e 2 and the
sequence

0— K’ K K/K' 0

is split, by definition of Z~purity. Hence K'e 7 N Z.

Now suppose .7~ N & is closed under Z/-pure subobjects and sr
is idempotent. If M’ is Z/-pure in Mec .7, we have a commutative
diagram

0 s(M") M’ M'/s(M")— 0

Lol b

0 s(M) M M/s(M) — 0

with exact rows.

S is a monomorphism, having kernel M’/s(M’) N N, where N is
the kernel of the natural map from M/s(M’') to M/s(M), i.e. N =
s(M)/s(M'") and thus

(M /s(MNYNN=(M nsM)s(M) =0,
by Corollary 3.5 of [17], which also says that (s(M) + M')/M’ =
s(M/M"), so
M[(s(M) + M') = (M/M")/((s(M) + M")/M') = (M/M")/s(M/M') e & .

Hence the sequence

00— (s(M) + M) /s(M) —> M/s(M) —> M/(s(M) + M') — 0
is Z-pure exact, whence as M/s(M)e 9 N &, it follows that

(M) + M)/s(Mye 9 NZ .
But as
M'[s(M'y = M'[(M' 0 s(M)) = (M" + s(M))/s(M) ,

this means that M'/s(M)e 7 N <.

Also, s(M)e .7~ N % (Proposition 3.1). Since s(M’) is Z/-pure in
M’ and the Z~pure short exact sequences form a proper class, s(M’)
is Z-pure in M and hence in s(M), so s(M')e 9 N z. M’ is there-
fore in .7, as both s(M') and M'/s(M') are, i.e. .7 is closed under

Z/-pure subobjects.
By Proposition 4.4 the converse is obvious.

Corollary 4.3 shows that in .&;, purity and .7,-purity coincide,
so as a consequence of Theorem 3.2 of [9] and the last result, we
see that in .&7 <7, a torsion class is closed under .7 ,-pure subgroups
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exactly when it is closed under pure subgroups, which raises the
question: if & is homomorphically closed, when is closure of a torsion
class under & -pure subobjects equivalent to that for Z/-pure sub-
objects for a torsion class %Z’? This question is related to the pro-
blem of determining projective closures, for & and % satisfy the
condition in particular when <Z-purity coincides with Z/-purity, i.e.
& and Z have the same projective closure, e.g. if & is the class
of homomorphic images of @ and Z = & (see [16] or [17]).

5. Groups of generalized rank 1. For the remainder of the
paper we shall restrict attention to torsion classes of abelian groups.
We note however that the concept we introduce in this section is
meaningful for modules over any hereditary ring.

Hereditary torsion classes are determined by the cyclic groups
they contain, while torsion classes closed under pure subgroups (or
equivalently .7 ;-pure subgroups) are determined by cyclic, quasicyclic
and rational groups. We now introduce, for an arbitrary torsion
theory (Z/, &), a class of groups in & whose members, together
with those of %/, determine all torsion classes .7~ closed under Z-
pure subgroups. When % = .7, the groups in question are the
rational groups, so the results of [9] indicate that in general a smal-
ler class will suffice. The groups are defined in terms of a rank
function associated with (Z, &).

To justify the definition of this rank function the following
result is needed:

ProrosiTION 5.1. Let (7, &) be a torsion theory. If Ge <,
then the intersection of any family of Z/-pure subgroups of G is Z-
puUre.

Proof. By Corollary 4.3, it suffices to show that G/ G,e &

ied

for any set {G,|»€ 4} of Z~pure subgroups of G. Suppose
NG=sGE<=G and G/NGew .

ied s€4d

Then for each pe 4, we have a diagram
0— (' N GH/N G — G'IN Gi— G/(G'NG)— 0

R

0— (G’ + G.)/G. — G/G,

with exact rows. (G’ + G,)/G.e <, but by assumption on G’/ G,,
leq
GIGNGlez .
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Hence G'/(G' N G,) = 0. But this means that G’ < G, for each p, so
G’/lﬂA G, =0, ie. G/lf'!f G, e Z.

Every element or subset of a group G e & is therefore contained
in a smallest Z~-pure subgroup.

The generalized rank for a torsion theory (%, ¥) is introduced
in the following definitions.

DEFINITION 5.2. If ¥ is a subset of a group Ge &, [2]., denotes
the smallest Z/-pure subgroup of G containing ¥. If X has a single
element x, we write [2], for [Z]..

DEFINITION 5.3. A nonzero group Ge & has Z~-rank I if it
has a subset ¥ with [Y], = G and |2 | = I and there is no set 3"
with [2'], = G and | 3| < M. We denote this by writing

Z-rank(G) = M .
Y is then called a Z*-basis for G.

If (%, &) = (7, F,) this definition gives the standard rank for
nonzero torsion-free groups.

Obviously for every nonzero e Ge <&, [x], has Z-rank 1, so
since G is generated by such subgroups, we have

PROPOSITION 5.4. If (Z, &) is a torsion theory then every Ge &
18 a homomorphic image of a direct sum of groups in & with Z/-
rank 1.

Using Theorem 4.5 and Proposition 5.4 and reasoning as in the
proof of Theorem 3.3 of [9], we obtain

THEOREM 5.5. Let (7, &) and (%, &) be torsion theories such
that 7 s closed under Z/-pure subgroups. Then

T =TI NZ)U{Ge 7 NZ|Zrank(G) =1}).

The groups with .7 rank 1 are the rational groups. Also there
is a rank function associated with the trivial torsion theory ({0},
< #), with {0}-rank (4) =1 if and only if A is cyclic. Since the
hereditary torsion classes are those closed under {0}-pure subgroups,
Theorem 5.5 is a generalization of both Theorem 3.1 of [2] and
Theorem 3.3 of [9].

An alternative description of generalized rank is given by
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PROPOSITION 5.6. Ge & has Z-rank I if and only if it has a
subset 3 with | 2| =M and G/[Z)e % (here [2] is the subgroup
generated by 2) and if MM is th smallest such cardinal number.

Proof. It is clearly sufficient to show that [¥], = G if and only
if G/[Z]lez. If G =[2], and f: G/[Z] — He & is a homomorphism,
then fg [2] = 0, where g: G — G/[Z] is the natural map. But fg has
a Z/-pure kernel, so fg = 0, whence f = 0 and G/[2] € Z. Conversely,
if G/[Z]e %, then G/[Z]. is both a homomorphic image of G/[X] and
a member of &, so G/[X], = 0.

Groups of generalized rank 1 may be decomposable:

ExampLE 5.7. Q(2) @ Q@B) has Z,  -rank 1, for if « and y are
nonzero elements of Q(2), Q(3), then Q2) P QB)/[x + y] = Q({2, 3}).

A group of Z~rank 1 cannot be a direct sum of infinitely many
subgroups, since factoring out a cyclic subgroup leaves almost all
summands intact. Infinite direct products may have % rank 1,
however:

ExaMpPLE 5.8. The cotorsion completion Ext (Q/Z, Z) of Z, which
is isomorphic to [] I(p) (all p) has <r-rank 1.

If a group of generalized rank 1 is decomposable, the correspond-
ing rank of all nonzero summands is also 1. This follows from

PROPOSITION 5.9. Let (Z, ¥) be a torsion theory, Ge %,
Z/-rank(G) = 1. Then any monzero homomorphic image of G which
belongs to Zalso has Z/-rank 1.

Proof. Let {x} be a Z~basis for G, G’ a proper subgroup of G
with G/G'e%. Then G’ is a Z-pure subgroup, so ¢ G’. Let
GIG = [z + G’l2- Then é/G’ is Z/-pure in G/G’, so since Z/-purity
defines a proper class ([17] Theorem 2.1), G is Z-pure in G and con-
tains @, so that G = G and {z + G’} is a Z-basis for G/G&.

This result, with Theorem 7.2 below shows that the groups of
generalized rank 1 in Examples 5.7 and 5.8 may be replaced by inde-
composable groups with the same rank 1 in representations of torsion
classes.

The torsion groups with generalized rank 1 are characterized by
the following result.
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PROPOSITION 5.10. Let (Z, &) be a torsion theory. A torsion
group in € has Z7-rank 1 if and only if it is nonzero cyclic.

Proof. Let Ge 7,N % have a Z-basis {r}. Taking primary
decompositions, we have, for every prime p, G,/[x], = (G/[z]),€ Z, so
it may be assumed that G is a reduced p-group and G/[x] is divi-
sible. If G/[x] # 0, there is induced an exact sequence

0 [¢] G’ Z(p™) 0

with G S G. As G’ has rank < 2 and is reduced, it is bounded and
so has no homomorphic image Z(p~). Thus G = [¢] is cyclic. The
converse is obvious.

We conclude the discussion of the groups of generalized rank 1
by describing the groups with <,-rank 1, for a prime p. As a first
step we prove

LEMMA 5.11. If a group G 1is such that there is an exact

sequence

f g

0 Z G Z{p=)y—0

then the p-socle G [p] of G s cyclic (possibly zero).

Proof. Suppose G [p] contains linearly independent elements 2
and y. If there are integers m, n such that mg(x) + ng(y) = 0, then
mx + ny = f(k) for some ke Z. But p(mz+ny) = 0, so mx +ny = 0
whence mx = 0 = ny and mg(x) = 0= ng(y), i.e. g(x), g(y) are linearly
independent and this is impossible.

PropPOSITION 5.12. Let G have Z,-rank 1 and Z,-basis {x}. Then.
G/[x] has no summand Z(p~).

Proof. Proposition 5.10 takes care of the torsion case. If ze @G,
(the torsion subgroup), then G,/[z] is pure in G/[x] and therefore in
(G/[%]);, so by Theorem 5.2 of [2] and Proposition 3.1 of [9],
G./[x] e =,. Proposition 5.10 then implies that G, is cyclic, so G is.
split, and this is not possible, since factoring out [x] does not affect
a summand complementary to G,. Thus # has infinite order.

Suppose G/[x] has a summand Z(p~). Then there is an exact.
sequence

0 — [#] —> G' — Z(p~) — 0

for some subgroup G’ of G and since G’ is p-reduced, Lemma 5.11
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says that G, is a (possibly zero) cyclic p-group. Thus G' = G, P H,
where H is torsion-free. G'/(H + [z]) is a homomorphic image of
both G'/[¢] = Z(p~) and the cyclic G'/H = G;. Thus G'/(H +[x]) = 0,
whenece H/H N [2] = (H+ [2])/[z] = G'/[¢] = Z(p~). Since H is torsion-
free and H N [«] is cyclic, this means that H = Q(p), which is impos-
sible as G is assumed to be p-reduced.

COROLLARY 5.13. If Z-rank (G) =1 then G cannot be mixed.

Proof. If G is mixed, it contains elements of order p. Since
for every Z,-basis {z}, x is of infinite order, G/[x] must also have
elements of order p. But as G/[x] is p-divisible, this would require
the existence of summands Z(p>).

COROLLARY 5.14. If {x} is ¢ Z,-basis for G then [x] ts a p-pure
subgroup of G.

Proof. If G is torsion then G = [x], while if G is torsion-free,
G/[x] has no elements of order p.

Thus every single-element <7,-basis generates a p-basic subgroup.
Clearly also a generator of a cyclic p-basic subgroup of a p-reduced
group determines a <,-basis.

ProposiTION 5.15. If F,-rank (G) =1 and xze G, then {x} is a
,-basis iof and only if [x] is a p-basic subgroup.

A p-reduced torsion group must be a p-group, and it is shown
in [1] that a torsion-free p-reduced group has a cyclic p-basic sub-
group if and only if it is isomorphic to a p-pure subgroup of I(p).
These observations, with Proposition 5.15, give a proof of

THEOREM 5.16. A group G has Dyrank 1 if and only if it s
isomorphic to either a monzero p-pure subgroup of I(p) or Z(p"),
n=12 «--.

6. An example. Finally we solve the following special case of
the generalized pure subgroup closure problem: to find necessary and
sufficient conditions on rational groups X and Y for the closure of
T(X) under T(Y)-pure subgroups.

Our notation for heights, types etc. largely conforms to that of
[7], Chapter VII. In particular, p,, p,, «-- is the natural enumeration
of the primes, and in a height (h, ks, +++, h,, +++), h, denotes height
at p,.
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THEOREM 6.1. Let X, Y be rational such that ©(X) is the type
of a height (hy hyy <+« h,, +++) with 0 < h, < o for tnfinitely many
values of n. Then T(X) is closed under T(Y)-pure subgroups if and
only if ©(Y) £ =(X).

Proof. Let (T(Y), ) be the torsion theory for T(Y) and let
(gs, Gey ***, Gu, **+) be a height with the same type as Y.

If 7(Y) £ r(X), then XeT(Y), so T(Y)-pure subgroups are
T(X)-pure. For groups in T(X), such subgroups are direct sum-
mands, and so belong to T'(X) themselves.

For the converse we need to consider two cases:

(i) «(Y) L zv(h+1, he+1, e+, h,+1, -++). Let M={n|h, = o}.
Let (k, ks <2+, ks, +++) be the subsequence of positive finite terms of
(hy Ry + -, h,-++) and re-label the associated primes as ¢, @, ---. Let
{x, y} be a basis for a 2-dimensional rational vector space and

G = [p7"x, 7Y, G, (@ + y) [peM, n=1,2, -],

A routine argument using the linear independence of = and y shows
that « has height (&, Ay, +++, h,+++) in G. Suppose y is divisible by
gt for some n. Since the same is true of ¢,'w + y, x has g¢,-height
k, + 1 at least, which is impossible. Thus z(y) < 7(x) = 7(X) (in G).
Denoting the coset of y mod. [x]. by ¥, we have

G/lels = o7y, @™y lpeM,n=1,2, ---]
80 G/[z]y is rational with type 7(X). From the exact sequence
00— Xzz]ly —G—G/[z]l, = X—0

it is clear that G e T(X).
Observing that [y], ¢ T(X), we now show that [y], is T(Y)-pure
in G. Let % denote the coset of © mod. [y].. Then

Gllylx = [p7%, ;"2 |peM, n=1,2, -]

which 1is rational of type<c(h, +1,h + 1, o+, b, +1,--+), soO
G/lyls e & and [yl, is T(Y)-pure in G.
(i) «(Y)szby+1, b+ 1, -+, hy+1,++). Let

Note that the our assumption concerning 7(Y) requires that pX = X
for all pe U, S is infinite and g, is finite for each p,e S. Let

and re-label the entries of (k, hy, ++-, h,, «-+) as follows: denote the
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primes p,€ S by s, s, +--, their heights by %, k., <-+ and denote the
primes in V by v, v,, --+ with heights j,, j,, +--. Finally let

H = [p7", 875, vyina, 97y, spm ™y, viiwy, spin(spie + y) [pe U,
n=1,2].

As in case (i), 7(y) < z(x) = (X), [#]. = X = H/[x], and He T(X).
Also,

H/[y]* = [p_nj’ 32-;:‘—2?—1 z, S;n<k2”+1)9_3, v;jnj l pe Uy n = 1) 2, . ']

which is rational with type Z ©(Y), since it has lower height at in-
finitely many primes, namely s,, ,, n =1,2, ---. Hence [y], is T(Y)-
pure in H, but [y]. ¢ T(X).

The group G of case (i) was used in [10]. Only the case X =
Q(P) now remains. Here we prove a more general result.

PROPOSITION 6.2. For a set P of primes, let TN < be the
class of all divisible P-groups. Then =, = T(Q(P)) ts closed under
T » N D-pure subgroups.

Proof. The idempotent radical associated with .7, N & is easily
seen to commute, and therefore have idempotent products, with all
others. Thus by Theorem 4.5 we need only consider P-divisible
groups without direct summands Z(p~), pe P. If in the exact
sequence

*) 0 A A A" 0

A and A” are such groups (and thus (*) is 9N <-pure), then A”
has zero p-component for every pe P. But then A’ is P-pure in A,
so A'e Dp.

THEOREM 6.3. <, = T(Q(P)) is closed under Z/-pure subgroups,
Jor a torsion class Z, if and only if % contains Z(p~) for every
pe P.

Proof. Since for z 2{Z(p~)|pec P}, Z-pure subgroups are
TN Z-pure, “if” follows from Proposition 6.2. Conversely, if
Z(p~) ¢ %, for some pe P, then % is a t-torsion class, and Z(p~) € &,
where (%, &) is the torsion theory of %. The natural exact
sequence

0— Q(P — {p}) Q(P) Z(p™) 0
is accordingly Z/-pure, but Q(P — {p}) ¢ D5.
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If Z is not a ¢-torsion class, then Z(p~) e % for every prime p
(I9], Proposition 2.1). Thus we have

COROLLARY 6.4. If a torsion cluss Z contains torsion-free
groups, (in particular if Z = T(Y) for some rational Y), then <=,
is closed under Zz-pure subgroups.

7. Torsion classes closed under countable direct products.
We now turn our attention to closure under direct products. The
following result will be needed.

LEMMA 7.1. Let 9 be a torsion class containtng a torsion-free
group A which is not p-divisible, for some prime p. Then I(p)e F.

Proof. [A, I(p)] = 0(5] p.52) so let f: A — I{p) be nonzero and
consider B = I(p)/Im(f). B/B, as a torsion-free proper homomorphic
image of I(p) is divisible, {(see [5]) and so belongs to 7. T (I(p))
contains B and therefore B,, whence B, is divisible for all primes
g # p. Since in addition B, belongs to T(4) &€ .9 ([2], Lemma 5.1),
7 contains B, and therefore B. Since also Im(f) belongs to .7, so
does I(p).

The principal result of this section is

THEOREM 7.2. A torsion class 9 4s closed under countable
direct products if and only if it is determined by torsion-free groups.

Most of the proof of Theorem 7.2 is contained in the proofs of
the next two results.

ProrosITION 7.3. Let A, n =1,2,8, «-+ be torsion-free groups.
Then

T{A, |1 =123, ) = T(;@_LA”) - T(ﬁlAn>.

Proof. The first equality obviously holds; since also A, € T(I] 4,)
for each m, we have T{() A, & T{II 4.,).

Let f: [TA,— Y be a nonzero epimorphism. If Y, 0 for
some prime p, then if Y, is reduced, we have p]] 4, = Il 4, so
pA, # A, for some m, and thus Y,e T(4,) & .7, while if Y, is
not reduced, then {A4,, Y,] = 0 for each =.

If Y is torsion-free, then either f(4,)= 0 for some m or
F@@ A, =0, in which case f factorizes as
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‘ /
s
/
/
ITA./® A,

where all maps are epimorphisms. T[] 4,/ @ A, is algebraically com-
pact (see [13]). Thus [JA,/ @ A, is the direct sum of a divisible
group and a (reduced) cotorsion group [8]; so therefore, is Y, which
being torsion-free is algebraically compact [8]. Thus Y = D I R(»),
where D is divisible and R(p) is inter alia a reduced I(p)-module.
If D+0, then [4,, Y]+ 0 for each n. If D=0, let R(p) =+ 0.
Then p [T A, # II 4, and thus pA, # A, for some value of m. By
Lemma 7.1, I(p)e T(A,). Since there is an epimorphism (actually
an I(p)-epimorphism) from a direct sum of copies of I(p) to R(p),
we have R(p)e T(4,).

Thus in all cases [4,, Y] = 0 for at least one value of m, whence
IT A, belongs to T(@ A,). This completes the proof.

PROPOSITION 7.4. Let .7 = T ({A;|Ne 4}), where each A, is tor-
ston-free and let B,, n =1,2,8, -+« be torsion groups in 7. Then
T contains [[3=; B.,.

Proof. Let f: I] B,— G be a nonzero epimorphism. If for some
prime p, G, is nonzero and divisible, then [A4,, G,] # 0 for each N e 4,
while if G, is nonzero but not divisible, then » [ B, # II B., so
pB,, # B, for some m which means that p(B,), # (B,),. Since (B,),.
belongs to .77, so do all p-groups; in particular G, is in 7.

If G is torsion-free, then f(@ B,) = 0, so f factorizes as

1B —'—@G
| e

/
/

I1B./&®B.

where all maps are epimorphisms. As in Proposition 7.3, G =
DIl R(p), p prime, and we need only consider the case where
D = 0. If this is so, and R(p) # 0, then »p ] B, # II B,, and as in
the first part of the proof, .~ contains all p-groups. Hence at
least one A, is not p-divisible, so as in Proposition 7.3, I(p) belongs
to .7~ whence R(p) does also. This proves that [[ B.€.7.
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Proof of Theorem 7.2. If 7 is determined by torsion-free
groups and if {4,|n =1,2,8,:---} & .7, then (4,), and 4,/(4,),€ .7
for each n. By Proposition 7.3, T] 4,/(4,).€ T (@ A./(4,),) S .7 and
by Proposition 7.4, I (4.):€ .7, so from the short exact sequence

clearly [ 4,¢ .7~

Conversely, suppose .7~ is closed under countable direct products.
‘Clearly .7 is not a t-torsion class. If it is not determined by torsion-
free groups, then for some prime p, Z(p)e .7 but all groups in
7 N, are p-divisible. Let [z,]=Z(®", n=1,2,---. Then
II [x.] € 75 so II [%.]/(1 [#.). € &~ N ;. Suppose

p(a,x,) — (@) € (I [®.])e, an€ Z .

‘Then for some positive k e Z, p*(p(a,x,) — (x,)) =0, so p*(pa,—1)x,=0 for
-all n, i.e. p*|p*(pa,—1). For n>k, this means that p**|(pa,—1), which
is impossible. Thus (x,) + (I [%.]). has zero p-height in TT [.,]1/(T1 [®.]).
contradicting the required p-divisibility of TT [x,]/(IT [%.]).-

If {A,| ed} S o, for any set P of primes, then [],., 4;€ D,
without any restriction on the size of 4. Whether any other torsion
classes have this property, or the corresponding one for |A4]| < I,
where I > W,, is not known. A related result is

PROPOSITION 7.5. Let & be a class of slender groups and
7 ={G|IG, C]l =0 for all Cec¥}.

Then 7 N .F, is closed under direct products for which the number
of components does not exceed the first cardinal mumber of monzero
measure.

Proof. Let {Giined} S 9 N.F, where A has appropriate
cardinality. Then for any Ce &, [@® G), C] = 0 and consequently for
any homomorphism f: [[ G,—Ce %, f(@ G;) = 0. By a theorem of
Yos ([7] p.170), f =0, so I] G, 7.

In [2] the problem of classifying all torsion classes (of abelian
groups) was reduced to the problem for torsion classes determined
by torsion-free groups. Theorem 7.2 therefore says that “all inter-
.esting torsion classes are closed under countable direct products”.
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