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ON THE DENSITY OF CERTAIN COHESIVE
BASIC SEQUENCES

DONALD L. GOLDSMITH

It has been shown in previous investigations of the com-
binatorial properties of basic sequences that any cohesive
basic sequence & which is contained in ^s& (the set of all
pairs of relatively prime positive integers) must be large in
some sense. To be precise, it has been proved that if &
is a cohesive basic sequence and & c ^ ^ , then C& (p) is
infinite for every prime p, where C^(p) is the set of prime
companions of p in primitive pairs in gg. While this implies
that & must contain a great many primitive pairs, no
specific statement has been made about the density of
&. It is reasonable to ask, therefore, whether there are
cohesive basic sequences ggy contained in ^ / , with density
δ(&) = 0.

It is shown here that such basic sequences do exist, and
a method is given for the construction of a large class of
these sequences.

A proof that C w{p) is infinite when & is cohesive and
may be found in [2].

A basic sequence & is a set of pairs (α, b) of positive integers
satisfying

( i ) ( l , f c ) e ^ (fc = l,2, •••),
(ii) (α, b) e & if and only if (6, a) e &,
(iii) (α, 6c) e & if and only if (α, b) e & and (α, c) e &.

A pair (α, b) of positive integers is called a primitive pair if both a
and b are primes. If a Φ b, the pair is a type I primitive pair; if
a = b, the pair is a type II primitive pair. If Φ is a set of pairs
(primitive or not) of positive integers, the basic sequence generated
by Φ is defined to be

where the intersection is taken over all basic sequences & which
contain Φ.

A basic sequence & is cohesive if for each positive integer k
there is an integer a > 1 such that {k, a) e &.

Finally, we recall that the density of a basic sequence & is
defined by
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if the limit exists, where d(k) is the number of positive divisors of
k, and %Bk is the number of members (m, n) of & for which
mn = k.

2. The main theorem. We will use the following notation.

P = bi, ft, •••}

is the sequence of all primes, written in order of increasing magni-
tude;

Q = toi, &, '••}

is any sequence of primes, also written in order of increasing size;
and

Qi = {Qi, Qi+i, Qi+2, •} (ϊ = 1, 2, • •)

We define έ%?Q to be the basic sequence generated by the primi-
tive pairs

{(Pi, Q) \Q e Qi} U {(p2, q) I g e Q2} u .

REMARK 1. ^ is cohesive. For suppose k > 1, so that A =

Pi\Pil P\% where ^ < ΐ2 < < ί3f. Then (qiΛ[, p{j) G . ^ ρ for j =

1,2, ••-, Jlf, so (qiM, k)e^Q.

REMARK 2. ^ c ^ ^ if QΊ ̂  3. For if g: ̂  3 (= ft) then q{ > p^
for every ΐ, and . ^ ρ will contain no type II primitive pairs.

THEOREM. If ΣΓ=i l/̂ » converges, then δ(.^Q) = 0.

Proof. Let L be a (large) fixed, but arbitrary positive integer
which will be determined later. Decompose the set Z + of positive
integers as follows:

(a) X' = {k\ *Bk = 2},
(b) X" = {k\k£Xf and k has less than 4L different prime divisors},
(c) Y= {k\kϊ{X{jX")}.
In order to prove that h(0q) = 0, let us consider

(2.1) i ^
NψΛd{k)

where S = X', X" and Γ.
By Lemma 3.2 in [1], we have

(2.2) Km A x ^ ^ l i m i _ Σ 2
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while by Theorem 11.8 in [3] we have

(2.3) l ί m ^ Σ -^^limi-i 1 = 0.
N d ( k ) N

It remains to estimate the sum in (2.1) when S = Y. Since

1 N # P 1 v

(2.4) ±- Σ -Ei- < — Σ 1 ,

we will find an upper bound for the number of elements of Y which
do not exceed N. Our estimate will depend on the following

LEMMA. Every integer in Y is divisible by at least one of the
primes qi with i ^ L.

Proof of the Lemma. Let k be an element of Y. Then *Bk > 2,
so there are integers u, v such that

k = uv, u > 1, v > 1, (u, v) e ^ Q .

Suppose that u and v are expressed canonically as products of
prime powers:

u = V\Ί>\ V\ , v = v)\p)\ pj ; ,

where r ^ 1, s ^ 1, ph < ph < < pir, ph < ph < < ph. Since
k is divisible by at least 4L distinct primes, we have r + s ^ 4L.
At least one of the numbers r, s must be ^ 2L, say

r ^ 2L .

If p y i 6 Q, then every prime divisor of u is in Q since every
primitive pair in f ^ contains at least one member from Q. Hence
Vir — Qi (for some & in Q) and q^ qr^> q2L.

Suppose, on the other hand, that pjχ is in Q. Now separate the
primes ph, , piγ into two classes, depending on whether or not they
are in Q. Let x19 , xλ be those not in Q, written in order of
ascending size, and let y19 , yv be those in Q, also given in ascend-
ing order. Thus

u = xcs XΫ yf1 --- y i » ,

with

(2.5) X + v = r^2L .

It follows from (2.5) that either λ ^ L or v ^ L.

If λ >̂ L, then .τ;. = pm for some m ^ L. Since pm g Q, only
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the primes in Qm appear as companions of pm in primitive pairs of
&q. In particular, since (pm, pJL) e &Q, we have

ph eQmaQL.

Thus ph G Q, ph ^ qL, and ph \ k.

If v^ L, then yu eQ,yu^ qL, and yv \ k.

That proves the Lemma.

We return to the estimation of the second sum in (2.4). As a
consequence of the Lemma we have

X N

Σi^ Σ l
fc=i fc = i
JceY q(\k for some ί:>L

i=L q.

and this together with (2.4) gives

(2-6) N h d{k) = h Qt •

Now let ε > 0 be given and choose L large enough so that

y 1 6

(L depends only on ε and Q). Then from (2.6) we have

and it follows from (2.2), (2.3) and (2.7) that there is an integer
NQ(ε) such that

1 / V Λ V \ ? D

£ / y , y , y \ J5k / £

^ ^ f~ d(k)
y y y y

JSΓ ̂  d(fe) iV V^i, ^ i , , f~/ d(k)

when iV^ ΛΓ0(ε).
That proves δ(.&Q) = 0, and completes the proof of the Theorem.
By Remarks 1 and 2 and the Theorem, each sequence Q of dis-

tinct odd primes such that Σ \\q5 converges leads to a cohesive basic
sequence .ζ@q in ^/? such that δ(&Q) = 0.
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