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ON SPACES OF DISTRIBUTIONS STRONGLY
REGULAR WITH RESPECT TO PARTIAL
DIFFERENTIAL OPERATORS

Z. ZIELEZNY

A distribution 7 in £ is said to be strongly regular with
respect to the differential operator P(D), if P¥D)T, k =
0,1, ---, are of bounded order in any open set Q' cc Q.
Necessary and sufficient conditions on the polynomials P and Q
are established in order that a distribution 7 strongly regular
with respect to P(D) be strongly regular with respect to Q(D).

Let P(D) be a partial differential operator in R* with constant
coefficients and P*D), k=1,2, ..., its successive iterations. The
following result is due to L. Hormander ([3], Theorem 3.6 and
Remark on p. 233):

If P(D) is hypoelliptic and T is a distribution such that P*(D)T,
k=1,2, ..., have a bounded order in any relatively compact open
subset of R”, then T is a C=-function.

In other words, the space &, of distributions in R" “strongly
regular with respect to P(D)” is contained in the space & of C=-
functions; in this case &, = &. The concept of strong regularity
with respect to P(D) coincides with that of strong regularity in some
variables (see [6], p. 453), when P(D) is the Laplace operator in those
variables.

Suppose now that given are two arbitrary partial differential
operators P(D) and @Q(D). Then the question arises: Under what
conditions on P and Q is &, &,? In particular, if P(D) is “Q-
hypoelliptic,” i.e. all solutions U< &’ of the equation

P(D)U = 0

are in &,, must then be &, &,? The Q-hypoelliptic operators were
studied (in a slightly different but equivalent version) and charac-
terized by E. A. Gorin and V. V. Grusin [2].

In this paper we give necessary and sufficient conditions for the
inclusion &5(2) C &,(2), where &£p(2) and &,(2) are the spaces of
“strongly regular” distributions on an arbitrary open set Q2 C R".
These conditions are, in general, stronger than the Q-hypeollipticity
of P(D). If the inclusion in question holds for every @Q-hypoelliptic
operator P(D), then Q(D) must be hypoelliptic and the problem reduces
to that in Hormander’s theorem stated above.

1. The spaces &»(2) and Cy=(Q).
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Let 2 be a nonempty open subset of B”. A distribution T'e¢ &'(Q)
will be called strongly regular with respect to the differential operator
P(D), if to every open set 2’ having compact closure contained in @
(we express this by writing 2’ < < Q) there exists an integer m = 0
such that P*(D)T, k= 0,1, ..., are all of order =<=m in &', i.e. the
restrictions of P*(D)T to 2 are all in &'™(2')'. We denote by &(Q)
the space of all distributions in 2, which are strongly regular with
respect to P(D). We also denote by Cy=(2), where p is an integer
=0, the space of all C*-functions in £ such that P*(D)D*f, |a| < &,
k=0,1,..., are continuous functions; here « = (a, ---,a,) and
la| =0, + <+« + a,.

Consider now the spaces &»(2) and &,(2) corresponding to the
differential operators P(D) and Q(D) respectively.

THEOREM 1. If &p(2) C Z(2), then to any open set Q' CcC
there exists anm integer = 0 such that the restriction mapping f—
F12 maps Cp=(2Q) into CH=(2').

Proof. Let 2 be an open set satisfying the assumption ' c cC Q.
We first prove the existence of nonnegative integers vy and m such
that

(1) {QIUD) |2 feCp=(Q), k=0,1,.--}c2'™).

Suppose that inclusion (1) does not hold for any v and m. Then
to every v and m there exist a function fe Cy»~(2) and a k such that
QYD) f |2 ¢ =2'™(2). Thus we can find strictly increasing sequences
of positive integers v;, m; and k;, and a sequence of functions f; with
the following properties:

( 2 ) ﬁ € C[‘;i:""(,,Q) ’

(3) QD)fi| Qe 2m(2), k=0,1,---,
(4) Q*(D)f;| 2" is of order m;,
(5) qk; < Vi,

where ¢ = 1,2, ..., and ¢ is the order of the operator @Q(D).
We denote by 2,,7=1,2, --., open subsets of 2 such that

(6) 0, ccQ., and UQ =2.

Next we set
a, =1 and a; = 27 M7, =23, ..,

1 PYD) is the identity operator, i.e. P(D)T = P.
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where
M; = sup {| P*(D)fi(») | + | Q(D)fi(=) | + 1}

and the supremum is taken over all xe¢®;, and %£,1=0,1, ---, k,_..
Note that QD)f:;,, 1 =0,1, -+, k;,_,, are continuous functions in 0,
because of (5).

The function

J= gaifi

is defined and continuous in 2, since the f,’s are continuous in 2 and
the series converges there almost uniformly. Moreover, for any k&
we have (distributionally)

(7) PHD)f = 3, a:PHD)S: -

But each term of the last series is a continuous function in 2, by
1). Also

a; sup | P*(D)fi(@) | = 27°
xeﬁj

whenever & < 7 and j < 4, by the definition of a;. Hence it follows
that the series (7) converges almost uniformly in 2, for any k. Con-
sequently fe Cy=(Q) C &»(Q).

We now show that f is not in &,(2), which is a contradiction
to our hypothesis. We write

2 oo
g; = gla.;f,; and h; = ‘:Z;,! a; fi -
In view of (3) and (4), the restriction of Q*i(D)g; to 2’ is a distribu-
tion of order m;. On the other hand, Q*(D)f;, i=45+1,7+2, .-,
are continuous functions in 2, because of (2) and (5). Furthermore,
by the definition of the a,’s, the series

3 a@ D),
converges almost uniformly in 2, and so Q*(D)h; is in @ a continuous
function. Thus

Q(D)f = Q%(D)g; + Q“(D)h;

is in 2 a distribution of order m;. Since m; — oo, f is not in &, (2).
This contradiction proves (1).

Consider now the fundamental solution E of the iterated Laplace
equation, i.e.
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4E=29.

For sufficiently large v, E is m times continuously differentiable.
Therefore every distribution T on £’ such that 47Te 2'™(2) is, in
fact, a continuous function (see [5], vol. 2, p. 47). We choose p =
27 + v, where v is the integer occurring in (1). Then, if fe C4=(Q),
it follows that 47fe Cy=(2) whence, in view of (1), QD)4 f |2 =
AQD)f |2 e 2'™(2). Thus, by what we said before, Q*(D)f |2
is a continuous function, for every k = 0,1, --., i.e. f|Q € Cy=(2).
The proof is complete.

2. Necessary conditions. We proceed to derive necessary con-
ditions for the inclusion &,(2) C Zp(2). In view of Theorem 1 it
suffices to find necessary conditions for the inclusion

(8) {f12: feCo~(@Q}c Co=(@) .

We accomplish this by means of the standard argument based on the
closed graph theorem and the Seidenberg-Tarski theorem (see [1]).

Let 2;, 7=1,2, ..., be open sets satisfying conditions (6). We
define the topology in C4¥=(2) by means of the semi-norms

v;(f) = sup | P*(D)D*f (%) | ,

where the supremum is taken over all ze€®;, |a| < ¢ and k7.
Similarly, if 2}, 7 =1,2, ..., are open sets satisfying conditions ana-
logous to (6) with 2 replaced by 2, we define the topology in C$=(2’)
by means of the semi-norms

wi(f) = _sup |QD@)] -

Then Cy=(2) and C{=(2') become Fréchet spaces. Moreover, the
restriction mapping Cy=(2) — C$=(2’) is closed and therefore continuous,
by the closed graph theorem. Hence, to every integer [ > 0, there
exists an integer &k > 0 and a constant C > 0 such that

(9) w(f) = Cfngﬁ’zf v;(f) »
for every fe Cy=(2). Applying condition (9) to the function
f) = <9,

where { = £ + ip and &, ne R", we obtain the following lemma®.

LEmMMA 1. If the inclusion (8) holds then, for every integer | > 0,
we can find an integer k > 0 and constants C, ¢ > 0 such that

2 We assume that D% = D{1Dg2 ... Da», where D; = —1(3/dx;).
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(10) QO = CA + [£)A + [PHE) he' .

We denote by N(P, a), V, and W, the sets of all { =& + ineC
such that |PQ) < ¢a,|n| < a and | €] < a, respectively.

LEMMA 2. If condition (10) is satisfied, then QL) is bounded on
every set N(P,a)N V,,a,b=0.

Proof. Suppose there are a, b = 0 such that Q({) is not bounded
on N(P,a) N V,. Then the function

s(t) = sup QO]

LN (P VNIV
is defined and continuous for sufficiently large ¢, and
11 §(t) —> o as t — o0 .
But, for a given ¢, s(t) is the largest of all s such that the equations
and inequalities

I[P +ip=a [P =0,

(12) o
QE+ P =g, 16 =t,s20,t=0,

have a solution &,neR". Applying to (12) the Seidenberg-Tarski
theorem and next a well-known argument (see [4], p. 276, or [6], p.
317) one shows easily that, for sufficiently large ¢, s(t) is an algebraic
function. We now expand s(¢) in a Puiseux series in a neighborhood
of infinity and make use of (11). It follows that

s(t) > t*

for some 2 >0 and all ¢ sufficiently large. On the other hand, s(¢)
is assumed for some & = £(f), » = 5(t), and

s I=t.

Choosing in (10) I > p#h™ we obtain a contradiction, which proves the
lemma.

THEOREM 2. If &.(Q) C £y(2), then the following equivalent con-

ditions are satisfied:
(I) Q) is bounded on every set N(P,a) N V.
L) For any a = 0 there are constants C, h > 0 such that

QO "= CA + 7)), for all Le N(P,a) .
(I) For any b= 0 there are constants C', i’ > 0 such that

RO " =CA + [PQD for all LeV,.
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Proof. In view of Theorem 1, Lemma 1 and Lemma 2, we need
only to show that conditions (I,)-(I;) are equivalent. Also the implica-
tions (I) = (I) and (L) = (I,) are obvious. We prove that (I) = (I,).

Consider the real polynomial

W, n, 7,810
=@ —|PE+ P =7+ (=[P + & —[QE+

of 2n + 3 real variables. If & e R lie on the surface
(13) W(S, 77, 7", 8: t) = 0 ’

then { = & + ine N(P, a). Moreover, by condition (I,), the surface
(13) is contained in a domain defined by an inequality

[s| >o(t),

where @(r) — = as T — . Applying now a theorem of Gorin ([1],
Theorem 4.1) we conclude that there exist constants C, & > 0 satisfying
condition (I,). Thus (I,) = (I). The proof of the implication (I,) = (I,)
is similar.

3. Sufficient conditions. We now prove that conditions (I,)-(I,)
are sufficient for the inclusion under consideration. Our first goal is
to construct a sequence of suitable fundamental solutions for the
operators P*(D), k=1,2,.-.. We achieve this by modifying the
construction of a fundamental solution for P(D) given in [2].

In what follows p and ¢ denote the orders of the differential
operators P(D) and @Q(D), respectively.

LEmMMA 3. Suppose that conditions (I)-(I) are satisfied. Then
there ewxist continuous functions Fy, k=1,2 ..., in R" with the
following properties:

(a) Fory=2p-+q+ n and any k,

E,=(n— 4)'F,
18 a fundamental solution for P*(D), i.e.
PYD)E, =0

(b) Pj(D)FkZFk——J" for j=1,2, -,k — 1.

(¢) QDF,, k,1=1,2, ..., are continuous functions in R™{0}.

(d) For any l there is a k such that Q'(D)F, is a continuous
function in R".

Proof. For any & = (&, -+, &,_) € R*, consider the subset of
the complex {,-plane
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UE) ={GeC|PE,L)|=1lor M+ [EP+ ST,
where N > 2p. There exist constants C, & > 0 such that

(14) 1QE, L) =CA+ (7],

for all & e R and {, = &, + ine U(&’). This follows from (I,), when
|P(&,L,) | =1 and can be easily verified in the other case.

Let U~(¢) be the union of all connected components of U(£')
having nonempty intersections with C~ = {{, e C: », < 0}. We denote
by L(&) the boundary of C~ U U~(&).

If {,e L(¢), we have

(15) [PE, L) =15
also there are constants C’, ' > 0 (independent of &’) such that
(16) [QE,C)I=C|PE, LM

Inequality (16) is implied by (I,) and (15), since (¢, (,) € V,,, when
Ca e L(&).
For k=1,2,..-, we set
e"K%C)

(7}77”_ SR”"‘I {SL(S’) A+ 8]+ )P dcn}df' .

Fy(x) =

The functions F', are obviously continuous, because of (15). We claim
that they satisfy the conditions (a)-(d).

Conditions (a) and (b) follow from general properties of the Fourier
transforms of distributions.

The verification of condition (¢) can be carried out in the same
way as in [2] (see the proof of Lemma 4). We give a brief sketch
of the argument.

Suppose first that, for a given k, F/’ is a function obtained by a
construction as above, where the contour of integration (corresponding
to L(&)) lies in the complex (;-plane; in particular F{» = F',. Then

QZ(D)[Fk"FI(cj)]’j: 17 ""n—l;l: 1’27 cy

are continuous functions in R"; we omit the easy proof of this fact.
Thus condition (¢) will be verified, if we show that Q'(D)FY, | =
1,2, ..., are continuous for 2, #0 (j =1, «--, n).

Consider, for example, the function F, and let xz, < 0. In this
case the contour L(&’) ecan be replaced by the boundary V-(£') of
U-(¢"). By (14), there are positive constants C, and C, such that

77% é —Cl | Q(S,, Cn) Illh + CZ
for all & e R~ and {,e V-(¢'). Hence, if { = (¢, ,), we have



274 Z. ZIELEZNY

Q0| = | Q) I'exp {%.(C, | QEQ) ['* — C))} .
It follows that the integral

ol 295 e

converges absolutely and coincides with Q'(D)F,(x), for every I.

In case x, > 0 we can reason similarly, replacing L(&’) by a con-
tour V*+(&') lying entirely in the half-plane %, = 0.

Condition (d) is a consequence of inequality (16). In fact,

Q¢ ¢

PYE, L)

is bounded for &’ € R*, {, € L(&’), whenever k& = h'l.
Lemma 3 is now established.

THEOREM 3. If conditions (1) — (I,) are satisfied, the &p(2) C &o(2),
for any open set 2 C R".

Proof. Assume that Te £,(2) and fix an arbitrary open set
2ccf. We have to show that the restrictions of QD)T, Il =
0,1, ..., to 2 are all in a space 2'™(2).

By Lemma 3, there are fundamental solutions E, for the operators
P¥D), k=1,2, ..., representable according to (a) with the functions
F, satisfying conditions (b) — (d). Let ! be given and let % be the
integer corresponding to ! in condition (d).

There are open sets 2;,j=0,1, ---, k 4+ 1, such that

A7 Qcc),cc,cc...ccHcca.

Since Te £p(2), the restrictions of P/(D)T,5 = 0,1, .-+, to 2, are all
of order <m, say. For every j=1,2,.--,k+ 1, we now choose a
function ;€ 2 (2;_) such that » =1 on 2;. Then the distributions

S1 = g)lT; S.i = ¢jP(D)SJ'—-1’j = 2) 3: ] kE+1 ’

are all of order <m,. Moreover

(18) S, =T on 2,
and
(19) P(.D)S:, - Sj+1 = O on .Qj+1 ) j = 1, e, k.

Making use of (a) we may write

k
S, = j2=1 [P(D)S; — SJ‘+1]*E:' + Spr By
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whence
@) QDS = X [PD)S; - S;l\@D)E; + Su@D)E ;

here = denotes the convolution. By (19), the “values” on 2’ of each
convolution

[P(D)S; — S;.]+Q' (D) E;

depend on the values of Q'(D)E; outside a neighborhood of the origin
(see [5], Chapter VI, Theorem III). Therefore the restriction to £’
of the sum in (20) is a distribution of order <m, + » + 2v. On the
other hand, the last term in (20) is of order <m, + » + 2v, because
of (a) and (d). Hence the restriction of Q'(D)S, to 2’ is of order
=m = m, + p + 2v and m, can be chosen the same for all /. Since,
by (18), the restrictions of QYD)S, and Q'(D)T to 2’ coincide, the
theorem is proved.

Combining Theorem 2 with Theorem 3 we obtain the following
corollary.

COROLLARY. Fach of the conditions (I) — (I) is necessary and
sufficient for the imclusion £p(Q) C £o(Q), where Q is any nonempty
open set.

REMARK. Suppose that
QO = PO X

where P({) is an arbitrary polynomial. Then the operator P(D) is
Q-hypoelliptic (see [2], Theorem 1), but condition (I,) is not satisfied,
unless P(D) (and consequently Q(D)) is hypoelliptic.
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