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ON THE UNIVALENCE OF SOME
ANALYTIC FUNCTIONS

G. M. SHAH

Let

and

k=n+1
be analytic and satisfy
(a) Re (f(2)/[2f(z) + 1 —2)g@)]) >0
or
(b) [ f@Afz)+ 1 —2Dg)]—1] <1

for [z]<1,0=21<1.

We propose to determine the values of R such that f(z) is
univalent and starlike for |z| < B under the assumption
(i) Re(g(z)/z) > 0, or (ii) Re (29'()/9(z)) > a, 0 < a < 1.

We also consider the case when n =1 and Re(g(z)/z) > 1/2
and show that under condition (a) f(z) is univalent and
starlike for |z | < (1 — 2)/(8 + 2).

2. LeEmMMA 1. If p() =1+ b,2" + b, 2" + +++ is analytic and
satisfies Re(p(z) > a, 0 2 a < 1, for |z]| <1, then

(1) p(a) = [1 + 2o — D" u@]/[1 + zu@], for [z2]/<1,

where w(z) is analytic and |uw(@) | =1 for |z] < L.

Proof. Let
(2) F@ =[pkr —al/l —a) =1+ ¢,2" + ¢,0. 2"+ -
F'(z) is analytic and Re (F'(z)) > 0 for |z]| < 1 and hence
(3) k@ =[1-FRUL+ F@] = da* + dpot + -+,
is analytic and |{(z) | < 1 for |2]| < 1. Thus, by Schwarz’s lemma
(4) h(z) = 2"u(z) ,

where u(z) is analytic and |u(2) | <1 for |z|< 1. Now equations (2),
(3) and (4) prove (1).

LEmmA 2. Under the hypothesis of Lemma 1 we have for |z] <1
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240 G. M. SHAH
|20'(2)/p(2) | < 2n2"(1 — @)A1 — [2[) [L + 1 — 20) [z "]}

Proof. Proceeding as in the proof of Lemma 1, we have in view
of (8) and a result of Goluzin [1] that for |z| <1

(5) IW@R) | =nlzI" Q1 -k P/A—]2[").
Using (3), the inequality (5) takes the form
[F'(2) | = 2n|z["'Re (F(2)/(1 — |z [") .

Hence, in view of (2),

(6) |p'() | =2n |z [ [Re (p(z) — a]/(L — [z [")
or,
(7) [2p'(@)/p(2) | = 2n 2"l —a/(lpR) D/A — |2z [").

Equation (4) gives
(8) [h@) | = [2][" for [2[ <1,
and hence, by virtue of (3),
(9) [F@)| =0+ [z —-]z]) for 2] <1.
From (2) and (9),

1@ | =la+ 1 - a)F@) |

sa+1l-a)|F@ |
s+ d-20=/A—[2]").

The inequality (7), because of the last inequality, reduces to
[20'@)/p(R)| = 2n 2|01 — )/{1 — [2[)[1 + L — 2a) [2["]} for [2|<1

and this completes the proof.

We remark that in the case @ = 0, the above lemma reduces to
a result of MacGregor [2; Lemma 1] and the inequality (6) with
a =0, n =1, gives another result of MacGregor [2, Lemma 2].

LEMMA 3. Under the hypothesis of Lemma 1 we have for [z]|<1
Re(p(z) = [1 + @ — 1) [2]"]/L + | 2[").

Proof. We have from equation (3), F(2) = [1 — h(®)]/[1 + k(2]
and also from (8), |h() | =< |z|* for |2]| < 1. Hence the image of
[2] <7< r<1) under F(z2) lies in the interior of the circle with
the line segment joining the points 1 —»")/(1++") and (L +")/(1—7")
as a diameter. Consequently Re (F(z) = (1 — |2z]|)/Q + |#2|") for
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|2]| < 1. The result now follows from the last inequality involving
F'(2) and equation (2).

LemMA 4. ([6]). If h(R) =1+ c,2" + €,02® + +++ 15 analytic
and Re (h(z)) > 0 for |z| < 1, then
=221~ [2IA—]2]")—M+[2"]
Jor |z| < [ —N/A + NM]'", where 0 <\ < 1.
3. THEOREM 1. Suppose that f(z) = 2+ @, 2" + @pyg?2™ 2+ oo,
and g(2) = 2 + b, 2" + b,.2" + -+ are analytic and Re (9(2)/z) >0
SJor |z|<1. If Re(fR/Nf(&) + 1 —Ng@®]) >0, 0=A<1, for

|2] <1, then f(2) is univalent and starlike for |z| < R'", where
B={[Cn+XN—n)+ 1 —N]"— 2n+x— nN)}/1+N.

Proof. Let

h@) = F@/IM(R) + 01— Ng@] =1+ ¢,2" + ¢p2™™ + =2+,
then h(z) is analytic and Re (h(z)) > 0 for |z]| < 1. Now
(10) f@ [ —ME)] =0 - Nh(R)2zp@) ,

where p(z) = g(2)/z = 1+ b,1,2" + b, 32" + ---. Multiplying the loga-
rithmic derivative of both sides of equation (10) by z we have

11 2f'(2))f(2) =1 + 2p'(@)/p(2) + 2h' () {R(2)[1 — N(2)]} -

Equation (11) is valid for those z for which 1 —MA(z) 0 and |z|< 1.
Since [AR) | =X+ [2z|m/A—|2]"), 1 — N(z) 20 in particular if
2] <[ — M/@ + N]¥*. Now from equation (11), we have

[2f'@)/[f(&) — 1| = [20"(®)/p(@) | + [ 2K/ (@)[h(2) | |1 — Nh(2) [T

and by using Lemma 2 with « = 0 and Lemma 4, this gives

, _ 2n |z | 2n |z |
/@I -~ =T e T Tz — a1 1277

_2nfz [l = [2]) — ML+ [2]) + A —]z])]
1=z [Q =]z =M+ [2[Y]
provided that |z | < [(1 — M)/@ + M]Y™

The fact that | zf’(2)/f(2) — 1| <1 implies that Re(zf’(2)/f(z)) >0,
it follows from the inequality (12) that Re (zf’(2)/f(2) > 0 if

l2] <@ —N/A+N]""

(12)

and if
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GlzH=Q+N 2"+ @n+ 200+ —1) |z

(13)
+ @ —4dn—X—-1z]"+ QL —-2N>0.

Let |z|* =t and consider the cubic polynomial G(f) for 0 <¢ < 1.
G(t) has at most two positive zeros. Since G0) = (1 —») > 0,
GI1 —N/A+ V] = —4n@ —N/(1+ N <0and GA) = 4n > 0, it
follows that G(t,) = 0 for some ¢ such that 0 <t < (1 — N/ + N\
and G() >0 for 0 <t <t and G@) <0 for £, <t < (L — N/1+ ).
Hence Re (2f'(2)/f(2)) > 0 for those z for which only the inequality
(13) is true. Now the inequality (18) holds if, in particular

A+N]z+ @En —200n + N —1) |z
+@un—4dn—N—=1]z"+ A -=2)>0
or,
(Jz"=—D[A+N[2z"+ U@ -2+ 2V |z"+ A—1] >0
or,
A+N|zP+En—-2nn+20) |2+ (A —-1)<O0.
The last inequality holds if
1) jzr<{f@n+rx—n0) 4+ A =] —2n+x— A+ N .

Since f(2) is univalent and starlike for those z for which

Re (2f'(2)/f () > 0,

we have that f(2) is univalent and starlike for |z | < RY", where R
is the right side of (14).

If we put A =0 in Theorem 1 we obtain the following result
which, when # = 1, reduces to a result of Ratti [5, Theorem 1].

COROLLARY 1. Suppose that f(2) = 2 + @,4,2"™" + Q2" oo, and
9R@) = 2 + b, 2™ + b, 2" + <o« are analytic and Re (9(2)/z) > 0 for
lz] < 1. If Re(f(®/g(®) > 0 for |z| < 1 then f(z) is univalent and
starlike for |z|< [(4n* + 1)Y* — 2n]Y". :

The functions f(2) = 2(1 —2"* /(1 +2")* and g(®) = z(1 —2")/(1 + 2"
satisfy the hypothesis of Corollary 1 and it is easy to see that the
derivative of f(2) vanishes at z = [(dn®+ 1)V* — 2n]'* and hence
[(4n? + 1)¥2 — 2n]Y" is in fact the radius of univalence for such func-
tions f(z). This shows that Corollary 1 is sharp and hence Theorem
1 is sharp at least for » = 0.

THEOREM 2. Suppose f(2) =z + a2 + «+-, and
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g(®) =2+ b2 + -
are analytic for |z| <1 and Re (g(2)/z) > 1/2 for |z| < 1. If
Re (f(/IMf(2) + 1 — MgR@)D > 0 Jor [2] <1
then f(2) is univalent and starlike for |z] < (1 — N/B + N).
Proof. Let h(z) = f&)/[Mf(R) + 1 —=NgR)] = 1+cz+cr’+ - .
Now h(2) is analytic and Re (h(z)) > 0 for |2| < 1 and
(15) FR I = @] =1 - MhE)9E) -

If we let g(z) = zp(2), then by applying Lemma 1 with a« = 1/2 and
n =1 we have that p() = [1 + 2zu(2)]™", where wu(z) is analytic and
lu@) | =1 for |z| < 1. Equation (15) now reduces to

F@) [ —M@)] = 1 — Mzh()/[1 + 2u(2)] -

Hence

f'2) _ 1 —2u(2) . z2h/ (2)

f® 1+ zu(z) h(z) [1 — N (R)]
and

Re (20 2 Re (L= 200 _ 2K @G |

flry/ — 1+ zu(z) |1 — Ah(z) |

Using Lemmas 2 and 4 with n = 1, we get
z2f'(z) 1 -2\ 2]z
Re<f(z)>zRe<l+zu(z)> 11—z — 21+ |z)°

for [z ] < (1 — N/ + M.
Hence Re (zf'()/f(z)) > 0if |z| < (1 — N/(1 + ) and
T(z)) Re[(l — #w @)1 + 2u(z)] — 2| 2| Re[(l + zu(@) (1 + zu(@)] >0,
where T([z)) = 1 —|2]) — A1 + |2])®. The last inequality holds if
T(z)Re @ + zu@) — T( 2] Re [« () (1 + zu(z)]
+ 2|z Re[(1 — 2u@)A + zu@@))] —4]2|Re 1 + 2ufz)) >0,
or if
[4]z] = T(z)IRe (1 + zu@) + T(z)) Re[zw @1 + 2u()]
<2lz{@ -z u@ )

or
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[4]2] = T(zDI@+ [2z][u@)+ T(zD)|2zFlu@ |1+ [2]]uw@))
<2z[A—[z]u@).

This inequality holds, in view of (5) with » = 1 if

[4lz] = T(zD|+ T(zDlzF @ —[u@P)A -2/
<2(z|@—lz|lu@] .

Two cases arise according as 4|z| — T( 2|) is nonnegative or not.

(16)

Case 1. 4|z|—T(z]) =0, ie. |2]|=[AN+5)"— N+ 2)]/(1+N).
Since [Ax +5)* — A+ 2] < (@ - for 0 =n<1, it follows, in
view of inequality (16), that Re (zf’(2)/f(2)) > 0 for those z for which
[Av +5)"— AW+ 2]/ +M=2]<@—N/A+ N and

4z = T(=zD)+ T(zDl2F A - [u@HA - [u@H™
<2lz[A-]z[lu@] .

The last inequality holds, because of the original value of T'(|z]), if

2lz[+ 22 =1+ ML+ [2)"=rzPA+ [2)/A—]z]

17
<lzPlu@ =Mz lu@ L+ 2D/QA—]z)—2]2Fu@].

Since |u(z) | < 1, the right side of inequality (17)
ZlzPlu@—2[zFlu@|—NMzPL+[2)/A-]2).

Hence inequality (17) holds, if in particular

(18) 2zl + 2z —1+A0+ 2" <[z[|u@[ —2[2z[u@].

If we let Fi(x) = 2|2 — 22| 2[% where z = [u(®)|, 0 <2 <1, then
F'(x) is a decreasing function of x for 0 < x < 1, and hence

Fy=zF@1) = —|z for0=a2=<1.

Hence inequality (18) holds if 2|z + 2z -1+ M1 +[z])P< =2
or Blz|—D(z]+1D+x1+|z)*<0o0r 3|z]|—1+A1+]|2)<0
or if [2]< @ —N/@+N. Since 1 —N/B+N < T —-N/A+N),
we have shown that

(19) Re (2f"(2)/f(2)) > 0
for [+ 5" — M+ 2]/A+ N =2 <A —=N/B+ N .
Case 2. 4|z|— T(z])<0, ie. [2]|<[@N+5)"— N+ 2)]/1+N).
We intend to show that Re (zf7(2)/f(2)) > 0 in this case also. Since
f(® and g(z) satisfy, in particular, the hypothesis of Theorem 1 with
n = 1, it follows from Theorem 1 that
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Re (zf'(2)/f(2)) > 0 for |z]| < [(B — N)"*—2]/1 +N) .
It is easy to see that
[AN+B)"— AN+ 2]=B—-—A)*=—2 for0=A=1
and hence in particular
Re (zf'(2)/f(2) > 0 for |z| < [(AN +5)7 — (M + 2)]/AL + ) .

In view of the above and (19), it now follows that f(z) is univalent
and starlike for [z| < (1 — N)/(3 + \) and this completes the proof.

For A =0 the above result reduces to a result of Ratti [5,
Theorem 2] and improves a result of MacGregor [2, Theorem 4] since
Re (9(2)/2) > 1/2 does not necessarily imply that g¢(z) is convex [7].
The functions f(2) = z2(1 — 2)/(1 + 2)* and g(z) = z/(1 + 2) satisfy the
hypothesis of Theorem 2 with » = 0 and f(z) is univalent in no circle
|z| < r with > 1/3 since f’(z) vanishes at z = 1/3. This shows
that Theorem 2 is sharp at least for )\ = 0.

A function f(z) = z + D 7, a,2" is said to be starlike of order «,
0=a<l, for |2]<1 if Re(zf'(?)/f(») >a for |z| <1, we now
prove the following result.

THEOREM 3. Let f(2) = 2z + D\iens 0iF and g(2) = 2 + Do, b2
be analytic for |z| <1 and g(z) be starlike of order a, 0 < a <1,
for |z]| <1. If Re(fR)/[M(® + 1 —Ng@)]) >0 for |z]| <1, then
f (@ 1s univalent and starlike for

(i) [z <[ —N/A+ N+ 20)]" of a=1/2;
and

(ii) 2| < R™, if o= 1/2,
where

R ={[A+ 41 — M) @Qa — 1)]* — A}/[2(1 + M) @2a — 1)]
with A=2n4+x+1—- Qa — 1)1 — ).

Proof. Proceeding as in the proof of Theorem 1 we get
Re (2f7(2)/f(2)) = Re (2'(2)/9(2)) — |2l (2)/h(2) | | 1 — NA(2) [«
Applying Lemma 3 (to z¢'(2)/g(2)) and Lemmas 2 and 4 we get,

(20)  Re (zf'<z))>1 +@a—1z]" _ onlz|"
f 1+ 1z @A —1zP =21+ [z

provided that [z| < [(1 — M)/ + N)]Y~.
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Hence Re (zf’(2)/f(2)) > 0 for those z for which |z | < [1—N)/1+N)]¥"
and the right side of inequality (20) is greater than zero. The latter
holds if

G(lz[n=10+NMN2x -1z

(21)
T2n A+l — @a—DA-N]]z"— 1=N<0.

Let |z|* =t and consider the quadratic G() for 0 < ¢ <1. Since
G@0) =N —1<0, G[1L — N/ +N] =221 — N/ + N >0, it follows
that G(t) =0 for some ¢ such that 0 <¢ < (1 —N/1+ )\ and
Gt) <0 for 0<t<t and G@) >0 for ¢, <t< (@ —N/A+N.
Hence f(2) is univalent and starlike for those z for which only the
inequality (21) holds. Now the inequality (21) holds if

2] <[ —N/A + N+ 20)]"
when « = 1/2 and
] <{lA° + 40 — M) (@a — DIV — APP/[2(L + V) @ar — 1]

when « # 1/2, where A = 2n + A+ 1 — Qa—1)(1 —2) and this com-
pletes the proof.

If we put A=0,n=1 and @« =0 in the above result then
we see that f(2) =z + >\ a,2* under the modified hypothesis
is univalent and starlike for |z| <2 — 13, a result obtained by
MacGregor [2, Theorem 3]. On the other hand if A =0 and = =1,
Theorem 3 reduces to a result of Ratti [5, Theorem 3]. The func-
tions

F@ =20 —2)A+7 " and g@ =2/1+2)

show that Theorem 3 is sharp at least for » = 0 and arbitrary m,
since the derivative of f(z) vanishes at

z={[n+1—0a)— (n+1—-a— 1A — 2a)"]/1 — 2a)}"
for « = 1/2 and at 2z = —1/2n + 1) when a = 1/2.

4. Let S(R) denote the functions f(2) = 2 + >.5-. @,2" which are
analytic and satisfy |zf'(®)/f(®) —1|<1 for |z] < R. Obviously
every member of S(R) is univalent and starlike for |z| < R. We
now prove the following result.

THEOREM 4. Let f(2) = 2 + a,.,2"" + @ 2" + +-«, and g(®) =
24+ b,.,2" + b,.2""t + <o« be analytic and satisfy Re (g(z)/z) >0 for
[2| <Ll If | fR/NR+A-NMNg@]-1]<1,0=1<1, jor [2][<1,
then f(2) € S(R'™), where R is the smallest positive root of the equa-
tion 2an+ X —n—1)R —Bn+rx—200) R+ 1 -2 =0.
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Proof. Let
@2 1@ = FRINF@ + (L — Ng@] — L = 2" + o™ + +ov .

By hypothesis, h(z) is analytic and [Ah(z) | <1 for |2| < 1 and hence
by a result of Goluzin [1] we have that for |z| <1

(23) K@ | =nlz" 1 —[hE) /D -2
and by Schwarz’s lemma for [z| <1
(24) [h@) | = [z]".
If we let g(2) = 2p(2), then we have from (22)
F@MIL =N = NM@)] = 1 = Nz2p@EI[1 + rE)] .

Hence,
2f'(®) _ 1 20 2h (2)
@ s | T E@IL - % — @)
and this gives
IZf’(Z) _ 1! < Izp’(z) n |2l () | .
f@ o) [1+ Ah@[|1—X— N |

Applying Lemma 2, with @ = 0, we get, in view of (23), for [z|<1
|z'f’(Z)_1 < 2njel nlz["L — AR )
f@ Tl-fzfr 0 A= (21 +RE] |1 —XN—N(R)]

< 2nlel nlz" 1+ [h@)
Cl—jzpr @21 =N =M |

by using (24), we have

|zf’(z)_1 < 2n |z " nlz|
S (@) Tl Q-2 A —=N—n[2[")

valid for |z| < [X — M)/A]". Hence |2f'(r)/f(® — 1| < 1 if
[z <[@— M/

and
2n(z"A—-x—=x[z)+n|z]"A+|z) < A=z A—-N—r[2]).
The last inequality holds if

(25) Gz =n|zP"+@an+ X —n—1) |z
—@Brn+rx—2n0)|z"+ @A —-2N)>0.

Let |2|* =t and consider the cubic polynomial G(¢) for 0 < ¢ < 1.
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G(t) has at most two positive zeros. Since G(0) = (1 — ) >0 and
G(A — MM\ = —(n@ — M/ <0, it follows that G(¢) = 0 for some ¢,
such that 0 <, <@ —»)/x and G(t) >0 for 0 <t< ¢ and G() <0
for some values of ¢ between ¢, and (1 — N\)/A. Hence

|2f'(®)/f(z) — 1] <1

for those values of z for which only the inequality (25) holds. Now
inequality (25) holds if, in particular

@en+Ax—n—=Dzf"—Brn+rx—200) 2"+ 1 -2 >0

and this completes the proof.

If we set » =0 and » =1 in the above result we have the fol-
lowing.

COROLLARY 2. Suppose f(2) =z + a,2* + a,2* + <+« and g(@) =
2+ b2+ b2+ .-« are analytic and satisfy Re (9(z)/z) >0 for
[z] < 1. If |f(®)/g(x) —1|<1 for |z]| <1, then |2f'(®/f(r) —1]|<1
for |z| < 1/4(V17 — 3).

It may be noted that Corollary 2 implies, in particular, that f(z)
is univalent and starlike for |z| < 1/4 (/17 — 3) and hence includes
a result of Ratti [5, Theorem 4]. If we take f(2) = z(1 —2"?/(1 + 2"
and g(®) = z(1 — 2")/(1 + 2z, it is easy to see that these functions
satisfy the hypothesis of Theorem 4 with » = 0. We see that f'(z)
vanishes at z, = [—3n + (9n® + 4n + 4)Y*]/(2n + 2) and hence

| 2of"(2)[f () — 1] =1.
This shows that Theorem 4 is sharp for at least » = 0 and also that
Corollary 2 is sharp.

THEOREM 5. Let f(2) = 2+ @, 2" + @p02"™ + oo and g(2) =
2+ by 2"+ b, 2"+ ... be analytic for |z| <1 and g¢(z) be star-
like of order a for |2| <1, 0=a< 1. If

[ FR/IMNE + L —=NgRR)] —1<1,0=N<1, for |2|<1,

then f(2) is univalent and starlike for |z| < R'", where R 1s the
smallest positive root of the equation

2o — IR — (n+ 20 — 1~ NR?

(26)
+ Q2 —-2—-200+Nr—nmR+ 1 -2 =0.

Proof. Proceeding as in the proof of Theorem 4 we have
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2@ _ 29'(®) zh' (2) .
f (@) g(2) 1+ 2@][1L—XN—N()]
Hence,
2f'(2) 29'(2)\ _ | 2R/ (2) |
Re(f(z)>zRe(g(z)) [1+h(z)||1—7\,——7xh(z)|.

Since Re (2¢'(?)/9(2)) > a and 29'(2)/9(®) = 1 + ¢,2" + ¢,.. 2" + «++, We
have by Lemma 3 and inequalities (23) and (24) that
Re f'@)/f() = [L + @a — 1) [z["]/Q1 + |2z])
—nlzM/[A =12 T =Nx=X\]|z["]
valid for |z | < [(X — M)/\]™.

@7)

Hence Re (zf'(»)/f() >0 if |z| <[(1 — M/A]"* and if (in view of

inequality (27))

G(lz[") = Ca—) N[z "
—(n+2a—-1—N|z["
+Q@x—2—2an+N—m) |z
+@-2N>0.

(28)

Let |[2z]| =t and consider the cubic polynomial G() for 0 <t < 1.
Since G0) =1 — x>0 and G(A — M/ = (—nl — V)N <0, it fol-
lows that G(¢) =0 for some # such that 0 <t < (@ — A\)/x and
Git) >0 for 0<t<t and G@{) <0 for some ¢ between % and
1 —N)/A. Hence f(2) is starlike and univalent for |z| < RY", in
view of inequality (28), where R is the smallest positive root of the
equation (26).

The case when A =0 in Theorem 5 is of special interest. In
this case equation (26) becomes

(n+2—1DR — Q2 —-2—~nR—-1=0
which gives R =1/3 in case « = 0 and n =1 and
29 R ={QCa—2—n)+[Ra—2—n)* + 4(n+2a—1)]"*}/[2(n+2a—1)]

if « = 0. This proves the following result, which includes a result
of Ratti [5, Theorem 6].

COROLLARY 3. Suppose f(2) = 2 + Qui 2" + @, 2" + o+ and
9gR) = 2 + by 2"+ b, 2" + -oo are analytic for [z| <1 and g(2)
is starlike of order a for |2| <1, 0=Za<1. If | f(®lgr —1]| <1
for |z| < 1 themn f(2) is univalent and starlike for

(i) |2|<18ifa=0and n=1
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(ii) |z| < R'™, where R is given by (29) iof a # 0.

It is easy to see that the functions f(z) = 2(1 — 2")/(1 + z")@-2i»
and g(®) = 2/(1 + 2" gatisfy the hypothesis of Corollary 3 and
also that the derivative of f(2) vanishes at z=1/3 if &« =0 and
n=1, and at z = {[(n + 2 — 20)* + 4(n + 2a — D]** — (0 + 2 — 20)}}'"/
[2(n + 2a — 1)]"™ if « # 0. This shows that Corollary 3 is sharp.
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