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THE EQUATION y/(¢) = F(t, y(g(t))

MuriL L. ROBERTSON

A functional differential equation, in general, is a rela-
tionship in which the rate of change of the state of the
system at time ¢ depends on the state of the system at values
of time, perhaps other than the present.

In this paper, sufficient conditions are given for g so that
the initial value problem ¥’'(t) = F'(t, y(9(t))), y(p) =q, may be
solved uniquely; where F' is both continuous into the Banach
space B, and is Lipschitzean in the second position.

1. DEFINITIONS. If p is a real number and I ={I,, I,, ---} is a
collection of intervals so that pel, and I, & I,,, for each positive
integer m, then I is said to be a nest of intervals about p. Let
I, = {p} and a, = b, = p. Also, let [a,, b,] = I, for each nonnegative
integer n. Let I* denote the union of all elements of I.

In general B denotes a Banach space; and if D is a real number
set, let C[D, B] denote the set of continuous functions from D into
B. Whenever D is an interval, C[D, B] is taken to be a Banach space
with supremum norm |-|.

If ¢ is a continuous funection from I* into I* so that g¢g(I,) & I,
for each positive integer 7, then ¢ is said to be an I-function. If ¢
is an I-function then for each positive integer =, define the following:

A, = {x € [am an—l]: g(x) € I’n—l} ’

B, = {93 € [bn—ly bn] g(x) € In-—l}? and
E.(s) = [p, 9(s)] N (A, U B,), for each seI,.

Let | h(s)ds denote the Lebesgue integral of & over the subset

D of the lc)iomain of the Lebesgue integrable function A.

Let F' denote a continuous function from I* x B into B so that
| F(x,y) — F(x,2)|] < M(z):|]y — z|| for all xeI* and y,z€ B, where
M is Lebesgue integrable on each I,. Furthermore, if f is a con-
tinuous nonnegative valued function from I* to the reals, and m 1is

a positive integer, let SZ(M, f, g, m) denote
P
z | ((97) 9(spm—1)
() || s oo | M) f s o 1ds, s
If D is either A, or B,, let S(M, f, D, m) denote

|, M)
D E
If D is a subset of the domain of the function %, let k|, denote

M) - g M(s,) f (s.)ds,, - -+ dsids, .

n( Ep(8pm—1
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the restriction of & to D. Also, let fog denote the composition of f
with g, whenever applicable; fog(x) = f(g9(x)).

2. Main results.

THEOREM A. Suppose I is a mest of intervals about p,qe B, g
is an I-function, k is a sequence of positive integers, and for each
positive integer n, o, = ‘(M, 1, A, kn))<land B, = S(M, 1, B,, k(n)) <
1. Then there is a unique function ye C[I*, B] so that ¥'(t) = F(t,
y(g(®)) and y(p) = q, for all tel*. [We say then that the initial
value problem (IVP) has unique solution.]

Proof. Since, I, = {p}, then certainly y, = {(p, @)} is the unique

t
function in C[I,, B] so that for all te I, y,(f) = q + S F(s, y.(g(s)))ds.

Next, suppose » is a nonnegative integer so that there is a
t
unique function y, € C[I,, B] so that, for each te I,, y.(t) = q + S F(s,

¥.(9(s)))ds. The following is the construction of ¥,.,. Let D =p{ fe
Cll,.., Bl: f|;, = y.} and let m = k(n + 1). Then, if feDandtel,,,,

let T be so that TF(t) = q + S’F(s, F(g(s))ds. Then, certainly T is
from D into D. !

LemMmA 1. If f,heD and tel,,,, then
HT™f() — Th(t)|| = St(M, [| fog — hogll, g, m), for each positive
»
integer m.

Proof of Lemma 1. (by induction on m) If m =1,
177 — Th@) | = 1| 1F6, Fla@) — Fis, hag@)ds|

[IFG, £ — Fis, ba@)ds|
| M©)- [ £(a(s) — blo(@)lids| = | QL [1fog = hegll, 0, 1) -

<

o

=

Now, suppose the lemma holds for m = r. Then,
T f (@) — T"*h(t) ||
= | 176, 7)) — F6, Thg@)1ds

IA

| F(s, T"f(9(s))) — F(s, T 'h(g(S)))HdSi

IA

?
»

[ 36+ 777 0(s) — T"hlg(s) 1 ds

A

M), i og — hegll, g, M|

g
4
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by the induction hypothesis, but this equalsgt(M, [[feg — hegll, g, 7+ 1).
b4

LEMMA 2. If N is a bounded, measurable function from I,.,
to the reals so that N(s) = 0 whenever s is in I,,,\(4,., U B,.,), then

S““’ (M, N, g, m) = S(M, N A, m,
y4
and

[ 01, N, g, m) = {4, N, By, m) .
P

Proof of Lemma 2. (by induction on m) If m = 1, ga”“ (M, N, g,
4
D= || MeN@ds| = | MENEs = | 0, N, 4,.,,1), because
P

n+
N is 0 at each point of [p, éznﬂ]\AnH. Suppose the lemma is true

Cn41

for m = r. Then, S (M, N, g, r+1) = S m (M, U, g,7r), where
1-"

U@s) = ng M(t)N(t)dt| for all sel,,,. If sel, \(4,+,U B,1),g(s)e

I,. Thus, N is 0 on [p, g(s)], and so U(s) = 0. Whence, U satisfies
the conditions for N in the lemma. So, by the induection hypothesis,

[ a1, 0,0,m = (O, U, vy 1) = | O, N, Avisy 7+ 1), because
U(s) = S M(t)N(t)dt. The proof of the second equality in the lemma

Ep+1(8)

is similar. Thus, Lemma 2 is proven.
Now, the two lemmas are applied. By Lemma 1, [|T™f(¢) —

") || = g: (M, || fog — hogll, g, m), for all tel,, < max {Sa”ﬂ (M,

»

1 £og = hogl, 9, m), |7 (O, || fog — hog |, 9, m)} which by Lemma

2 is = max {S(M, 1fog — hogll, Ansiy m), S(M, 17°g = hegll, By, m)},
because || f(g(s)) — h(g(s))|| = 0 for all sel,;,\(4,, U B,y). Thus,
7f = 70| < max {{(, 1| Fog = hogll, Auey m), | L, 11 £og — Rogl)

B,m,m)} < max {S(M 1, A,.., m), S(M, 1, Bo.s, m)}-! f — h|. Thus, T
is a contraction map from the complete metric space D into D. Thus
T™ has a unique fixed point ¥,.,. It is a known result that this
implies that y,., is the unique fixed point of 7. [(TY...) = T(T™(Ty,.,) =
T™(TY,.,), but only v,., is so that ¥..; = T™use S0 TY,ir = Yurss
and uniqueness is clear.]

ThuS, Yuns®) = Toan®) = ¢ + | F6, hunsl0@)ds, for all teL.,

and is the unique such function.p Hence, by inductive definition,
for each positive integer 14, there is a unique function y; < C[I;, B]

so that for all tel,, y;(t) = q + StF(s, y:(9(s)))ds. Now, define ye
D
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C[I*, B] so that y(t) = y.(tf), whenever teI,. Since m < n implies
t

Ul = Umy ¥ is well-defined, and y(t) = ¢ + S F(s, y(g(s)))ds, for all
P

teI*. Now, suppose 2(t) = q + StF(s, 2(g(s)))ds, for all teI*, and z¢
C[I*, B]. Then, if n is a positipve integer, and tel,, z|, (t) = q +
StF(s,zl,n(g(s)))ds. So, z|;, = Y. = y|;, for each positive integer =.
Tphus, z=1.

COROLLARY 1. Let M be the constant 1 function, and let k(n) =
2, for all n. Suppose for each n, g min{|g(®) — a,_|,|g@) — b,_,|}de <

An

1, and S min {|g(x) — a,_i|,|9(®) — b,_,|}de < 1. Then, the IVP has
B.

a unique “solution. [See Figure 1. All the shaded area between each
pair of vertical dashed lines is less than one.]
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Proof. «, =S M(sl)g M(s,)ds,ds, :g S ds,ds,. Now, s, €
Ay ) Ay J Ey(sy

. . Enlsy
A, implies

E - A”L N [py g(sl)]y 1f g(s1) € A.,”’ and
o) = 13% N v, g(s)], if g(s) € B, .

Thus, E,(s) S [9(sy), a,._,] if g(s) € 4,, and in this case, |g(s) — a,_,| =
lg(s) — b,_.]- Also, E,(s) & [b._i, 9(s)] if g(s) € B,, and in this case,
lg(s) — b,_,| < |g(s) — a,_.|. Thus, E,(s), which is certainly mea-
surable, must have measure < min {|g(s) — @,_.|,|9(s)) — b,_,|}. Hence,

g ds,ds, < S min {|g(s) — a,_.|,]9(s) — b._,[}ds,, becauseg ds,
Ay JEy(sy) Ay Ey,(s7)
is the measure of £,(s,). Thus, a, < 1, and similarly g8, < 1, for each

positive integer n. Apply Theorem A.

COROLLARY 2. Suppose k(n) =1 for each n. Then, if g M<1

n

and S M < 1, for each m, the IVP has unique solution.

B’Ib
Proof. Immediate.

COROLLARY 3. Suppose M 1s the constant 1 function and k(n) =
1 for each n. Then if max{b, — b,_,, a,_, — a,} <1, for each m, the
IVP has unique solution.

1§§ 1=

@y

Proof. A,<la,_, a,] and B, < [b, ., b,] implies S
1g§

Ay

n

a,_, —a, and S 1=25, — b,,. Apply Corollary 2.

By, bp—1

The following example illustrates the advantage of allowing k(n)
to assume integral values other than 1.

ExAMPLE. Let F be so that M =1 in the IVP—y(p) =q, ¥'(t) =
F(t, y(9(t))), where

2x , if x€][0, p], and

9(@) = 4p — 2z, if x<[p, 2p] .

then it is straightforward to show that if J is a subinterval of [0, 2p]
and g(J) & J, then J = [0, 2p]. Thus, if I is a nest of intervals about
any point of [0, 2p] and I* = [0, 2p], then I, = [0, 2p] for each positive
integer m, if g is to be an I-function. Thus, in order to apply
Corollary 3, it seems necessary to require p < 1, in order to solve
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the IVP. However, if Theorem A is applied with k(n) = m for all »,
then Theorem B, which follows, shows that the condition p < 2»—vim
gives the best apparent bound for the size of p in order to solve the
IVP. Now, since m is arbitrary, clearly, » may be any positive
number less than 2.

THEOREM B. If g is as in the above example, and for each posi-
tive integer m, F,(x) = Sx(l, 1,9, n+ 1), then
P
(1) F, is symmetric about p. That is, for each m, F,(x) =
F,2p — x), for all x €0, p]; and
(2) F,(x) + F,(p —x) = p"/2", for each n, and for all z€
[0, p/2].

Proof. (induction on m) Suppose n = 1. Then, if xze€]0, 2p],
Fi@) = |[ 196 — plds|, which is

(D2 — px + @, if z€|0, p/2] ,
pr — &7, if xe[p/2, p],
— 29 4+ 3px — oF, if xe[p, 3p/2], and

502 — 3px + 2%, if x€[3p/2, 2p] .

F1(x) =

It is straightforward to show that F', satisfies the conditions (1) and
(2) of the theorem. Now, suppose the theorem is true for the positive

integer k. Then, for each xz€]0, 2p], F,.,(x) = HEF,G(g(s))dsl. If ze
»
2p—2x
[0, 9], Fros@p — ) = | |7 Fulo@)ds|- Thus, if s <5 = p, g0) = 25 =
P
z ?
ip — 200 —9) = 9@p — 9. S0, Feu®) = | Fulg@ds = | Futop —
s))( — 1)ds, by change of variable, but this is Szp_ka(g(Zp — 8))ds =
Szp_ka(g(s))ds = F(20 — ). Thus, F,., is symmetric about p.
V4
Now, suppose 2 € [0, »/2]. Then,

Fp(@) + Fi(p — )
P

_ S: Fu(g(9)ds + g _Fi(g(e)ds

F.(2s)ds + gp F,(25)ds, because g(s) = 2s

Il

Sp

Ska(2s)ds + Sp F.(2p — 2s)ds, because ¢g(z) = g(2p — 2)
x P—z

SP

F,(2s)ds — So (1/2)F,(s)ds, by change of variable
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F,(29)ds + (1/2)§:”Fk(s)ds

SP
= Ska(Zs)ds + SwF,,(2s)ds, by change of variable
2 0
_ p
- 0
= (1/2)§2PF,,(s)ds, by change of variable
0

= SPF,,(s)ds, because F', is symmetric about p
0
»/2 ?
S Fo(s)ds + S Fu(s)ds
0 »l2
SMZF,,(s)ds — ng,,(p — 8) (— 1)ds, by change of variable
0
»/2
|7 + Fup — 9)ds

/2

= Sp {p**'/2¥}ds, by the induction hypothesis
0

= phty2rty,

By Theorem B, F',(0) + F.(p — 0) = p**/2*. But, F.(p) =0, by
definition of F',, and thus F,(0) = p"*'/2". Also, F,(2p)=F,2p — 0) =
F,(0) = p~*/2". Thus, if p"*'/2" < 1, then a,,, < F,(0) = p"*/2" < 1,

and B, < F,(2p) = p"*/2" < 1. Apply Theorem A.

3. Applications. The following is a generalization of a theorem
by Anderson [1].

Let F be a continuous real-valued function with domain D of
the plane R x R so that the partial derivative F, is continuous on D
and (0,0 €D. Let b’ and k be so that if |z| <A and |y — b| <k,
then (x,y)€D. Let K=sup{|F(z,y)|:|x]|<h and |y — b| <k}, h =
min {k’, k/K}, and M = sup{|F.(x, ¥)|: || < h and |y — b] < k}.

THEOREM C. Suppose there are intervals I, =, = .. &1, =
[ — h, h] so that max {b, — b,_,, a,_, — a,}- M < 1 for each integer in
[1, m], and so that O0cI,. Let I; =1, for each j = m. Then, if g
18 an I-function, there is a unique function y so that y(0) = b and
y'(t) = F(¢, y(9(?)), for all te[— h, h].

Proof. Let E = {(x, ):|x| < h,|y —b| =<k}, and let G be an
extension of F'|; so that

F,b—k), if y<b—Fk, and

GO Y = g bt k), i y=b+ k.
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By continuity of F, and the mean value theorem, it follows that F
is Lipschitzean in the second position with constant M. It follows,
also, that G has the same Lipschitz constant M. Then, by Corollary
2, there is a unique function ye C[I*, B] = C[[— h, h], R] so that
y'(t) = G, y(9@)), y(0) = b, for all te[— h, h]. Equivtalently, y@) =
b+ S G(s, y(g(s)))ds, for all |¢| <h. Thus, |y(t) — b| = HOG(s, y(g(s)))dsl
= hosl,)up{[G(s, Y¥(9(s))|: |s| < h}, and since the range of G is a subset
of the range of F'|;, we have that this is < h-sup{|F(z, v)|: |z] <
h,|lv — bl <k} = h-K <k, by definition of 2. Thus, Gz, y(g))) =
F(z, y(g@), for all |x| < k. So, y'(t) = F(t, y(9(?)), y(0) = b, for all
te[— h, h].

The following is a generalization of a theorem by Kuller [3].

THEOREM D. Suppose only that g is a continuous function with
connected, real domain E so that g is mot the identity, but gog s
the identity. Then, if M =1 and q€ B, there is a segment @ about
the unique fixed point p’ of g so that if p€ Q@ N E, the IVP has unique
solution.

Proof. Kuller proves that ¢ has a unique fixed point »’ and that
g is strictly decreasing. Let 0 < k< 1/2. Let B, = p and let B be
a nondecreasing sequence of reals so that gB; — B8;,_, < k, for each
positive integer ¢, and so that B converges to the right boundary
of E, which may be + «. Then, for each positive integer %, let
{a, @i,y + -, .} be so that g(8:) = @i, = +++ = @ = @y = 9(B:-) and
also so that a;; — «;;., < k, for all j. Then, {[ay, g(a;;)]:7 =1 and
1 < j < n;} is a monotonic collection of intervals, each containing p. Let
I, = [ay, g(a,)]. Suppose I,, has been defined to be [a;;, g(a;;)]. Then,
let g(a;)
(@1, 9(; ;0] if 5<m;, and

- | i
o [a{i—{—l,Zy g(ai+1,2)]1 lf J - ’n/,,; .

Relabel I, to be [a,, b,]. Then, max {a,_, — a,, b, — b,_,} < 1, for each
positive integer n. Let Q = (a,, b). Then apply Corollary 3.

Kuller required differentiability of g in order to solve y’ = yog,
y(p') = q, where p’ is the unique fixed point of g.
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