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DIFFERENTIAL EQUATIONS ON ABSTRACT
WIENER SPACE

M. A N N PIECH

The main purpose of this paper is to indicate a simple
method by means of which the work of L. Gross concerning
the Laplacian on an abstract Wiener space may be extended
to a certain class of pure second order elliptic operators
with constant coefficients. A short proof of uniqueness of
the solution semigroup of the heat equation will also be
given.

Our extension method is motivated by the often-used technique
of performing a change of variables in order to reduce a pure second
order elliptic operator on Rn with constant coefficients to the Laplacian.
However, some fundamental dissimilarities between finite dimensional
and infinite dimensional potential theory must be taken into account.
First let us define an infinite dimensional Laplacian. Let H denote
a real separable Hubert space and D2f(x) denote the second Frechet
derivative of a real-valued function / on H. We may regard D2f(x)
as a bounded linear operator on H. We define Af(x) = trace D2f(x)
whenever D2f(x) exists and is of trace class. This obviously extends
the finite dimensional Laplacian. However, unlike the finite dimen-
sional case, the existence of D2f(x) is not sufficient to ensure the
existence of Af(x). Another dissimilarity is a consequence of the
unavailability of a substitute for ^-dimensional Lebesgue measure
which would be countably additive on the Borel field of H. Use of
Gauss cylinder set measure can provide an integration theory on H,
but this is not adequate for potential theory, and more particularly
for regularity studies. The reason for this inadequacy is that a
Brownian motion defined in H in terms of Gauss cylinder set measure
would have the property that the probability of a particle starting
at the origin and instantly leaving the ball of radius r > 0 would be
one.

To avoid this inadequacy, the concept of an abstract Wiener space
(H, B, ί) was introduced by Gross [1]. B denotes the completion of
H with respect to a fixed measurable norm || ||, and i is the natural
injection of H into B. Gauss cylinder set measure on H determines
a cylinder set measure on J5, which in turn extends to a countably
additive Borel measure on B (Wiener measure). The measure on B
determined by Gauss measure on H with variance parameter t > 0
is denoted by pt. For a Borel set Γ c B and x e B, let pt(x, Γ) Ξ
pt(Γ — x). The measures pt(x, ) give the transition probabilities
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for a Wiener process with continuous sample paths initiating at the
origin of B.

Problems in potential theory are stated in terms of a fixed (H,
B, i). If u(t, x) is a real valued function on [0, oo) x B and if

(to, &o) e [0, oo) x B

is fixed, then we may consider h{x) Ξ= u(t0, x0 + x) as a function from
i ϊ into i£. The second iϊ-derivative of u at (ί0, %o) is defined as

The initial value problem for the heat equation can now be stated as

— u(t, x) = trace D2u{t, x) t>0
dt

u(0, x) = fix)

where x varies over B. We note that we are only concerned with
differentiation in directions of H, even though the space variable
ranges over B. In an analogous fashion, open sets in B are appropriate
for a statement of the Dirichlet problem.

Let A be a fixed member of L(H) (the space of bounded linear
operators on H) satisfying

(a- i ) A is symmetric,
(a- ii) A ^ εl for some ε > 0,
(a-iii) A = I + C where C is of Hilbert-Schmidt class.

We claim that within the context of a given abstract Wiener space
(H, B, i) most of the results of Ref. [2] hold when the Laplacian is
replaced by the differential operator trace AD2f(x).

Properties (a-i) and (a-ii) guarantee that V A exists as a positive
symmetric invertible member of L(H). When H is finite dimensional
it is customary to transform trace AD2f(x) into the Laplacian of /
by making the change of variables x —»α/X"1 x Now H = B when
H is finite dimensional; otherwise H^B. Since x is to vary over
By this application of a change of variables is meaningless for infinite
dimensional H. It turns out that, rather than transforming the
differential operator, we can meaningfully transform the fundamental
solution of the heat equation.

Let HA be the Hubert space obtained by replacing the inner product
(,) on H by [h,k] = {VA~γh,VΈ-ιk). The invertibility of VA"1

ensures that [,] and (,) give rise to equivalent norms. Thus || ||
is a measurable norm on HA, and we may also view B as the com-
pletion of HA with respect to || ||. If ίA denotes the natural injec-
tion of HA into B, then (HA, B, iA) is an abstract Wiener space. We
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will let pi denote that measure on B determined by Gauss cylinder
set measure on HA with variance parameter t > 0. pi will be called
Wiener measure on (HA, B, iA).

Wiener measure pt on (if, J5, i) gives rise to a fundamental solu-
tion of the heat equation

(1) — u(t, x) = trace D2u(t, x)

dt

(x ranges over B, and t over (0, °°)). Specifically, the family

{p2t(x,dy):xeB,t>0}

has the following properties [2, Theorem 3 and Porposition 6]:

For each bounded real-valued uniformly Lip 1 function / on B,
letting

ptf{x) ΞΞ I f(y)pt(x, dy) ,
JB

(b-i) p2tf(x) satisfies the heat equation (1)—that is, σ/(σt)pitf(x)
and D2p2tf(x) exist, D2p2tf(x) is of trace class and the equality (1)
holds;

(b-ii) p2tf (®) —* f(χ) as t I 0, uniformly for all x in B.
As a consequence of (b-i) and (b-ii), we say that

{p2t(x9dy); xeB,t>0}

forms a fundamental solution of the heat equation,
By analogy with the finite dimensional situation, we expect the

measures {qt(x,dy): xeB, t > 0} defined by

(2) qt(χ, dy) = [det Aγ-Φe^ίA^-i^-y)^ym P u ^ d y )

to form a fundamental solution of

(3) — u(t, x) = trace AD2u(t, x) .
ot

That is, we expect that for each / in the family j y of bounded
real-valued uniformly Lip 1 functions on J5, the function

JB

satisfies (3) and qtf —• / in sup norm as t { 0.

REMARK. We must explain the meaning of the exponential term
which occurs in the expression for qt(x, dy). It is to be interpreted
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as the limit in mean (p2t(x9dy)) as F-+I of the net of tame func-
tions {exp[ — ([A""1 — I](x — PFy), x — PFy)/U]: F is a finite dimen-
sional subspace of H which is left invariant by C and PF is projection
onto F}. The integral of a tame function with respect to pt is
described in Ref. [1]. We will see later that this net does converge.

A direct verification that {qt(x, dy)} has the properties of a
fundamental solution would be both difficult and lengthy. However,
Theorems 2 and 3 of Ref. [5] assert that pf is mutually absolutely
continuous with respect to pt, with Radon-Nikodym derivative given
by

pf(dy) = [det A]~l!2e~{ίA~~1~ny'y)ί2tpt(dy) ,

provided VA — I is of Hilbert-Schmidt class. The latter property is
verified by writing V~A = I + C [I + VA]"1. Setting pf(x, Γ) =
pf(Γ — x) for Borel sets Γ in B, we see that qt(x, dy) = pit(x, dy).
We may now appeal to the work of Gross [2] to establish many
properties of {qt(x, dy)}. Before doing so, however, we recall some
properties of trace class operators.

We will identify individual elements of H and of HA via the
identity map on the topological vector space H. Similarly we will
identity individual elements of L(H) and L(HA). We recall that the
family of trace class operators in L(H) is

ίτeL(H): J]([T*T]1/2^ , e{) < oo for some orthonormal basis {e,} of H\ ,

with the trace of T defined as Tr T = ΣΓ=i (Tei9 e{) where {β<} is any
orthonormal basis of H. The trace class norm of TeL(H) is

== Tr [T*T] 1/2

The completely continuous operators in L(H) with | \L{H) form
the dual of the space of trace class operators in L(H) under the
pairing <C7, V} = Tr U*V, where U is completely continuous and V
is of trace class. Since operators of finite rank are dense in the
space of completely continuous operators, we may write | T\ΎτL{H) =
sup{| Tr [TF] \/\F\L{H): F is of finite rank in L(H) and F Ξ£ 0}. For
any S in L(H) and T of trace class, ST and TS are of trace class
and Tr ST = Tr TS. Thus the set of trace class operators on H is
invariant under a change of inner product. Consequently the set of
trace class operators and their traces are the same whether we con-
sider L(H) or L{HA). The trace class norm does vary with the change
of inner product, although | \ΊτH and | \ΎVHA are equivalent norms.

We point out that, by definition, D2qtf(x) is a member of L(H,
H*). The identification of D2qtf(x) with an element of L(H) is
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dependent on the inner product assigned to H. Unless otherwise
specified, we will always intend this identification to be via (,). If
we let T(t, x) denote the operator in L(H) determined by considering
D2q.tf{%) as a member of L(HA, H*), identifying H* with HA via [, ]
and L(HA) with L(H), then T(t, x) = AD2qtf(x). Since

{Pit(x,dy): xeB, t > 0}

is a fundamental solution of the heat equation in (HA, B, iA), we im-
mediately have the

PROPOSITION 1. Assume A satisfies (a-i), (a-ii) and (a-iii). Then
{qt(x, dy): xeB, t > 0} forms a fundamental solution of the equation

-̂ — u(t, x) = trace AD2u(t, x) .
dt

REMARK. The existence of fundamental solutions of Eq. (3) in
situations where A is nonconstant has been considered by the author
in [3]. There A — I was assumed to be of trace class, and this
property was relied upon considerably. Proposition 1 allows general-
ization of the results of Ref. [3] to situations where A is of the form
I + d + C2 where A ί> el for some ε > 0, I + Ct satisfies (a-i) — (a-iii)
and I + C2 satisfies the hypotheses made in Ref. [3]. Generally
speaking, then, such an A is of the form identity plus a constant
Hilbert-Schmidt class operator plus a variable trace class operator.
We conjecture that the results of Ref. [3] may be extended to oper-
ators of the form identity plus a variable Hilbert-Schmidt class
operator.

Now let us assume that / e j / and that / has bounded support.
We may apply the preceding technique to obtain a solution of

(4) trace AD2u(x) = f(x) .

We define the Green's measures G and GA on Borel sets Γ of B by

G(Γ) = \~ Vt(Γ)dt
Jo

and

GA(Γ)= \~qt(Γ)dt,
Jo

and the potentials Gh and GAh of a Borel function h on B by

Gh(x) = \
JB
\ y)G(dy)
JB

and
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GAh(x) ΞΞ I h(x + i/) Ĝ (cϋ?/) .

Then by Ref. [2, Theorem 3], Gf(x) satisfies

1 trace [φ2G/)(α;)]= -f{x)
Δ

for all x in 5. We thus immediately have the

PROPOSITION 2. Assume A satisfies (a-i), (a-ii) and (a-iii). For
f in Ssf and of bounded support,

U(X)ΞZ -GJ{x)

satisfies Eq. (4).

REMARK. Many smoothness properties and corresponding estimates
concerning ptf(x) and Gf(x) are given in Ref. [2]. Analogues of
these may now trivially be deduced for qtf(x) and GAf(x).

From Ref. [2] we see that for t > 0 the operators qt: f—>qtf
form a strongly continuous contraction semigroup on the space ^
of bounded uniformly continuous functions f on B with H/IU Let
Sf denote the infinitesimal generator of this semigroup. Then [2,
Cor. 3.1] for / in J^f, qtf is in the domain &<? of & and

( 2fqtf)(x) = trace [(AD%f)(x)] = Lf(x) .

A question naturally arises concerning possible uniqueness of the
semigroup {qt: t > 0} among semigroups on ^ whose infinitesimal
generators are "related" to L. This question for variable coefficients
A(x) will be discussed by the author in a forthcoming paper [4]. The
method used there could be applied to the case presently under con-
sideration. However Ref. [4] makes use of a theory of stochastic
integrals on {H, B, i), which requires a special hypothesis on the
abstract Wiener space (H, B, i). Moreover, the approach of [4] is
unduly cumbersome in the constant coefficient case. Therefore we
will now present a brief uniqueness result for the constant coefficient
case. We begin by showing that S^ is the closure of L. Specifical-
ly, we have the

PROPOSITION 3. Let the set £f consist of real-valued functions
f satisfying

(c- i ) / is in s$f;
(c-ii) Df: B—>H exists, is bounded and continuous)
(c-iii) D2f: B—>trace class operators on H with | \ΎrH exists, is

bounded and uniformly continuous.
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Then ss c &*, for f in S^ Sff = Lf, andx {(/, £ff): fe £f) is dense
in the closed subset {(/, Sf f)\ fe &<?} of <& x <&.

Proof. Assume / is in SZ Since

(Qtf)(x + sh) =\ f(x + sh + y)qt{dy) ,

(c-ii) enables differentiation under the integral sign, yielding

(Dqtf(x), h) = ( (Df(x + y), h)qt(dy)

for all In in iϊ. Similarly (c-iii) enables us to write

((D%f)(x)k, h) = \ (I?f(x + y)k, h)qt(dy)
JB

for all k and h in H, and

Lqtf{%) = \ Lf(x + y)qt(dy) .

JB

Since qtf e ^ > , we have

= qtLf .
Lf is in & by (c-iii). Thus qtLf —> L/ uniformly as £ j 0, and so
Jίfqtf —*Lf uniformly as t \ 0. But qtf —*f uniformly as t [ 0 and,
since i ^ is a closed operator by basic semigroup theory, we conclude
that / is in ^ > and £ff = Lf.

It is shown in Ref [2, Cor. 3.2] that functions of the form

g(x) = I e-'(ptf)(x)dt
Jo

where fejz? are dense in the domain of J^ in the graph ( ^ x
norm. It is furthermore shown that such functions g satisfy (c-iii).
It is trivial to see that qt: s*f —> J ^ and hence that g e Ssf. To
verify (c-ii) we make use of Eq. (8) of Ref. [2]—viz. for h in H

(Dqtf(x), h) = (2*)-1 ( f{x + V) [h, y]qt(dy) .
JB

Thus we obtain

(Dg(x), h) = Γe-*(2ί)-1 [ f(x + y)[h, y]qt(dy)dt
JO JB

= [°e-'(2t)-1" f f(x + (2tyi*y) [h, y]pt(dy)dt.
JO JB

Therefore



472 M. ANN PIECH

(Dg(x), h)\<\~ e-tr11* || / |L {^ | [h, y] \2pt(dy)]Φ dt

and so

I Dg(x) \n ^ constant || / IU •

In addition, we see that

I (Dg(x) - Dg(z), h) | ^ c o n s t a n t ( ° V < r 1 / 2 \ \ x - z \ \ \ h \ H d t ,
Jo

and we conclude that g satisfies (c-ii).
Thus we have proved that (£f, ^V) is the closure of (L,

REMARK. The preceding calculations of ΌqJ and D2qtf were
possible because qtf is a convolution of / with pt(dy). This is not
the case with variable coefficients.

We now give a uniqueness result for the semigroup {qt}.

PROPOSITION 4. If {q't: t > 0} is a contraction semigroup on <&
whose infinitesimal generator £fr extends (L, S^), then q[ — qt for
all t > 0.

Proof. If we show that &^, — fE&^> and that &' — <&? on their
common domain, then since {qt} is strongly continuous on r<f it fol-
lows from basic semigroup theory that q[ = qt- Since (J*f'9 £&_*) is
a closed operator, we have {j^f

J^,)Z)(^,^^). Let

/ e ^ , , g = (I- £έ")f

and

ίf0 = {h in <£*: \\ qth - h |U — 0 as t [ 0} .

^,(Z<ίfQ and £f'\ ^ 0 - > ^ 0 . Thus ge ^ It is well known that for
g in ^ the equation (I — .Sf')/& = ^ has a unique solution in i ^ > . By
the strong continuity of {gj, there exists a unique solution / in
of the equation (I — =2̂ )/̂  = g. Since / is also in &_,-,> £f'f=z
and so / = /. Thus (.<?", ^ , 0 c (.Sf, ^ ).
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