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ALGEBRAS OF NORMAL MATRICES

GEORGE MAXWELL

A classical theorem of matrix theory asserts that a com-
muting set of complex normal matrices can be simultaneously
unitarily diagonalised. In this paper, this result is gener-
alised, both for the field of complex numbers and for more
general fields. Namely, a commuting set of normal matrices
is replaced by a subalgebra composed entirely of normal
matrices. The structure of such subalgebras is determined
and results on simultaneous diagonalisation are deduced. In
the complex case, these subalgebras turn out to be commuta-
tive. However, even in the real case there are noncommuta-
tive examples.

l Normal subalgebras* Let F be a field with an involution J,
V a finite dimensional vector space over F and φ a left hermitian

form on V such that

(1) φ(x, x) = 0 implies x = 0 .

In particular, φ is nondegenerate so that every endomorphism T of V

has a unique adjoint w r. t. φ, defined by the equation

(2) Φ(Tx,y) = φ(x, T*y) .

We call a subalgebra A of End^(F) normal if it satisfies

(a) TeA implies Γ G 4
(3)

(b) T*T = TT* for all TeA.

Our first aim is to determine the structure of such normal subalgebras.
The purpose of assuming (1) is to obtain the property

(4) Γ* T = 0 implies T = 0 .

Indeed, if T*T - 0, we have φ(Tx, Tx) - φ(x, T*Tx) = 0 so that Tx = 0

for all xeV. From properties 3(a) and (4), a well known argument

[6] leads to the fact that A has no nil ideals. In our context, this

means that A must be semisimple. Furthermore, if B is a minimal

ideal of A, so is B*, and thus either £* = B or B*B = 0, but the

latter possibility is precluded by (4). It is therefore sufficient to de-

termine the structure of a simple normal subalgebra.

PROPOSITION 1. Suppose R is a ring with unit element 1 =£ 0 and

* is an involution of a matrix ring Mn(R) with the property XX* =

421



422 G. MAXWELL

X*X for all XeMn(R). Then either (i) n = 1 or (ii) n = 2, i2 is
commutative and * is £λ,e involution

\c a/ \ — c a

Proof. Linearing the identity XX* = X*X, we obtain

XF* + ΓX* = X * Γ + F*X;

replacing Y by Y*, this can be written as

(6) [X, Y]* = -[X, Y].

Let Eij(r) be the matrix with r in the (i, i)th position and zeros else-
where. Suppose n ^ 3; if i Φ j , we can write E^r) = Eik(l)Ekj(r) =
lEik(ΐ), EkJ(r)] for some & ̂  i, j . Therefore #<y(r)* = -E^r) by (6);
but then EiS(r)* = Eki(r)*Eik(l)* = Ekj(r)Eik(l) = 0, an absurdity.

If n = 2, we can write E12(r) = [En(l), E12(r)] so that E12(r)* =
— E12(r). Since En(r) = E12(l)E21(r), we have En(r)* = ^ W ; the invo-
lution is thus given by (5). Furthermore, writing En(rs) = En(r)En(s)
and applying *, we obtain E22(rs) = E22(sr) so that rs = sr and R
must be commutative.

PROPOSITION 2. Suppose D is a division ring, finite dimensional
over its center Z and * is an involution of D such that dd* — d*d
for all de D. Then either Ό — Z or Ό is a quaternion algebra over
Z and * is the standard involution.

Proof. Let K be the subίield of Z left fixed by * and L some
algebraic closure of K. The extended involution (d (x) α)* = ώ* (x) a
on D (&κ L has the same property as *.

If K = Z, D $ξ)κ L is isomorphic to MV(L) for some integer p. By
Proposition 1, p <̂  2 so that D is either Z or a quaternion algebra
over Z (see, e.g., [1. p. 146]). If KΦ Z, we have Z%KZ~ Z@Z,
so that D^ZL~D®Z {Z®κ Z)®ZL = D®ZLQ>D®ZL = ikfp(L) φ
MP(L) for some integer p. If * induces an involution on each of the
factors MP(L), we again have p ^ 2. However, if #> = 2, we see from
(5) that * must leave central elements fixed, which is not true for
D®KL. Therefore p = 1, i.e. Ώ = Z. If * interchanges the two
factors MP(L), then each is forced to be commutative so that once
again p = 1.

It remains to verify that in case D is a quaternion algebra over
Z and K = Z, * can only be the standard involution. If char (Z) Φ
2, D has a basis {1, i, j , ΐj} such that i2 — α, i2 — β and ij" = — ji for
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some a, βeZ. Since 2βi = [ij,j] and 2aj = [i,ij], (6) implies that
ί* = —ί,j* = —j so that * must be the standard involution. If char
(Z) = 2, the relations are instead i2 = a, j2 = i + β and ίj = ji + i
for some a, β e Z. Since i = [ί, i] and ίj" = [i, ij] we have i* = i and
(#)* = #; but α# = i(ij) so that α#* = (ij)*i* = #£ = #? + α i.e. j>* =
7 + 1, showing that * is again the standard involution.

The preceding proofs could have been somewhat shortened by
appealing to a recent result of Amitsur [3], which says that a semi-
prime ring with an involution * satisfying a polynomial identity
p(Xl9 Xn, X?, , X*) = 0 of degree d satisfies a "standard identity"
of degree 2d. In our case, the polynomial identity is X*Xχ — XXX* =
0, of degree 2, so that the standard identity is of degree 4. Now a
well-known result of Kaplansky [7] implies that if the ring is also
primitive, it is at most 4-dimensional over its center. However, we
would still have to determine, as above, the possibilities for *, the
knowledge of which is important in the sequel.

PROPOSITION 3.

(a) If J is non-trivial^ a simple normal subalgebra A is a finite
field extension of F; its involution * extends J.
(b) If J is trivial, A can also be a quaternion division algebra over
a finite field extension of F, in which case * must be the standard
involution.

Proof. Suppose A is isomorphic to Mn(D), where D is some finite
dimensional division algebra over F. By Proposition 1, either (i) n ~
1 or (ii) n = 2, D is a field and * corresponds to the involution (5).
However, the latter violates (4) since, for example, En(ϊ)*En(l) — 0;
therefore A is a division algebra. By Proposition 2, A is either a
field or a quaternion algebra over its center. Furthermore, in the
latter case * must be the standard involution, which is certainly
trivial on F, so that / itself had to be trivial.

Turning to the classical cases, let us suppose that F is either
R or C and φ is the standard hermitian form on 7 = Fn.

COROLLARY 1, In the complex case, a normal subalgebra is iso-
morphic to a product of copies of C, each with the standard involu-
tion.

COROLLARY 2. In the real case, a normal subalgebra is isomor-
phic to a product of copies of R, C and H, the latter two occurring
with the standard involution.
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Proof. It is only necessary to explain why a factor consisting
of C with the trivial involution could not occur in the real case. This
is a consequence of a property stronger than (4):

(7) Σ ϊ ^ T ^ O implies that all Γ* = 0 ,

enjoyed by * but violated by such a factor. Indeed, if Σ T* T% — 0,
we have φ(Σ T?T,x, x) = Σ Φ(TiX, T&) = 0 for all x e V; since all
summands are non-negative, we must have ΦiTφ, T&) — 0 and hence
Ti = 0.

2* Simultaneous diagonalisation* Let A be a normal subalgebra
of EndF(F) and consider V as a left A-module. One sees at once
from (2) that if W is a submodule of V, so is W1; in view of (1),
we have V = TF0 W1. Induction now shows that V is the orthogonal
sum of simple submodules, which are isomorphic to simple factors of
A.

Using Corollaries 1 and 2 of Proposition 3, we can immediately
obtain diagonalisation results in the classical situations.

PROPOSITION 4. In the complex case, there exists an orthonormal
basis of V w.r.t. which the matrices of all elements of A are diagonal.

PROPOSITION 5. In the real case, there exists a partition dim V =
nλ + 2n2 + 4%3 and an orthonormal basis of V w.r.t. which the matrices
of all elements of A consist of nx diagonal elements, followed by n2

blocks of the form

(8)

and nz

(9)

blocks of the form

a

β

7

Ψ

Γ
\β

-β

a

δ

— 7

a]

- 7

-8

a

β

-δ\

7

-β

a

Proof. If a simple A-submodule is isomorphic to C, it has a basis
of the form {x, i-x], which is orthogonal since φ(x, i x) = φ(i*-x, x) =
— φ(i x,x) — —φ(x, i x). We may suppose that Φ(x, x) — 1, but then
φ(i x, i x) — φ(x, i*i x) — φ(x, x) = 1, so that the basis is orthonormal.
The action of C on such a basis is given by blocks of the form (8).
Similarly, if an A-submodule is isomorphic to H, it has a basis of the
form [x, i x,j-x, ij x}, which can once again be assumed orthonormal
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and yields blocks of the form (9).

Such diagonalisation results are usually stated for a commuting
set {Ti} of normal endomorphisms rather than for a normal subalgebra.
To deduce them from our results, we first enlarge the set {ΓJ to
{Tiy T*}, which is still commuting in view of the following well-
known result [9]:

PROPOSITION 6. In the real or complex case, if a normal endo-
morphism T commutes with an endomorphism S, it also commutes
with S*.

Secondly, we form the commutative subalgebra generated by
{Tif T*}, which is clearly normal, and apply propositions 4 and 5.
In the non-classical situations, the results of §1 still enable us to
produce diagonalisation theorems, although these can of necessity be
more complicated. We shall confine ourselves to some remarks about
the case when F = Q and φ is the standard hermitian form on V =
Q\

PROPOSITION 7. The possible factors of a normal subalgebra must
be of the following types:
(a) a totally real finite extension K/Q, with the trivial involution.
(b) an extension K(V — ά)/Q, where K is as in (a) and a is totally
positive, with the involution V — a—*— V — a.
(c) a quaternion algebra {—a, — β) over K, where K is as in (a) and
a, β are totally positive, with the standard involution.

Proof. Let A be a simple factor. We go back to proposition 3.
If * induces the trivial involution on A, every TeA is hermitian and
therefore has totally real eigenvalues-hence A is of type (a). When
* is not trivial, the fixed subfield K of * is of type (a) by the same
argument. If K—>R is some imbedding, then, regarding R as a K-
algebra, one proves as before that the involution (α(x)λ)* = α* (x) λ
on the extended algebra Aξ&κR enjoys property (7). Therefore the
images of a or a and β must be positive in R.

The problem of determining which totally real extensions K/Q
can actually occur as factors of type (a), say, has been studied by
Bender [4] and seems quite difficult. For example, Q(y~d)jQ occurs
if and only if d is a sum of 2 squares in Q.

3* The infinite dimensional case. In this paragraph, we shall
prove that in some infinite dimensional situations normal subalgebras
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are necessarily commutative.

Firstly, suppose that H is a complex Hubert space and B(H) is
the algebra of bounded operators on H. The analogue of Proposition
6 for elements of B(H) has been proved by Fuglede [5] and later
generalised by Putnam [10] to

PROPOSITION 8. If S and T are normal operators and R is an
operator such that TR = RS, then T*R = RS*.

One can use this result to prove

PROPOSITION 9. A normal subalgebra A of B(H) such that A2 is
dense in A (for example if 1 e A) must be commutative.

Proof. Suppose S, TeA; since (ST*)S = S(T*S), Proposition 8
implies that (ST*)*S = S(T*S)* or T(S*S) - (S*S)T (this idea occurs
in Kaplansky [8]). Now replace S by S + R*, with Re A. After
subtraction, one concludes that T commutes with (RS)* + RS i.e.
with all the hermitian elements of A2. Since A2 is dense in A and
every element of A can be written in the form S + iT where S and
T are hermitian elements of A, we conclude that T commutes with
every element of A.

Secondly, we return to an arbitrary field F and consider an arbi-
trary F-algebra Ω with an involution *, satisfying (a. x)* = aJ. x*. Let
b(Ω) be the quotient of Ω$$kΩ by the subspace generated by all ele-
ments of the form αδ (x) c — α (x) δc and ba (x) c — a (x) cb. The obvious
πiap βΩ: Ω x Ω —• b(Ω) is called the universal bitrace on Ω. It may
happen that b(Ω) is not isomorphic to if, for example if Ω2 = 0. Since
Ω has an involution, it is actually more convenient to work with a
"twisted" version of the bitrace: <α, δ> = βΩ(a*, δ). This is a left
sesquilinear (w.r.t. /) map on Ω, universal w.r.t. the properties
<αδ, c} = <δ, a*c} and <δα, c> = <δ, cα*>. By analogy with [2], Ω may
be termed an if*-algebra if

(10) <α, α> = 0 implies α = 0 .

For such algebras, the analogue of Proposition 8 can be proved purely
formally from the identity

(c*a — be*, c*a — be*) — (ac — cδ, ac — cb}

= (aa* — a*a, cc*} — <δδ* — δ*δ, c*c) ,

a special case of which goes back to von Neumann [11]. For its proof,
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note first t h a t <αδ, cd) = <δd*, a*c} = <c*α, dδ*>. Then

<c*α — δc*, c*a — δc*>

= <c*α, c*α> - <δc*, c*α> - <c*α, δc*> + <δc*, δc*>

= (aa*, cc*> — <cδ, ac) — <αc, cδ> + <c*c, δ*δ> .

Similarly, (ac — cb, ac — cb) = (a*a, cc*> —<αc, cδ> —<cδ, αc> + <c*c, δδ*>.
Subtraction yields (11).

PROPOSITION 10. If J is nontrίvial, a normal subalgebra A of
an H*-algebra Ω such that A2 = A must be commutative.

Proof. One can use the same argument used in the proof of
Proposition 9, with the following remark. Since J is nontrivial,
there exists θ eF such that ΘJ Φ θ\ then every xe A can be written
in the form xλ + θ x2, where x1 = (θ x* — ΘJ x)l(θ — ΘJ) and x2 =
(x — x*)/(θ — ΘJ) are hermitian elements of A.

In conclusion, we add a remark regarding the property

(12) aa* = α*α, δδ* = δ*δ, ac ~ cb implies c*a — αδ*

in arbitrary rings with involution. Two of its special cases are

(13) αα* = a*a, ac = ca implies c*a = ac*

and

(14) αα* = α*α, ac — 0 implies c*a — 0 .

However, one can get an example in which both (13) and (14) hold
but (12) does not, by taking K = Q, a — 2 in

PROPOSITION 11. Let K be a field of characteristic Φ2, a a nonzero
element of K and * the involution

a δ\* / a —ac

c d) \ — b/a d

of M2{K). Then ( i ) (13) is true in M2(K), (ii) (14) is true iff a is
not a square and (iii) (12) is true iff a is not a sum of 2 squares.

We omit the full proof, but give the counterexample for (12):
suppose a = β2 + 72 and let

β/a l ) f [v/a
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Then XX* = X*X, F F * - F* F, XZ = ZY but X*Z Φ ZY* .
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