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DERIVATION IN INFINITE PLANES

N. L. JorNsON

The purpose of this article is to study ‘‘derivation’ in
arbitrary affine planes. It is shown that the derivation pro-
cess extends to arbitrary planes which possess a suitable set
of Baer subplanes.

1. Introduction. A basic problem of interest is developing
Ostrom’s finite net replacement theory in the infinite case. Some
expected premiums could be that the procedures are valid in infinite
planes which have no finite analogue. For example, the Moufang
planes, non-Pappian Desarguesian planes, and certain Bol planes may
permit net replacement (see §4).

The present article will be restricted to studying derivation in
infinite planes. Concerning infinite planes, Rosati [18] found a class
of infinite Hughes planes and Swift [21] remarked that derivation is
probably valid in infinite Pappian planes. This statement was essen-
tially confirmed by Pickert [17] who also gave an algebraic construction
of the Ostrom-Rosati planes (see Panella [15]).

Sabharwal [20] constructed a class of infinite André nearfield
planes and showed that derivation is valid in these planes and also
considered the analogous infinite “derivable chains” of Fryxell [6].

Barlotti and Bose [3] have studied the derivation of dual translation
planes of dimension 2 by means of linear representations in projective
spaces of projective planes (see [3], [4], [5]). The Bose-Barlotti deriva-
tion theory is valid in all dual translation planes of dimension 2 whose
associated spread of the corresponding translation plane is also a dual
spread. However, this condition is not valid in every infinite dual
translation plane of dimension 2 (see [7]).

This article will be devoted to derivation in arbitrary planes.
The treatment is in the spirit of Ostrom’s original construction (see
[13], section III, and [14]). Section 2 is devoted to showing that the
derivation process extends to arbitrary planes which possess a suitable
set of Baer (see (2.1)) subplanes. Section 3 is concerned with certain
conditions sufficient for a given subplane to be a Baer subplane and
develops some theory related to the derivation of translation planes
and their duals. Finally, applications of the theory to certain infinite
planes are considered in §4.

The author would like to express his appreciation to the referee
for many helpful suggestions as to the form of this paper.

2. The Construction. Ostrom ([13] section III, pp. 7,8,9)
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develops derivation in finite planes. The planes are of order ¢* and
the procedure involves the relabeling of certain subplanes of order ¢
(Baer subplanes) as lines. Ostrom’s arguments depend strongly on
finiteness. However, it will be shown that the essential assumption
is not of finiteness but is simply that the subplanes used in the
process are Baer subplanes.

DEFINITION 2.1. Let m be a projective plane. A proper subplane
w, of = is a Baer subplane of # if and only if every point of 7 is on a
line of 7, and every line of 7 is on a point of x,.

REMARK 2.2. A Baer subplane is maximal.

Proof. Let m, be a Baer subplane of a projective plane 7 and let
P* be a point of # — m,. Any subplane ¢ of © containing P* and =,
contains the joins of P* with points of z,. Let I be an arbitrary line
of 7w incident with P*. By assumption ! intersects 7, and therefore
7 contains all lines of x incident with the point P*. Similarly, ¢
contains all lines of m incident with any point of ¢ — 7,. Let Q be
a point of w. Every line of 7 incident with @ intersects z. If Q¢<
then QP* is either a line of 7 — &, or is the unique line of 7, incident
with P*. Since there is a line of w, incident with @, it follows that
@ et in the former case. In the latter case, if R is a point of QFP*,
choose a quadrangle whose cross joins contain R. Thus, all points
of w are in 7.

DEFINITION 2.3. Let 7 be a projective plane. Let [, be a line
of . A derivation set 6 vn I, is a set of points of [. such that if
P, Q are distinct points of 7 — I, such that PQ N !.e€é then there is
a Baer subplane 7,,, of = containing P, @,  such that ¢ is a line of

Tp,Q,s¢

We shall assume in the following that ¢ is a derivation set in
l. for a projective plane = and 7,,, is a Baer subplane containing
P,Q and 6 as a line where PQNl.€od. Also a point of 7pq,; — 0
will be called an affine point of 7, ;.

LEMMA 2.4. 7,4, 18 the unique proper subplane containing P and
Q which contains 6 as a line.

Proof. Let X,,; be any subplane of 7 containing points P, @
which contains ¢ as a line. Let PQN I, =4d,e€d. Let T = {Qd,N Po,
where 0,, 0,, 0, are distinct elements of d}. Let =, = {Qd; N Po; | V.,
0;€06 and not both 0;, 0, equal to 6,} U {Qd; N T;|Vd,, 6;€6 and not
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both &;, 6; equal to d,}.

Assume there is a point ReX,,; — m,. Since P, Q, ReX;,
either RPN, and RQ NI, are distinct points in 6 or P, Q, R are
collinear. In the latter case, R = P(RPN!l.) N T(RTN.) and in the
former R = P(RPNL.)NQRQNI.). Therefore, the point sets of
Yres and w, are equal since clearly 7, & 37 ;-

Similarly, let #, = {Mo;| M e m,¥o;€0}. If lis aline of 3, ; then
INl.cod and there are at least two distinct points L, Ue (I — IN l.)N
Tpose Thus, L, Uem, — d so that le7,.

.. Any two subplanes of = which contain points P and @ and
contain 6 as a line have the same point sets and the same line sets
and hence are identical.

LEMMA 2.5. Any two points of Tp,,; — 0 uniquely determine the
subplane. Thus, any two distinct Baer subplanes Tp,,; and g g,
intersect in 0 or 6 U{M} for some affine point M.

Proof. Let M, S be any two distinct points of 74, —d. If M and
S are ¢ PQ, 30;,©1=1,2,3,4, €65M = Po,N Q0,, S= Po,NQ,. Clearly
P, Qemys; so that 7p o = Ty,s: by (2.4).

The remaining situations where M or Se PQ are equally clear.

DEFINITION 2.6. If 7p4; N Tgrs = 0 OF Tpe, we shall say that
Tpo,s 18 parallel to 7y 7:(Tp,0.5 || Tror,s)-

LEMMA 2.7. If Tpgsl||Trrs there is an element 0% of 032the set
of lines of Tpq,; incident with 6% is equal to the set of lines of Ty .5
incident with 0.

Proof. Assume Tpq; # Tprs. Every affine point of 7, .; is on
a unique line of 7wp4,. .. Every affine point of 7,.,; is on a line
common to both subplanes. If [, p are common lines, INp is a
common point. Thus, [ and p are concurrent on J. Let the point
of concurrency be 6, €.

Let M be an arbitrary point of 74 ,;. 3linel of m,,, which is
incident with o, and M. Also 3 line p € T, ; which is incident with M
and hence 0,. Therefore, the lines » and ! are identical.

Thus, the lines of 7, ., incident with J, < a set of lines of 7, ;
incident with 0.

The argument is symmetrie, so (2.7) is proved.

LEMMA 2.8. Let 7y ;5 be any Baer subplane and P a point ¢
Tarse Then there is a Baer subplane 7y, containing o as a lines
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Tp,s. || Tr,r,50

Proof. Assume without loss of generality that PR is the unique
line of 7, ., incident with P and assume that T'¢ PR (see (2.5)).

Let S=(RTNl)PN(PRNL.)T. Now consider 7, g,,.

Suppose Tp s Tryrse Let M be a common affine point. Then
Mb;; 6,€6 are common lines. If M ¢ ST then, since ST and Mo, are
common lines, Mo; N ST is a common affine point distinct from M for
some 0;€0. But, this is a contradiction by (2.5). .. MeST and
similarly M e PR, which is a contradiction if M is an affine point.

LEMMA 2.9. Let wp4,; be a Baer subplane and suppose R is an
affine point ¢ mwpq;. Then 3 a unique Baer subplane parallel to wp 4,
and containing R.

Proof. By (2.8) there exists a subplane 74, ;|| 75,0,

Suppose 7, is a Baer subplane with line 9, containing R, and || 75 ¢,5.
Tpe, a0d Ty ., have a common concurrent set of lines. Let the point of
concurrency be 6, €d. R9, is a line common to 7, 7Tp,r,; and 7p0; S0 the
point of concurrency for the common set of lines of 7, and 74, is
also §,. We can assume without loss of generality that PQ N l. # 0,
since 7,3, = Tpe, for any affine point @ # P of mpq,. By (2.7),
Q0, is a line of 7, 75, and 705 50 (PQN I,)R N QJ, = D is an affine
Point = R of 7, and of 7@z rs. .. Ty = Tpps = Tprs Y (2.5).

Thus, (2.9) is proved.

THEOREM 2.10. (Compare with Ostrom [13], Theorem 5.)
Let @ be a projective plane. Let 1 =1, be a line of w and 0 a
derivation set on l.. Form T as follows:

points T = affine points of «.

Lines {type 1 = the affine Baer subplanes mp,;
type 2 = affine restrictions of lines Il of ®2IlNl.¢d .

type 1, Tp o5l o5 iff Tpos N Trss = 0

el
Hcasses{type 2, lpif lnpel. —o.

Then T is an affine plane called the plane derived from w by o.

Proof. Let P and @ be distinct points of 7. If P and @ are
joined in 7 by (PQ).> (PQ).N 1.0 then 3 1 Baer subplane 7,,, con-
taining P, Q. If (PQ).Nl¢d 3 1 line ! of = containing P, Q.

Therefore, two distinct points of T are uniquely joined.

Let I be a line of = such that INl,.¢d and 7,,,; a Baer subplane
of w. Clearly, | must intersect 75,,; in an affine point.
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Thus, for each point P of 7 and line & of 7T there is a unique
line incident with P and parallel to &~
Thus, 7 is an affine plane.

COROLLARY 2.11. Let 1 be a line of @ containing distinct affine
points P and Q such that IN1l,€0. Letlpo=1N7pgs;—1Nl.. Then
the points of 1 — IN L. and the sets lp, as lines form an affine Baer
subplane 7y, of T.

Proof. Let R and S be any distinct affine points of I. [z =
IN7gss— 1N 1. contains R and S. Suppose I, , also contains R and S.
lyrs =00 Tyrs —IN L. so that w, ,,; contains R and S. But 7, ;=
Trss Oy (2.5) so that I, , =l ;. Thus, R and S are uniquely joined.

Let R be any point of 7,, not incident with the line l;,. Since
Rel and Iy, =1lN7s7: — 1N, then R¢ng,,. Thus there is a
unique Baer subplane 7, , , containg R and parallel to 75, ,. Choose
a point M of 7y, , incident with [ (INl.€6 and Rel so I is a line
of 7, s and distinct from R.

Hence, 5% = Tpus and LN 7Ta5: — LN l. = 15 is a line of 7T,
which is parallel to I, and contains R. Suppose ly,; is a line of
p,o containing R and parallel to Is,,.

Now NL = RM = 1. m,,, and 7,5, have a common line ! and
a common affine point B. Moreover, 7y, ;; and 7.5, contain no affine
points of [ in common with 7, ;.

Suppose 7y,.,; is not parallel to 7w5,;. Then let X be a common
affine point. By assumption, X ¢!l. Thus, [ and Wi,vd;€d are lines
common to my,;; and 7g,,. It follows that S and T are points of
Ty, (see (2.4)) so that my ,; = 7g . which is a contradiction.

Thus, both 7y ,, and 7,5, are parallel to 7y, and contain R so
that 7y, ;,; = 7,7, and hence ly,;, = I, 5. Thus, 7,4 is an affine subplane
of 7.

Thus, lrollls,s P, Q, S, T points of I if and only if 74, Zs,z.se
Furthermore, given a Baer subplane 7,y not containing a point of 7,
there is a Baer subplane 7., with [ as a line such that 7y, ;|| 7y, s

Now extend 7 to a projective plane 7*. The points on [, (line
at infinity of T*) corresponding to the set of all Baer subplanes 7, 4, ;-
are precisely the points of 73 ,.

As a point set T,y is I — [N I, where [ is a line of 7. Therefore,
every line of 7* intersects 7;, and every point of 7* is incident
with a line of 7}, (that is, a line of 7}, extended to 7*. Also note
that I, is a subline of 7, ,,; for P, Qel where 7w, is thought of
as a line of 7. So the latter statement merely states that every
affine point of 7 is contained in a Baer subplane 7, ,,; of m.)

Thus, 75, is a Baer subplane of T*.
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COROLLARY 2.12. Let 7w be a projective plane and 6 a derivation
set in l.. Let T be the affine plane derived from w by 6. Then there
is a derivation set 6 in . of the projective extension T* such that
the plane derived from T* by 0 is the affine restriction of @ by I..

Proof. The Baer subplanes 7%, of 7* all have the same set of
points 6 on [, (see proof of (2.11)). The affine resErictions of T},
are affine lines of n. Clearly, 6 is a derivation set in ...

It is trivial to verify that Baer subplanes are carried into Baer
subplanes by collineations.

The following theorem is Ostrom’s Theorem 7 and its Corollary
[13]. His proofs to these results do not use finiteness in any way.

THEOREM 2.13. (Ostrom [13]). Let w be a projective plane and
0 a derivation set on l.,. A collineation o of w306 =06 induces a
collineation G of T>3G fixes the set 6 (the corresponding derivation
set of 1.). If o is a translation of m, & is a translation of T.

DEFINITION 2.14. Let 7 be a projective plane and let ! be a line
of #. We shall say that « is a semi-translation plane with respect
to I if and only if = admits a group Z of elations with axis [, each
of whose point orbits along with the set of elation centers for [ form
a Baer subplane of 7.

7w is a strict semi-translation (sst) plane with respect to I if &
is the full elation group with axis ! and momnstrict (nsst) otherwise.

THEOREM 2.15. (See Ostrom [13].) Let m be a projective plane
and 1. a line of w and 6 a derivation set in 1, and let T denote the affine
plane derived from w by 6. If 1 is a line of ™ whose affine restriction
is mot a line of T and w admits a group of translations < (elations
with axis 1,) transitive on the points of 1, then T is a semi-translation
plane, i.e., T* (projective extension) is a semi-translation plane with

respect to 1.

Proof. By (2.13), since &0 = 0, & is a group of translations of
7. If [ is a line of = and the restriction of ! is not a line of T then
I —1Inl, is an affine Baer subplane of 7 (see (2.11)).

Thus we have extended Section III of [13] to arbitrary planes
admitting derivations sets. We now consider planes possessing Baer
subplanes.

We note that Ostrom’s sufficient condition for derivation given
in Theorem 9 [13] does not directly apply in the infinite case since
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the indicated affine subplanes are not necessarily Baer subplanes.

3. Baer Subplanes. It is well known and can be easily estab-
lished by a counting argument that a finite projective plane of order
n has Baer subplanes of order m only if n is a square and the order
of the subplane is m = Vn.

For infinite planes no such characterization of Baer subplanes is
known. We wish to develop some conditions which are sufficient for
a given subplane to be a Baer subplane. For this will use some
concepts of André [2] and Bose and Bruck [5].

DEFINITION. Let V be a vector space. A congruence of V is a
set {Vo}ee: Where V, is a subspace of V Va e\ and

(1) UV.=Vand &) V.@®V, =V for all a = gex.

THEOREM 3.2. (André [2]). An affine plane © is a translation
plane if and only if there is a congruence {V,}.., of a vector space
V such that the points of @ are the elements of V, the lines of w are
cosets of elements of {Vi}ac: and the parallel classes are the sets
{Va+ b, a fixed €N, be V}.

THEOREM 3.3. (Liineburg [11]). Let a be a collineation of a
projective plane with axis | and center P. Let Q be a point = P and
Qel. Then every projective subplane containing P,l, Q, Qu 1is left
wmvariant by a.

LEMMA 3.4. Let @ be an affine translation plane and w, any
affine subplane of w. Then there is a congruence {Valee, for 1 =V,
a subgroup W of V, and subgroups W, of V. for a e N* = \ such that
{W.}l is a congruence for W which defines m,.

Proof. Let P, Q@ be points of w,. There is a translation ¢ of =
such that Poc = Q. By (3.3), 7, is invariant under o.

Clearly, there is a subgroup .7 of the translation group .7~ of
7 which is sharply transitive on the points of 7, and leaves 7, invariant.

Let .77 (P) denote the subgroup of .~ with fixed center Pel,
so that 7~ = Urer. 7 (P). ﬁo = UPelmy'(P) N fo Let 7 (P)N
T 2y = T 2(P). Thus, lines of 7 are {7 (P)}p.;,, and translates of
these groups. {9 (P)}pc,, and {7, (P)}s,. are congruences of = and
T, respectively, with the required properties. Note that W, is not
necessarily a vector subspace of V, for a e \* & .

Before utilizing (3.4) we mention the following result which
depends only on the existence of a particular type of ternary ring.
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THEOREM 3.5. Let Q = (@, +, -) be a ternary ring with ternary
Sfunction T. Let F = (F, +, ) be a sub-ternary ring of @ such that
every element of Q can be uniquely written in the form ta + £ for
some teQ — F;a, Be F. For all a, m,be @ let T(a, m, b) = tf(a, m,
b) + g(a, m, b); f, g functions from @ X Q@ X Q into F. Let f and ¢
satisfy properties (1) and (2):

(1) If m and b are fixed and m ¢ F there exists an element
a€F such that f(a, m, b) = 0.

(2) If a¢ F is fized then {(f(a, m, b), g(a, m, b))} =F X F as m, b
vary over F.

Then the subplane w8 coordinatized by F' of the plane w¢ coordina-
tized by Q is an affine Baer subplane.

Proof. Let I be a line of 7% If [ is {(z, )| 2 = ¢ for cc @} the
line I either contains points of 7¥ or (in any case) is || to {(z, ¥) |z =
a; o€ F} so the projective extension of 7® contains a point of the
projective extension of w*.

If 1is {(z,y) |y = T(xz, m, b); m,bcQ} and meF then INI, is a
point of the projective extension of #”. If m¢ F then by (1) 3 ac
F>f(a,m b =0. .. (ag(a,m b)ec{(x,vy)|y= T, m,b}N=x"

If Pis a point of 7% let P = (tx, + @, ty, + %.); %, ¥; € F. The
lines of 77 are {(z,y) |z = a,ac F} and {(z,y) |y = T(x, a, B); @, B €
F}. If 2y, =0 then Pe{(z,y)|x = a} or {(z, y)|y = B} for some «,
peF. Thus assume x,y, = 0. Consider T(tx, + x,, @, B) for some «,
BeF. By (2),3a, B3 f(tw + %, &, B) =y, and gt x, + 2y, X, ) = Y,

COROLLARY 3.6. Let Q be an alternative field and F' the associated
quaterion skewfield. Then ©° ts a Baer subplane.

Proof. (See Pickert [16], s. 172-3.) 3 te@sat = t@; € F and
elements of Q@ are of the form ta + B;a, € F where Z denotes a
certain involuting automorphism.

T is linear, so T(a, m, b) = a(tm, + m,) + tb, + tb, (where m;, b; €
F,i=1,2) = t(@m,) + am, + tb, + b, = t(@m, + b)) + am, + b,. Choose
a = — bm;*, then (1) is satisfled. If @, B, a;€ F; i =1, 2, then T(ta, +
a, a, B) = (ta, + a)a + B = (ta)a + (e, + B) = t(aa,) + a,x + B. (See
[16] Pickert, s. 172.) For p,y € F and a,+# 0 3a, B F>aa, = o and
L= aa+ B. .. (2) is also satisfied.

We point out that although the Moufang planes contain Baer
subplanes it is not clear whether derivation sets exist.

THEOREM 3.7. Let m be a translation plane and w, a proper
subplane. Let {V,}; and {V,},- be congruences for w and m,, respectively
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where W, is a subgroup of V, and W s a subgroup of V for a e \* &\,
then if

(i) Q) WNV,=0=W -+ V; =1V for each €N, or (2) V and
W are finite dimensional over the same skewfield and there is an
element 6 €\ — N* such that WNV; =0 and W+ V; = V, then every
line of the projective extension of m is imcident with a point of the
projective extension of m,.

(ii) Under the assumptions of (i) (1) or (2), Ty & Uuer—r(Va + b)
for any be V — W if and only if w, us a Baer subplane.

Proof. First we observe that V,N W = W, or 0 depending on
whether e \* or e — M.

Suppose V,N W %0 and a¢r*. W = UpexrW, & UperV, and
W, < V,. Byassumption, 3 an element we W — {0}swe V, and a¢
2. But we V; for some gen*. .. V,N V, # 0, which is a contradic-
tion since a # S.

S Ifaen =N, V.NW =0.

Assume V,N W ==0 and acr*. W, V.NW and W,+ W, =
W;a, BeN*, a # B.

If ce W — W, then ¢ = w, + w; for some w,e W, and w,€ W, —
{0}, If ceV, then wy;e V, which is a contradiction. Thus, W, =
V.N W if aen*.

For (i) (1),0,aen— N =V, + W=V, + W= V. For(i) (2),V=
V, -~ W is isomorphic to V, + W=V, + W = V for all a e A — \*.

Let V, + b be any line of #z. If V., N W = 0, then a e X — \* and
Veo+W=VsoV.+bO W= @. If V,N W=0, then V, + b for ¢ € \*
is parallel to V, + w, we W and since (V. N W) + w is a line of W =
Ty (1) is proved.

If 7= W& Uwe1—Va let b be a point of 7. If b€ Uucse Ve then
b is on a line of W. So assume b€V — U.cr- V.. Consider the set
of lines V, + b,aex on b. Each V, + b, « e x — \* intersects W uni-
quely by the previous argument.

It WZi,n(V, + bAdeN*2 V, + b intersects W.

. T, is an affine Baer subplane. Thus, (ii) is proved.

Let PG(3, F') denote the projective 3-space over a skewfield F'.
Recall a spread (see Bose and Bruck [4]) & of PG(3, F') is a cover-
ing set of skew lines of PG(3, F').

Barlotti-Bose [3] have studied derivation in dual translation planes
of dimension 2 (over their kernels) which correspond to spreads .&
of PG(8, F') that have the property that any plane of PG(3, F') con-
tains a line of .&” (spreads which are dual spreads). In our terminology
this requirement translates to: Let V, be a 4-dimensional vector space
over F' and {V.}; a congruence for V,. Then any 3-dimensional subspace
W of V, contains a V, for some a €.
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REMARK 3.8. Let V, be a 4-dimensional vector space over a
skewfield F. Let {V.}; be a congruence for V,. Then the Barlotti-
Bose assumption is equivalent to asserting that every 2-dimensional
subspace of V, which is not a V,, @ € A corresponds to a Baer subplane.

Proof. Let X be an arbitrary 3-dimensional vector subspace of V,
Let 2, be any 2-dimensional subspace of 3. Assume 5, is nota V,,a €.
2= (UecVa) N 2y = Uae2 (VaN ). VoN2X,is 1 or 0 dimensional.
Define A* as the subset of ) such that V, N %, is 1-dimensional. Clearly
{V.N 2Z3}» is a congruence for X,.

Assume the subplane 7, corresponding to {V,N X,}» is a Baer
subplane. Let be XY — X,. Then be V, +  for some «e\* and rec 3,.
Since 3, is 2-dimensional, the subspace generated by b and X, <b, 3> =
J. Since V,N 3, is 1-dimensional and b ¢ X, implies that V, < <b, 3.

Conversely, assume that every 3-space of V, contains V, for some
aen. Let w, be the subplane corresponding to {V,N X}, as above.
Since (3.7) (i) (2) holds, we must show that (3.7) (ii) is satisfied. Let
ceV,— 2, By assumption, the subspace {— ¢, 2,> generated by — ¢
and Y, contains a V, for some €. Clearly, 0dex* for otherwise
VN3, =0. Thus, ¢ is on a line V; + ¢ of «,, for ceX,.

We note that Bruen and Fisher [7] have shown that not all
spreads of PG(3, F') have the Barlotti-Bose property.

The following theorem also proved by Barlotti and Bose [3] is
included. Note that the two arguments are completely distinct.

DEFINITION 3.9. We shall say that a translation plane is of
dimension 2 if the corresponding congruence is a 4-dimensional vector
space over a skewfield F. A dual translation plane shall be said to
be of dimension 2 if and only if its dual is of dimension 2.

THEOREM 3.10. Let w be any dual translation plane of dimension
2 such that the corresponding congruence has the property that any
3-space contains a 2-space of the congruence. Then 7 is derivable.

Proof. Let Q be a coordinatizing (left) quasifield for z. @ is a
right 2-dimensional vector space over F' where F' is a skewfield con-
tained in the kernel of Q. We assert that {(a), (=), acF} S I, of &
is a derivation set.

It is straightforward to verify that the following sets are sub-
planes: {(aa + b, a8 + ¢);a + 0,b, ¢ fixed elements of Qva, g F}

(see, e.g., Ostrom [13], Theorem 9). By (2.10) it remains to show that
they are Baer subplanes.

It is easy to see that the image of a Baer subplane under a
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collineation of the plane is a Baer subplane. We may coordinatize 7
so that (z, y) — (x, y + ¢) for all ce Q are translations of 7. We need
only to consider the subplanes {(ax + b, aB)}.

Let the lines {(x,y)|y = am + b}, {(x, v) |« = c}, {(z, ¥) |y = ¢} be
denoted simply by y = am + b, = ¢ and y = ¢, respectively. We
may coordinatize the dual plane of 7= by the following: affine points
(m, — b) are lines y = xm + b and infinite points (o) and (m), me Q@
are lines l. and z = m, respectively, and conversely. (See, e.g.,
Fryxell [9].) That is,

(m,—b——y=aom-+>b
(m)«—2x=m

(00) — L.

The lines of {(axx + b, aB)} are l,, ¥y =xa + aB — ba and & =ad + b
for a = 0, b fixed €@ and for all a, B F.

The points of the associated dual subplane may be represented
by (=), (ad + b), («, bae — aB) where juxtaposition denotes multiplication
in Q. Thus if = denotes multiplication in dual @ then the points are
(o), (6xa + b), (o, axb — Bxa). Note that (1, b) and (0, a) form a vector
basis for the set of affine points so that the affine subplane is a 2-
dimensional vector subspace and hence is an affine Baer subplane.
Since the dual of a Baer subplane is a Baer subplane, (3.10) is proved.

Bruen and Fisher [7] have shown that the condition of (8.9) is
valid in any regular or subregular spread of PG(3, F') and, of course,
the condition is valid if F is finite. In the finite case, Bruck and
Bose [4] have pointed out that subregular spreads correspond to the
translation planes constructed by a series of derivations in Desarguesian
planes. Note that (3.9) in particular implies that Pappian planes
coordinatized by fields K that are quadratic extensions of fields F' are
derivable. Also, finite André planes of order ¢* and kern GF(q) may
be constructed from Desarguesian planes by a series of derivations.
This will be considered in the infinite case.

LEMMA 3.11. Let @ be a Pappian plane. Let ¢ be a nontrivial
automorphism of the coordinatizing field K> K is a 2-dimensional
extension of a field F where the fixed field of ¢ is F. Then w, =
{(®, y) |y = x°m} is the set of points of an affine Baer subplane of .

Proof. w is of dimension 2 and the spread corresponding to 7 is
regular (see [4] or [5]). Since 7, is not a line of 7 and is clearly a
2-dimensional vector space over F it follows from the previous remarks
and (3.8) that «w, is a Baer subplane.

Thus, (3.11) is proved.
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Let L be a field and o an automorphism of L with fixed field
L,. If meK the norm of m is defined as J[.e, mz. If the order
of o is finite, an André system with kern L, may be defined (see [2]
and also [8], p. 355). The lines of the corresponding André plane
are cosets (translates) of the sets {(z,w)|y = z*™m}, {(z, ) |2z = 0}
where o(m) € {p) such that if m, n e K and [].c,y mT = [l.ecpy mT then

o(m) = o(n).

LEMMA 3.12. Let @ be a Pappian plane coordinatized by a field
K which is a 2-dimensional extension of a field F. Let ¢ be a non-
trivial automorphism of order 2 with fixed field F. If me K and
ey mT = m'*° = x e F then 6, = {(m) e |m"° = x} is a derivation
set in . of m. The Baer subplanes are the sets {(z, ¥) |y = x*m for
m'° = x} and their translates.

Proof. The sets {(z, v) |y = °m} and their cosets are Baer subplanes
by (3.11).

Let P and @ be affine points of 7= such that PQNl.€d,. .. PQ
is a line y = am + b where m'*°* = x;m,be K. P,Qecy =axm + b if
and only if Pr,, Qr,ey = xm where 7, is the translation represented
by (x, y) — (2, ¥y — b).

Note that (¢*~‘m)*** = m'** = 2. Therefore, (¢, d) € y = x(c°'m) if
and only if (¢, d) ey = z°m.

We can assume without loss of generality that Qt, is (0, 0). Thus
Pz, (0,0)ey = am if and only if Pt, (0,0) ey = 2°(d"°m) for some
de K.

So there is a Baer subplane containing any two points P and @
such that PQN1l.€9,.

LEMMA 3.13. (See Bruen and Fisher [7], Theorems 2 and 3.)
Let &7 be a regular spread in PG(3, F') where F is a field. Let & =
U:erS% U S5 where the S5 1€N are disjoint reguli. Let  denote
the opposite regulus of &4 for alliexn. Then & = Ui, AU is a
spread which is a dual spread.

Proof. The argument is essentially the proof of Theorems 2 and
3 of [7]. We shall only sketch the proof.

.&” is a dual spread since it is regular. Hence if 3 is a plane
of PGS, F'), ¥ contains a line m of & and hence exactly one. If
m e .4 then 3 contains a line of &% Therefore, assume m e J;., 5%
Let me.%%. The lines of .&7 meeting m form a regulus (the opposite
regulus to .%%) .

Then, if p and q are lines € .94 — {m} it follows that (p N 2)-(g N
%) is a line of F.
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By Lemma 12.2 [4], it follows that {{(z, ¥) |y = am; m'*° = x}} is
a regulus and {{(z, ¥) |y = x°m; m'*° = x}} its opposite regulus. Thus,
each derivation in this case is a matter of “switching” where a regulus
is replaced by the opposite regulus. (This is well known in the finite
case. See, e.g., [4].)

It appears that there are non-André planes of dim 2 that may
be constructed in this way (this is certainly true in the finite case—
see Ostrom [12]).

THEOREM 3.14. Any André plane of dimension 2 may be constructed
from a Pappian plane by a (possibly infinite) series of derivations.

COROLLARY 3.15. Any dual André plane of dimension 2 is derivable.
Proof. (3.10), (3.12), (3.13), (3.14).

THEOREM 3.16. Let Q be any (right) quasifield which is a left
2-dim. vector space over a skewfield F' = Kernel Q. Suppose also that
Q s a right 2-dim. vector space over F. Let mw be the translation
plane coordinatized by Q. Let 7, = {(aa, aB), fixzed a+0€Q for all a,
BEF}. m, is a subplane of T and «, is a right 2-dim. vector subspace
of ® thought of as a (right) 4-dim. wvector space over F. Suppose
there is a skewfield R = F such that Vac @ — {0} &, is a left and
right vector space of the same finite dimension over R. Then w is
derivable.

Proof. We clearly may extend Ostrom’s “homology type” replace-
ment theorem to include the infinite case. (See (3.12), [14].) There
is a congruence for = which consists of the lines of = through the
origin. The partial congruence of lines with slopes in F' or ()
“switches” with the partial congruence of subplanes 7z,. It remains
to show that we obtain a new congruence and hence a translation
plane 7 “derived” from .

Since 7, is a left and right vector space of finite dimension k& over
R S F and a right vector space of dim. 2 over F' then the dimension
of 7, over R = right dim (x,/F')-dim F/R. Therefore, dim F/R = k/2.

.. Dim{(z,y) |y = am} is k and 7, and y = xm, m¢ F' are inde-
pendent left k-dimensional subspaces over R. It follows that we
obtain a mew congruence over R.

Note that it was not required that m, be a Baer subplane for the
proof. But, since a new congruence is obtained it follows that =, is
a Baer subplane.

4., Applications.
Derivation of Desarguesian Planes.
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By §3, if 7 is a Pappian plane of dim 2 over a field K, then 7
is derivable.

Pickert [17] has given an algebraic construction of the Hall planes
which does not require finiteness. Following Albert’s [1] theory, the
following theorem is clear.

THEOREM. (See Pickert [17], Albert [1].) If @ is a Pappian
plane of dimension 2 over a field K then the plane derived from w is
a Hall plane.

Also note that a spread (congruence) corresponding to 7 must be
regular since 7w is Pappian. Clearly then the Barlotti-Bose assumption
is valid here. Furthermore, a derivation chain may be constructed
on 7 by Barlotti-Bose (see [3] and also [9]).

However, if 7 is a Desarguesian, non-Pappian plane it is not clear
that a spread for 7w even contains a regulus. (There are finite spreads
which do not contain reguli but, of course, are dual spreads (see, e.g.,
Bruen [6]).)

The Derivation of the Quaterion Planes.
The quaterions @ can be considered as a right or left 2-dimensional
vector space over the complex & numbers. Since % is 2-dimensional

over the reals, (3.16) applies. Thus, the quaterion plane 7, is derivable.

. derive . . . .
Consider 7, ——— m,. Clearly 7, is a translation plane coordinatized

by a quasifield @, (note also that Ostrom’s Theorems 9, 10,11 [13]
clearly extend to the infinite case in this situation) which is a right
and left 2-dimensional vector space over the complex numbers.

That is, let {1, t} be a basis for Q/& so that elements of @ are
written in the form ta + B, @, B &. Let {1,147, k} be the standard
basis for @ over the reals.

Let = denote multiplication in @, then (a + B)xt = tz, + z, iff
2ot =Ha + B) + 2, 80 2t =t + tB + 2.

Let 2z, = a + bi, a, b real numbers, and ¢ = k so (a + b))k = ak +
b(— j) = ka — jb = k(a — ib). So 2t = t%,(z, denotes the complex con-
jugate of z,).

L =tla+ B +rmsoat+B=%,=0a+B8=2z.

L@+ prt=ta+ B =ta+tg=at+ Bt. So axt=a-t. It
follows also that a+a = a-a for all ae % and acQ.

Thus, @, is 2-dim/%, & is the kernel of @, and @, is also right
2-dim over &.

It is fairly easy to verify that multiplication = in 7, may be
obtained as:

(ta + B)*(td + 7) = t(B — ad™¥)0 + (B — ad™ Y)Yy — ad™" .
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From this equation the mult * can be defined in terms of the
basis {1, <, 7, k}.

Some open questions here are:

(1) Is the full collineation group of 7, the group inherited from
w,?

(2) Is 7, a previously known plane?

Let 7, = {(aqt, aB)}, @ = ta, + a,; ;€ € and a0, # 0. Then if pe
&, pa = ao for some 6 €= if and only if p = p. Thus, «, is a right
and left vector subspace of dimension 4 over the reals but is not, in
general, a left subspace over the complex numbers.

The Derivation of Amndré Planes

I. Nearfield planes. Sabharwal [20] has constructed a class of
infinite nearfield planes (which are André planes). Each nearfield is
of dimension 2 over its kernel where the kernel is a finite extension
by radicals of the rationals.

By theorem (38.15) the dual planes are derivable. Actually,
Sabharwal shows that a derivation chain can be based on these planes.
Moreover, he shows how to construct infinite analogues of the Hughes
planes and considers a derivation chain on such planes.

Sabharwal’s description is essentially given as follows: Let F =
Q(1 p) where Q is the field of rationals and p is a positive nonsquare
in Q.

Define multiplication

xy if the norm 2 = z** >0

Xo =
y xy° if a7 <0

where @ is the automorphism v p— — 1V p.

II. Bol planes. Burn [8] has given an example of an infinite
Bol quasifield @ which is an André system. Both the plane 7 coordi-
natized by Q and its dual are derivable by (3.15) and (3.16). Moreover,
it appears that a derivation chain may be constructed on 7 (see [8],
pp. 356-357).

Semifield planes. Infinite weak nucleus semifields may be con-
structed analogous to the Hughes-Kleinfeld-Knuth finite semifields
(see [10]) which be derivable by (3.16).

Because of space, we shall postpone explication of the derived
planes of this section to a later paper. The discussion of “nets” has
been avoided in this treatment, although the set of Baer subplanes of
a derivable plane form lines of a net. In the finite case the union of
two disjoint nets on the same points form a net. However, in the
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infinite situation this has yet to be proved.
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