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SUPERADDITIVITY INTERVALS AND BOAS’ TEST

G. D. JOHNSON

A test is given for determining maximal intervals of
superadditivity for convexo-concave functions. The test is
then applied to several families of ogive-shaped functions.

1. Superadditive functions have been widely studied [8, 11] for
their own sake but have also found important applications in relia-
bility theory, e.g. [6]. However, tests for superadditivity were non
existent in the literature until Bruckner’s work [3] in 1962. A more
constructive (hence more readily applicable) test due to Boas was
given in 1964 in a paper by Beckenbach [2] on analytic inequalities,
an area where superadditivity is of use (see [2] for a derivation of
Whittaker’s inequality [12]). Boas’ test is here viewed in the light
of Bruckner’s result, strengthened, and applied to some families of
convexo-concave functions as suggested in [2].

2. Consider a continuous, real-valued function, f, of a real
variable, x € R. Then f is called “superadditive” on [B, b]C R if

f@+ fly) = fle+y

for every z,y, « + y in [B, b]. We normalize to the cases 8 =0,b >
0. In this event, superadditivity implies f(0) < 0. The following
sufficient condition for superadditivity is due to Boas [2]:

THEOREM (Boas’ Test). Assume f is nonnegative on [0, b] with
F(0) =0 and f has a continuous derivative on [0, b]. If there are
numbers a < b/2 and ¢ < a such that

(0) f s star-shaped' on [0, 2a],

(i) f is concave® and satisfies f(x/2) < f(x)/2 on [e, 0],

(i) f(0) < f'(b),

(iii) f'(x) — f'(b — ») has at most one zero in (0, a).

Then f is superadditive on [0, b].

A proof of the theorem can be made by considering separately
the cases:

1 fis “star-shaped” on [0, A] means for every z€[0, A], and every a€][0, 1] it is
true that flax) < af(x). For feCY0, 4] it is necessary and sufficient [4] that f/(x) =
Sf(x)/x for all x€(0, Al.

2 The function f is called “convex” on [a, b] if for every =, y €[a, b] it is true that
fx+y)2) < (ftw)+f(y)2; f is called “concave” if —f is convex.
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D 022=5a,05y =

I zza,y=za,x+y=b;

(II) z<a<y<bx+y=h
It was conjectured that this test could be applied to finding super-
additivity intervals of such ogive-shaped functions as exp (— 1/ax)
O<a=l); In(l+ ") and arctan x*(x > 1). But it is easy to show
that for some of these functions, Boas’ test does not apply: consider
In(1 + 2%). A simple calculation shows that 1 <¢ < 21”2 whereas
2a < 2 and hence a < ¢. It is our primary goal to modify Boas’ test
so that it can be used to determine intervals of superadditivity for a
larger class of functions. Along the way we shall be able to determine
conditions giving maximal intervals of superadditivity, and finally a
tabulation of intervals of superadditivity is given for some of the
functions previously mentioned.

3. We are interested in determining intervals, [0, b], of super-
additivity for a special class of functions, the “convexo-concave” fune-
tions [1]: f is called convexo-concave on [0, B] if it is convex on [0,
c] and concave on [¢, B], 0 < ¢ < B. Already, f is superadditive on
[0, ] [4]; that is, b = ¢. Bruckner has characterized superadditivity
of such functions in the following way:

THEOREM [3]. The convexo-concave function, f, with f(0) < 0, s
superadditive on [0, b] 1f and only if maxX,.,<, [f(®) + (0 — 2)] < f(b).

The main difficulties in applying Bruckner’s test are first in
obtaining the quantity “b”, and second in taking the maximum on
the lefthand side. By requiring f € C'[0,b] we can ameliorate the
second objection and turning to Boas’ test we obtain a candidate for
b: namely, let b be the smallest positive root of f(x) = 2/ (x/2).

THEOREM. Let f e C'[0, b] be convexo-concave on [0, b] (0 < b < o)
with f(0) =0 and®

(1) FO) =21(0/2),

(ii) f'(0) < f7(b),

(iii-a) f'(®) = f'(b — x) nmo more than once on (0, b/2). Then f
is superadditive on [0, b].

Proof. Consider the function g(x) = f(x) + f(b — ) — f(b). Then
f(0) £ 0 implies ¢(0) <0. By (i) and (i), g(®b/2) =0 and g¢'(0) < 0,
respectively. Suppose ¢ is positive on (0, b/2). Then it has a positive

3 It is important for generalizing to higher dimensions that condition (0) in Boas’
test has been deleted. See [6].
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maximum on (0, 5/2). Therefore g'(x) = f'(x) — f'(b — ») has at least
two zeros on (0, b/2), contrary to (iii-a). Finally, then, g(x) <0 on
[0, /2] and—Dby symmetry of g about z = b/2,

max [f(z) + f(b — 2)] = f(b)
Szt
which, by Bruckner’s theorem, shows f superadditive on [0, b].

For the function f(x) =In (1 + 2 it is easy to check that (i),
(ii) are satisfied for b = 2V 2. Condition (iii-a) is also straight forward:
it is true by Descartes’ rule of signs.

Notice that for f(0) < 0, f is superadditive at least as long as it
is merely nondecreasing and nonpositive. This relatively arbitrary
state of affairs will be avoided by assuming f(0) = 0 in what follows.
For a further appreciation of (iii) we give a corollary to Bruckner’s
theorem.

COROLLARY. Suppose convexo-concave f, with f(0) =0, is continu-
ously differentiable. Then f s superadditive on [0, b] if and only
of for every =z, in [0, b] such that f'(x) = f'(b — x,), it is true that
F@) + f(b — z) = f(b).

Thus we see how the maximizing duties in Bruckner’s theorem
have been replaced by a zero-counting operation in the other two
theorems. The fourth condition in Boas’ test is less restrictive than
(iii-a) above since b is not less than 2a. But it is not hard to see
that (iii-a) can be replaced by

(iii-b) f'(x) = f'(b — x) no more than once on the smaller of the
two intervals (0, ¢), (c, b),

which is a less restrictive condition than even Boas’ fourth condition.
(Here “c¢” is the inflection point of f.)

Perhaps a computational note is in order here. If we refer
generically to conditions (iii), (iii-a), (iii-b) as “root conditions”, then
in applications the root condition can often be tested by Sturm’s
theorem [7]. For example, the functions In(1 + 2*) (n = 2,3, 4, «-+)
have as derivatives rational functions with denominators not vanishing
for positive arguments. Verifying a root condition is then a matter
of counting the number of zeros of polynomials in a finite interval.
Sturm sequences can also be readily computed for rational functions
[10], and Sturm’s idea can be extended to counting real zeros of
even more general functions [5]. Finally, upon observing that f’ is
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unimodal’, an optimum strategy for localizing the inflection point ¢
(as used in (iii-b)) is well-known [9].

4. Now it is quite striking that the choice of b as the smallest
positive root, o, of 2f(x/2) = f(x) often turns out to be maximal.
Certainly ¢ is an upper bound on the interval of superadditivity.
Consider the quantity min {0, 7} where o, T are the smallest positive,
odd zeros of 2f(x/2) — f(x), f'(0) — f’(x), respectively. Then we may
be assured of a maximal interval of superadditivity.

THEOREM. Suppose f e C'[0,b] is superadditive on [0, b] where
b=min{o, t} < co. Then [ is mot superadditive on any larger in-
terval, [0, B], B > b.

The proof is immediate by failure of superadditivity near x = 0
(b =t case) and x = B/2(b = o case) where B = b + ¢, ¢ > 0 arbitrary.
In our example, 21/ 2 is the largest value of b so that In (1 + 2? is
superadditive on [0, b]. With this optimality result, then, we turn
to computing intervals of superadditivity in the next section.

5. Tables of b are now given where b is the largest 7D approxi-
mation smaller or equal to b and [0, b] is the maximum interval of
superadditivity for the function indicated.

P arctan x4 In(1 + z%) exp (— A/x) 2
1.1 .5852351 .3425001 1.586964 1.1
1.2 .8532410 .7280202 1.731234 1.2
1.3 1.051079 1.104767 1.875503 1.3
1.4 1.205188 1.452478 2.019773 1.4
1.5 1.328208 1.764139 2.164042 1.5
1.6 1.427957 2.039063 2.308312 1.6
1.7 1.509790 2.279467 2.452581 1.7
1.8 1.577572 2.488734 2.596851 1.8
1.9 1.634178 2.670539 2.741120 1.9
2 1.681792 2.828427 2.885390 2
3 1.906368 3.634241 4.328085 3
4 1.96689%4 3.868672 5.770780 4
5 1.987133 3.948700 7.213475 5
6 1.994715 3.978890 8.656170 6
7 1.997751 3.991011 10.09886 7
8 1.999019 3.996080 11.54156 8
9 1.999565 3.998260 12.98425 9

10 1.999804 3.999218 14.42695 10

4+ A function f(x) is “unimodal” if there is a & so that f is either strictly increasing
for x < & and strictly decreasing for x > &, or else strictly increasing for x < & and
strictly decreasing for x = &.
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Entries above or to the left of the stepped line were unattainable by
Boas’ original test.

For exp (— Mx) (v = 1) it is easy to verify (in this case, Boas’
test is sufficient) that the intervals of superadditivity [0, b(\)] are
determined by b(\) = )\/In 2.

In [2] it is suggested that maximum intervals of superadditivity
be computed not only for f = f, but also for the “average function
of /7, F=F,, and for the “inverse average function,” ¢ = ¢,, where

0 x:-O’

FZ = z
®) lg Fdt @ >0;
x Jo

$:(x) = fai(x) + xfi(x) x=0.

For the case f;(z) = exp (— \/x) we can give the following maximum
intervals of superadditivity:

Function 5(2)—end point
o2 2/1.116845
b 1/.6931472
F; 2/.4243251

where Boas’ test was inapplicable to the ¢,-case.
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