HOMOTOPY AND ALGEBRAIC K-THEORY

BARRY DAYTON

A notion of homotopy is described on a category of rings. This is used to induce a notion of equivalence on the categories of projective modules and to construct a K-theory exact sequence. The topological K-theory exact sequence is then obtained from the algebraic K_0 , K_1 sequence.

1. Homotopy. In this section we describe the homotopy notion and the notion of equivalence it induces on the categories of projective modules.

A cartesian square of rings is a commutative diagram of rings

$$(*) \hspace{3cm} A \xrightarrow{h_2} A_2 \\ \downarrow h_1 \hspace{0.5cm} \downarrow f_2 \\ A_1 \xrightarrow{f_1} A_0$$

where $A = \{(a_1, a_2) \in A_1 \times A_2 | f_1(a_1) = f_2(a_2)\}$ and h_1 , h_2 are restrictions of the coordinate projections. We will further assume that f_1 is surjective. If \mathcal{K} is a category of rings and $F: \mathcal{K} \to \mathcal{K}$ is a functor we call F cartesian square preserving if the functor applied to a cartesian square gives a cartesian square.

DEFINITION 1.1. Let \mathscr{K} be a category of rings. A homotopy theory \mathscr{H} for \mathscr{K} is an ordered quadruple $(I, \iota_0, \iota_1, \pi)$ where I is a cartesian square preserving functor and $\iota_0, \iota_1: I \to 1_{\mathscr{K}}, \pi: 1_{\mathscr{K}} \to I$ are natural transformations such that $\iota_0(A)\pi(A) = 1_A = \iota_1(A)\pi(A)$ for $A \in \mathscr{K}$.

For a homotopy theory $\mathscr{H}=(I,\,\iota_0,\,\iota_1,\,\pi)$ on \mathscr{K} and $f,g\colon B\to A$ morphisms in \mathscr{K} define $f\sim g$ if there exists a morphism $h\colon B\to IA$ in \mathscr{K} such that $f=\iota_0h,\,g=\iota_1h;\,h$ is called a homotopy of f to g. Let \cong be the smallest equivalence relation on $\mathscr{K}(B,A)$ containing \sim ; if $f\cong g$ we say f is homotopic to g.

Note that a homotopy theory gives rise to a homotopy category, i.e. a category whose objects are those of \mathcal{K} and whose morphisms are homotopy classes of morphisms.

Let \mathscr{L} be an arbitrary category and $G\colon \mathscr{K} \to \mathscr{L}$ be a covariant functor A homotopy theory $\mathscr{H} = (I, \ell_0, \ell_1, \pi)$ on \mathscr{K} is called compatible with G if $G(\pi(A))$ is an isomorphism for each $A \in \mathscr{K}$. Note that if \mathscr{H} is compatible with G then $G(\ell_0) = G(\ell_1) = G(\pi)^{-1}$ consequently if $f \cong g$, then G(f) = G(g).

For any ring A let $\underline{\underline{P}}(A)$ denote the category of finitely generated projective right A-modules. Given a ring homomorphism $f: A \to B$ denote by $\widehat{f}: \underline{\underline{P}}(A) \to \underline{\underline{P}}(B)$ the covariant additive functor defined by $\widehat{f}(M) = M \bigotimes_A B$ on objects M of $\underline{\underline{P}}(A)$ and $\widehat{f}(\alpha) = \alpha \otimes 1$ on morphisms of $\underline{\underline{P}}(A)$. It is well known that if M is A-projective then $M \bigotimes_A B$ is B-projective.

If $A_0, A_1, \dots, A_n, B_0, \dots, B_e$ are rings, if $f_i \colon A_{i-1} \to A_i$ and $g_i \colon B_{i-1} \to B_i$ are ring homomorphisms, if $A_0 = B_0 = A$, $A_n = B_e = B$ and if $f_n f_{n-1} \cdots f_1 = g_e g_{e-1} \cdots g_1$, we denote by $\langle f_1, \dots, f_n/g_1, \dots, g_e \rangle$ the canonical natural equivalence $\hat{f}_n \cdots \hat{f}_1 \to \hat{g}_e \cdots \hat{g}_1$; it is straightforward to verify that

$$\left\langle \frac{g_1, \dots, g_e}{h_1, \dots, h_k} \right\rangle \left\langle \frac{f_1, \dots, f_n}{g_1, \dots, g_e} \right\rangle = \left\langle \frac{f_1, \dots, f_n}{h_1, \dots, h_k} \right\rangle,$$

that

$$\left\langle rac{f_1,\, \cdots,\, f_n,\, h}{g_1,\, \cdots,\, g_e,\, h}
ight
angle = \widehat{h}\!\!\left\langle rac{f_1,\, \cdots,\, f_n}{g_1,\, \cdots,\, g_e}
ight
angle$$

whenever $h: B \rightarrow C$ and that

$$\left\langle \frac{h,f_1,\,\cdots,f_n}{h,\,g_1,\,\cdots,\,g_e} \right
angle_{\scriptscriptstyle M} = \left\langle \frac{f_1,\,\cdots,f_n}{g_1,\,\cdots,\,g_e} \right
angle_{\hat{h}M}$$

for $h: C \to A$ where the subscript M means that the natural equivalence is evaluated at the module $M \in P(C)$.

DEFINITION 1.2. A homotopy theory $\mathscr{H}=(I,\,\ell_0,\,\ell_1,\,\pi)$ in \mathscr{K} induces an \mathscr{H} -equivalence $\cong_{\mathscr{H}}$ in each category $\underline{P}(A),\,A\in\mathscr{K}$ as follows: given $M,\,N\in\underline{P}(A)$ write $M\sim_{\mathscr{H}}N$ if there is a $Q\in\underline{P}(IA)$ such that $M\approx\ell_0Q,\,N\approx\ell_1Q$ and let \cong be the smallest equivalence relation on the set of isomorphism classes of objects in $\underline{P}(A)$ containing $\sim_{\mathscr{H}}$. If $M\cong_{\mathscr{H}}N$ we say that the modules are equivalent mod- \mathscr{H} .

The homotopy theory \mathscr{H} in \mathscr{K} also induces an equivalence relation $\cong_{\mathscr{K}}$ in the set $\mathrm{Iso}(M,\,N)$ of isomorphisms $M\to N$ of A-projectives by letting $\phi_0\sim_{\mathscr{K}}\phi_1$ denote that there is an isomorphism $\theta\colon\widehat{\pi}M\to\widehat{\pi}N$ such that

$$\phi_{i} = \left\langle rac{\pi,\, \ell_{i}}{1}
ight
angle_{\scriptscriptstyle N} (\hat{\ell}_{i} heta) \left\langle rac{1}{\pi,\, \ell_{i}}
ight
angle_{\scriptscriptstyle M}$$

for j=0,1 and letting $\cong_{\mathscr{H}}$ be the smallest equivalence relation containing $\sim_{\mathscr{H}}$ on the set $\mathrm{Iso}\,(M,\,N)$. If $\phi_0\cong_{\mathscr{H}}\phi_1$ we say the isomorphisms are equivalent mod \mathscr{H} .

Note that if $M' \xrightarrow{\omega} M \xrightarrow{\phi_0} N \xrightarrow{\mu} N'$ are isomorphisms and if $\phi_0 \cong \phi_1 \mod \mathscr{H}$ then also $\mu \phi_0 \omega \cong \mu \phi_1 \omega \mod \mathscr{H}$. It is not difficult to show

that if $f: A \to B$ is a morphism in $\mathscr K$ then $M \cong N \mod \mathscr H$ in $\underline{P}(A)$ implies $\widehat{f}M \cong \widehat{f}N \mod \mathscr H$ in $\underline{P}(B)$ and $\phi_0 \cong \phi_1 \mod \mathscr H$ implies $\widehat{f}\phi_0 \cong \widehat{f}\phi_1 \mod \mathscr H$ in $\underline{P}(B)$. It is also easily seen that if $f \cong g: A \to B$ and $M \in \underline{P}(A)$ then $\widehat{f}M \cong \widehat{g}M \mod \mathscr H$ in $\underline{P}(B)$.

Given a ring with unit R, an R-algebra will mean a unitary R-algebra. If A is an R-algebra, then $a: R \to A$ will denote the unique R-algebra homomorphism such that a(1) = 1. In addition to the above results we then have:

LEMMA 1.3. Let \mathcal{K} be a category of R-algebras and R-algebra homomorphisms and let $\mathcal{H}=(I,\,\iota_0,\,\iota_1\pi)$ be a homotopy theory on \mathcal{K} . Let $f\cong g\colon A\to B$ in \mathcal{K} , let $M,\,N\in\underline{P}(R)$ and let $\phi\in\mathrm{Iso}\,(\hat{a}M,\,\hat{a}N)$. Then

$$\left\langle \frac{a, f}{b} \right\rangle_{N} (\widehat{f}(\phi)) \left\langle \frac{b}{a, f} \right\rangle_{M} \cong \left\langle \frac{a, g}{b} \right\rangle_{N} (\widehat{g}(\phi)) \left\langle \frac{b}{a, g} \right\rangle_{M} \bmod \mathscr{H}$$

in Iso $(\hat{b}M, \hat{b}N)$.

Proof. We may assume $f \sim g$. Letting $h: A \to IB$ be a homotopy from f to g, define $\omega: \hat{\pi}\hat{b}M \to \hat{\pi}\hat{b}N$ by

$$\omega = \left\langle \frac{a, h}{b, \pi} \right\rangle_{N} (h(\phi)) \left\langle \frac{b, \pi}{a, h} \right\rangle_{M}$$
.

It is easily verified that ω shows that the two isomorphisms are equivalent mod \mathcal{H} .

Equivalence mod \mathscr{H} works well with cartesian squares. If (*) is a cartesian square we can construct the fiber product category $\underline{P}(A) \times_{\underline{P}(A_0)} \underline{P}(A_2)$, [2, p. 358] in which objects are triples (M, ϕ, N) where $M \in \underline{P}(A_1)$, $N \in \underline{P}(A_2)$ and $\phi : \hat{f}_1 M \to \hat{f}_2 N$ is an isomorphism in $\underline{P}(A_0)$; and the morphisms $(M, \phi, N) \to (M', \phi', N')$ are pairs (α, β) where $\alpha : M \to M' \in \underline{P}(A_1)$, $\beta : N \to N' \in \underline{P}(A_2)$ and $\phi'(\hat{f}\alpha) = (\hat{f}_2\beta)\phi$. By Milnor's theorem [2, p. 479] the functor $F : \underline{P}(A) \to \underline{P}(A_1) \times_{\underline{P}(A_0)} \underline{P}(A_2)$ given by $F(M) = (\hat{h}_1 M, \langle h_1 f_1 / h_2 f_2 \rangle_M, \hat{h}_2 M)$ and $F(\alpha) = (\hat{h}_1 \alpha, \hat{h}_2 \alpha)$ is an equivalence of categories. Making this identification, the following is a projective module analogue of a theorem on vector bundles. [1, Lemma 1.4.6].

PROPOSITION 1.4. Let $\mathscr{H} = (I, \iota_0, \iota_1 \pi)$ be a homotopy theory on \mathscr{K} and (*) a cartesian square in \mathscr{K} . Let $M \in \underline{P}(A)$, $N \in \underline{P}(A)$ and $\phi_0 \cong \phi_1 \colon \widehat{f}_1 M \to \widehat{f}_2 N \mod \mathscr{H}$. Then $(M, \phi_0, N) \cong (M, \phi_1, N) \mod \mathscr{H}$ in $\underline{P}(A)$.

Proof. Assume $\phi_0 \sim_{\mathscr{H}} \phi_1$ and let $\omega: \hat{\pi} \hat{f}_1 M \to \hat{\pi} \hat{f}_2 N$ show $\phi_0 \sim_{\mathscr{H}} \phi_1$.

Define $\omega': \widehat{If}_1\widehat{\pi}M \to \widehat{If}_2\widehat{\pi}N$ by

$$\omega' = \left\langle rac{f_2, \pi}{\pi, \ If_2}
ight
angle_{\scriptscriptstyle N} (\omega) \left\langle rac{\pi, \ If_1}{f_1, \ \pi}
ight
angle_{\scriptscriptstyle M}$$
 .

Since

$$egin{aligned} IA & \xrightarrow{Ih_2} IA_2 \ Ih_1 igg| & \downarrow If_2 \ IA_1 & \xrightarrow{If_1} IA_0 \end{aligned}$$

is by hypothesis also a cartesian square we have $(\hat{\pi}M, \omega', \hat{\pi}N) \in \underline{\underline{P}}(IA)$ and direct calculation shows that $\hat{\iota}_j(\hat{\pi}M, \omega', \hat{\pi}N) \approx (M, \phi_j, N)$ for j=0,1.

2. A connecting homomorphism. In this section we obtain an explicit formula for a connecting homomorphism useful in constructing algebraic K-theory exact sequences.

Let K_0 , K_1 be the algebraic K_i functors [2, p. 445]. If \mathcal{K} is a category of R-algebras and R-algebra homomorphisms define $\widetilde{K}_i(A) = K_i(A)/\text{Im } K_i(a)$. If $f: A \to B$ is a morphism in \mathcal{K} then $f \circ a = b$ and we let $\widetilde{K}_i(f)$: $\widetilde{K}_i(A) \to \widetilde{K}_i(B)$ be the induced map. It is simple to verify that \widetilde{K}_0 , K_1 are functors on \mathcal{K} and moreover that $\widetilde{K}_i(A)$ is isomorphic to the usual reduced group whenever A is an augmented R-algebra.

THEOREM 2.1. Let $\mathscr H$ be a homotopy theory on a category $\mathscr K$ of R-algebras compatible with $\widetilde K_0$. Let

$$egin{aligned} B & \longrightarrow R & A & \longrightarrow R \ & & & \downarrow_{f_1} & \downarrow_{a_0} \ & B_1 & \stackrel{g}{\longrightarrow} A_0 & A_1 & \stackrel{f}{\longrightarrow} A_0 \end{aligned}$$

be cartesian squares in \mathcal{K} , h: $B_1 \to A_1$ such that $fh \cong g$ and $\hat{K}_0(B_1) = 0$. Then there is a unique group homomorphism $\delta \colon \hat{K}_0(B) \to \hat{K}_0(A)$ such that

$$\delta \llbracket (\widehat{b}_{\scriptscriptstyle 1} M,\, \phi,\, N)
brack = \Bigl \llbracket \Bigl(\widehat{a}_{\scriptscriptstyle 1} M,\, \phi \Bigl\langle rac{a_{\scriptscriptstyle 1},\, f}{b_{\scriptscriptstyle 1},\, g} \Bigr
angle_{\scriptscriptstyle M},\, N \Bigr) \Bigr
brack
brack$$

for $M, N \in \underline{P}(R)$.

Proof. For
$$Q=(\widehat{b}_{_1}M,\,\phi,\,N)\in\underline{\underline{P}}(B)$$
 define
$$DQ=\left(\widehat{a}_{_1}M,\,\phi\Big\langle\frac{a_{_1},\,f}{b_{_1},\,a}\Big\rangle_{_M},\,N\right)\in\underline{\underline{P}}(A)\;.$$

Once one has established

- (i) If $Q_1 \approx Q_2$ then $DQ_1 \cong DQ_2 \mod \mathscr{H}$.
- (ii) $D(Q_1 \bigoplus Q_2) \approx DQ_1 \bigoplus DQ_2$
- (iii) $D(\hat{b}M) = \hat{a}M$
- (iv) every element of $\hat{K}_0(B)$ is of the form [Q]

it follows easily that δ is well defined, unique and a group homomorphism. Because proofs of assertions (ii)—(iv) are themselves straightforward and do not depend on homotopy, we will prove only (i). Suppose then that (α, β) : $(\hat{b}_1 M, \phi, N) \rightarrow (\hat{b} M', \phi', N')$ is an isomorphism. Then we have $\phi' = \hat{a}_0(\beta)(\phi)g(\alpha^{-1})$. By Lemma 1.3

$$\Big\langle rac{b_{ ext{ iny 1}},\,g}{a_{ ext{ iny 0}}}\Big
angle_{ ext{ iny 0}} \widehat{g}(lpha^{- ext{ iny 1}}) \Big\langle rac{a_{ ext{ iny 0}}}{b_{ ext{ iny 0}},\,g} \Big
angle_{ ext{ iny 0}} \cong \Big\langle rac{b_{ ext{ iny 1}},\,fh}{b_{ ext{ iny 0}},\,g} \Big
angle_{ ext{ iny 0}} \widehat{fh}(lpha^{- ext{ iny 1}}) \Big\langle rac{a_{ ext{ iny 0}}}{b_{ ext{ iny 0}},\,h} \Big
angle_{ ext{ iny 0}} \mod \mathscr{H}.$$

A direct computation gives

$$\widehat{g}(lpha^{-1})\Big\langle rac{a_1,\ f}{b_1,\ g}\Big
angle_{_M}\ \cong \Big\langle rac{a_1,\ f}{b_1,\ g}\Big
angle_{_M}\widehat{f}\Big(\Big\langle rac{b_1,\ h}{a_1}\Big
angle_{_M}\widehat{h}(lpha^{-1})\Big\langle rac{a_1}{b_1,\ h}\Big
angle_{_M'}\Big)\ \mathrm{mod}\ \mathscr{H},$$

SO

$$\phi' \left\langle \frac{a_1, f}{b_1, g} \right\rangle_{\scriptscriptstyle M'} \cong \hat{a}_0(\beta)(\phi) \left\langle \frac{a_1, f}{b_1, g} \right\rangle_{\scriptscriptstyle M} \hat{f}(\gamma)$$

where

$$\gamma = \left\langle rac{b_{ ext{ iny 1}},\,h}{a_{ ext{ iny 1}}}
ight
angle_{ ext{ iny M}} (\hat{h}(lpha^{- ext{ iny 1}})) \left\langle rac{a_{ ext{ iny 1}}}{b_{ ext{ iny 1}},\,h}
ight
angle_{ ext{ iny M}'}$$
 .

Therefore (using Proposition 1.4)

$$\left(\widehat{a}_{\scriptscriptstyle 1}M',\,\phi'\Big\langle rac{a_{\scriptscriptstyle 1},\,f}{b_{\scriptscriptstyle 1},\,g}\Big
angle_{_{M'}},\,N'
ight)\cong\left(\widehat{a}_{\scriptscriptstyle 1}M',\,a_{\scriptscriptstyle 0}(eta)(\phi)\Big\langle rac{a_{\scriptscriptstyle 1},\,f}{b_{\scriptscriptstyle 1},\,g}\Big
angle_{_{M}}\widehat{f}(\gamma),\,N'
ight) mod\,\mathscr{H}.$$

Since (γ, β^{-1}) is an isomorphism from this latter module to

$$\left(\widehat{a}_{\scriptscriptstyle 1}M,\,\phi\left\langle rac{a_{\scriptscriptstyle 1},\,f}{b_{\scriptscriptstyle 1},\,g}
ight
angle_{\scriptscriptstyle M},\,N
ight)$$

the assertion (i) is proved.

3. An exact sequence. In this section we use the homomorphism of 2.1 and the standard K_0 , K_1 exact sequence to construct a 5-term exact sequence.

An R-algebra A is called proper if the morphism $K_0(a)$: $K_0(R) \rightarrow K_0(A)$ is injective. We note that either of the following two conditions is sufficient to insure that an R-algebra A is proper:

(i) A has as an augmentation, i.e. there is a $e: A \to R$ such that $ea = 1_R$

(ii) R is a principal ideal domain and A is a commutative R algebra.

LEMMA 3.1. Let (*) be a cartesian square of proper R-algebra. Then there is an exact sequence

$$\widetilde{K}_{1}(A) \longrightarrow \widetilde{K}_{1}(A_{1}) \bigoplus \widetilde{K}_{1}(A_{2}) \longrightarrow \widetilde{K}_{1}(A_{0}) \stackrel{\widetilde{\partial}}{\longrightarrow} \widetilde{K}_{0}(A)$$

$$\longrightarrow \widetilde{K}_{0}(A_{1}) \bigoplus \widetilde{K}_{0}(A_{2}) \longrightarrow \widetilde{K}_{0}(A_{0})$$

which is functorial with respect to transformations of cartesian squares.

Proof. Since

$$\begin{array}{ccc} R & \longrightarrow R \\ \downarrow & & \downarrow \\ R & \longrightarrow R \end{array}$$

is a cartesian square, by [2, p. 481] we have the commutative diagram

$$K_{1}(R) \longrightarrow K_{1}(R) \oplus K_{1}(R) \longrightarrow K_{1}(R) \longrightarrow K_{0}(R) \longrightarrow K_{0}(R)$$

where the columns and the first two rows are exact. An easy chase shows that the third row is exact.

We wish to give an explicit formula for the morphism $\tilde{\partial}$. For this we have:

LEMMA 3.2. Let A, A_0 and A_1 be proper R-algebras and

$$A \xrightarrow{e} R$$

$$\downarrow f' \qquad \downarrow a_0$$

$$A_1 \xrightarrow{f} A_0$$

be a cartesian square. Then the connecting homomorphism of 3.1 is

given by

$$\widetilde{\partial}[\widehat{a}_{\scriptscriptstyle 0}M,\,lpha] = \left[\left(\widehat{a}M,\,lpha\Big\langlerac{a_{\scriptscriptstyle 1},\,f}{a_{\scriptscriptstyle 0}}\Big
angle_{\!\scriptscriptstyle M},\,M
ight)
ight] \;\; for \;\;\; M\in \underline{\underline{P}}(R) \;.$$

Proof. Since the full subcategory of $P(A_0)$ with objects \hat{a}_0M , $M \in P(R)$ is cofinal, $K_1(A_0)$ and hence $\widetilde{K}_1(A_0)$ is generated by elements of the form $[\hat{a}_0M, \alpha]$ [2, p. 355]. But

$$egin{aligned} \partial [\widehat{a}_{\scriptscriptstyle 0} M, \, lpha] &= \widehat{\partial} igg[\widehat{f}\widehat{f}'\widehat{a} M, \Big\langle rac{a_{\scriptscriptstyle 0}}{a_{\scriptscriptstyle 0}} f, \, f' \Big
angle_{\scriptscriptstyle M} lpha \Big\langle rac{a_{\scriptscriptstyle 0}}{a_{\scriptscriptstyle 0}} \Big
angle_{\scriptscriptstyle M}, \, \widehat{\epsilon}\widehat{a} M \Big) igg] - [\widehat{a} M] \ &= igg[\Big(\widehat{a}_{\scriptscriptstyle 0}, M, \, lpha \Big\langle rac{a_{\scriptscriptstyle 0}}{a_{\scriptscriptstyle 0}} \Big
angle_{\scriptscriptstyle M}, \, M \Big) igg] + 0 \end{aligned}$$

from [2, 4.3 p. 365] since $[\hat{a}M] \in \text{Im } K_0(a)$. In order to apply 2.1 we need

LEMMA 3.3. Under the hypotheses of Theorem 2.1 the diagram

$$\widetilde{K}_{\scriptscriptstyle 1}(A_{\scriptscriptstyle 0}) \stackrel{\widetilde{\widetilde{\partial}}'}{\longrightarrow} \widetilde{K}_{\scriptscriptstyle 0}(B) \longrightarrow \widetilde{K}_{\scriptscriptstyle 0}(B_{\scriptscriptstyle 1}) = 0 \ \downarrow 1 \qquad \qquad \downarrow \delta \qquad \qquad \downarrow \ \widetilde{K}_{\scriptscriptstyle 1}(A_{\scriptscriptstyle 0}) \stackrel{\widetilde{\widetilde{\partial}}}{\longrightarrow} \widetilde{K}_{\scriptscriptstyle 0}(A) \stackrel{\widetilde{K}_{\scriptscriptstyle 0}(f')}{\longrightarrow} \widetilde{K}_{\scriptscriptstyle 0}(A_{\scriptscriptstyle 1})$$

commutes.

Proof.

$$egin{aligned} \delta ilde{\partial}' [\hat{a}' M, \, lpha] &= \delta iggl[\left(\hat{b}, \, M, \, lpha \Big\langle rac{b_{\mathsf{l}}, \, g}{a'} \Big
angle_{\mathsf{M}}, \, M
ight) iggr] = iggl[\left(\hat{a}_{\mathsf{l}} M, \, lpha \Big\langle rac{b_{\mathsf{l}}, \, g}{a_{\mathsf{o}}} \Big
angle_{\mathsf{M}} \Big\langle rac{a_{\mathsf{l}}, \, f}{b_{\mathsf{l}}, \, g} \Big
angle_{\mathsf{M}}, \, M iggr) iggr] \ &= iggl[\left(\hat{a}_{\mathsf{l}} M, \, lpha \Big\langle rac{a_{\mathsf{l}}, \, f}{a'} \Big
angle_{\mathsf{M}}, \, M
ight) iggr] = iggr[\hat{a}_{\mathsf{l}} M, \, lpha iggr] \; . \end{aligned}$$

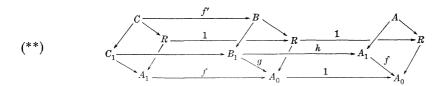
Also since $\widetilde{K}_0(B_1) = 0$ it can be seen that if

$$[N] \in \widetilde{K}_0(B), [N] = [(\widehat{b}_1 M, \phi, N)], M, N \in P(R)$$
.

Thus

$$\widetilde{K}_{\scriptscriptstyle 0}(f')\delta[(\widehat{b}_{\scriptscriptstyle 1}M,\,\phi,\,N)] = \widetilde{K}_{\scriptscriptstyle 0}(f')\!\!\left[\!\left(\widehat{a}_{\scriptscriptstyle 1}M,\,\phi\!\!\left\langle \!rac{a_{\scriptscriptstyle 1},\,f}{h_{\scriptscriptstyle 1},\,g}\!
ight
angle_{\scriptscriptstyle M},\,N
ight)
ight] = [\widehat{a}_{\scriptscriptstyle 1}M] = 0$$
 .

THEOREM 3.4. Let $\mathscr K$ be a category of proper R-algebras and $\mathscr H$ be a homotopy theory on $\mathscr K$ compatible with $\tilde K_0$. Let

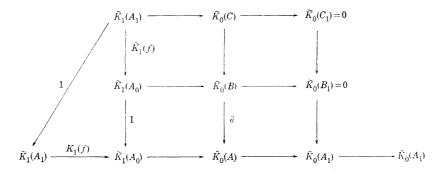


be a diagram in \mathcal{K} where $fh \cong g$, all other squares commute and the vertical squares are cartesian. If $\widetilde{K}_0(C_1) = \widetilde{K}_0(B_1) = 0$ then

$$\widetilde{K}_0(C) \xrightarrow{\widetilde{K}_0(f')} \widetilde{K}_0(B) \xrightarrow{\delta} \widetilde{K}_0(A) \longrightarrow \widetilde{K}_0(A_1) \longrightarrow \widetilde{K}_0(A_0)$$

is exact

Proof. From 3.1 and 3.3 we get a commutative diagram



where the rows are exact. A diagram chase gives the result.

4. The topological K-theory exact sequence. In this section we use 3.4 to construct the topological K-Theory exact sequence.

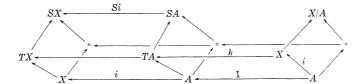
Let R denote the real or complex numbers. For a compact Hausdorff space X let CX be the ring of continuous R-valued functions and for a continuous function $f: X \to Y$ let $f^*: CY \to CX$ be the induced ring homomorphism. Denote the one point space by * and take \mathcal{K} to be the category of rings CX and ring homomorphisms. We will consider \mathcal{K} to be a category of $C^* = R$ algebras. Define $J: \mathcal{K} \to \mathcal{K}$ \mathcal{K} by $JCX = C(X \times I)$ where I denotes the unit interval and J(f) = $(f \times 1)^*$. Define ι_0, ι_1, π by i_0^*, i_1^*, π^* where $i_j : X \rightarrow I$ is given by $i_i(x) = (x, j)$ and $\pi(x, t) = x$, $\pi: X \times I \to X$. It follows easily that $\mathcal{H} = X$ (J, ℓ_0, ℓ_1, π) is a homotopy theory on \mathcal{K} . We recall that $K_0^T(X) =$ $K_0(CX)$ where K_0^T is topological K_0 functor. If X is a pointed space the reduced group as defined above coincides with the usual reduced group. It follows from standard results on vector bundles [1, Lemma 1.4.3] and on the correspondence between vector bundles over X and projective modules over CX that \mathcal{H} is compatible with K_0^T . Alternatively it can be easily proved directly that if $M, N \in \underline{P}(X)$ then $M \cong$

 $N \mod \mathcal{H}$ if and only if $M \approx M$. We then have

Theorem 4.1. Let X be a compact Hausdorff space, $A \subset X$ a closed subspace. Let SA, SX denote the suspensions of A, X respectively. Then there is an exact sequence

$$\widetilde{K}_0^T(SX) \longrightarrow \widetilde{K}_0^T(SA) \longrightarrow \widetilde{K}_0^T(X/A) \longrightarrow \widetilde{K}_0^T(X) \longrightarrow \widetilde{K}_0^T(X)$$

Proof. Consider the diagram



where TX denotes the cone on X and h is any continuous function. Applying the functor C we get a diagram of the form (*) and it is not hard to show that the vertical squares are cartesian. Since TA is contractible $hi \cong j$ so $i^*h^* \cong j^*$. Thus theorem (3.4) applies to give the desired exact sequence.

The long exact K-theory sequence follows in the usual manner by splicing sequences of this form together.

REFERENCES

- 1. M. F. Atiyah, K-Theory, Benjamin, New York, (1966).
- 2. Hyman Bass, K-Theory, Benjamin, New York, (1968).

Received August 10, 1971

HARVEY MUDD COLLEGE

AND

NORTHEASTERN ILLINOIS UNIVERSITY