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^ORTHOGONALLY SCATTERED MEASURES

K. SϋNDARESAN AND W. A. WOYCZYNSKI

Let (X, Σ) be a measurable space and H be a Hubert space.
Let μ be a measure on Σ with values in H such that μ(A)
is orthogonal to μ(B) if A, B are disjoint sets in Σ. Such
measures are called orthogonally scattered measures and have
been extensively studied during the past two decades by
several authors. In this paper, the concept of lattice orthog-
onally scattered measures is introduced, this being a natural
analogue of orthogonally scattered measures, when the meas-
ure μ takes values in a topological vector lattice. The main
purpose of this paper is to study (1) Hahn extension, (2)
Representation and (3) Radon-Nikodym theorem of lattice
orthogonally scattered measures.

I* Introduction* In spite of many questions yet to be answered

the theory of vector measures (i.e. measures taking values in a Banach
space) seems to be a well-developed discipline today, Dinculeanu [1].
In particular when the range of the measure is a Hubert space and
the measure is orthogonally scattered (i.e. has orthogonal values on
disjoint sets) the theory is especially deep and elegant and its origins
go as far back as the early Wiener paper [13]. As highlights of this
theory we mention the description of the space of real functions that
are integrable with respect to such a measure and the applications
of harmonic analysis of such measures to stationary Stochastic pro-
cesses in the Wiener-Kolmogorov prediction theory.

Unlike his predecessors, recently Masani [6] (cf. also [7]) wrote
an expository paper on the subject without using any probabilistic
terminology. Generalizations of this theory were pursued in several
directions by a number of authors. All of them, to the best of our
knowledge, were trying to replace the Hubert space in the range of
the measure by a more general space (not necessarily even locally
convex) while retaining the property of "independent" scatteredness
of values of measure on disjoint sets. For example, the "independent"
scatteredness may mean orthogonality of ranges of operators when
the values of the measure are hermitian operators in a Hubert space,
and it means stochastic independence in the case of general random
measures considered in Urbanik [12]. When the range space is a
topological vector lattice, we have a natural concept of orthogonality
namely the lattice theoretic one. In the present paper, we are making
an attempt to study vector-valued measures taking values in certain
topological vector lattices interpreting "independent" scatteredness in
terms of lattice theoretic orthogonality (i-orthogonally scattered mea-

785



786 K. SUNDARESAN AND W. A. WOYCZYNSKI

sures). The elegance of the Wiener-Kolmogorov theory stems from
the fact that the positive measure associated with the Hilbert-space
valued orthogonally scattered measure is not only mutually absolutely
continuous with respect to the vector measure in question but it is
also algebraically closely connected with it, [5]. In the case under
consideration, we have a similar advantage.

It might be mentioned that there are several orthogonality con-
cepts available in arbitrary Banach spaces. For an extensive discus-
sion of such concepts we refer to James [4]. As pointed out in [4]
the most interesting of these concepts is the following. (D) Let B
be a Banach space. If x, y e B, x is said to be orthogonal to y if
\\x + Xy\\ Ξ> | | # | | for all real numbers λ. It has been shown recently
in Sundaresan [11] that if dim B >̂ 2 and if F is a continuous function
on B —> R such that F(x + y) = F{x) + F(y) whenever x 1 y then F
is of the form c||$]|2 + l(x)(l{x)) where leB* if B is a Hubert space
(if B is not isometric with a Hubert space). It is for this reason that
we have not considered measures orthogonally scattered where orthog-
onality is interpreted following the definition in (D).

In this paper we discuss the following three problems concerning
Z-orthogonally scattered measures:

(1) Hahn extension of these measures (§3).
(2) Representation theorem for such measures (§4).
(3) Radon-Nikodym theorem for these measures (§5).
Finally, we indicate some applications to random measures in the

concluding §6. The problem in §6 is the essential motivation for the
results discussed in §§3-5.

The theory of o.s. measures, [6] and the theory of l.o.s. measures
have some similarities. When the range space is a Hubert space L2(μ),
the theory of l.o.s. measure is a special case of o.s. measure. How-
ever, the l.o.s. measure need not take values in a Hubert space. The
theories are independent of each other in general.

2* In this section, we state the notation, a few definitions, and
elementary facts which are required in the subsequent sections.

If (36, Λ, V) is a vector lattice and x,yeϊί then x is said to be
orthogonal to y in the lattice theoretic sense, in short x±y, if \x\A
11/1 = 0. For basic definitions and properties of a vector lattice, see
§§2 and 3 in Chapter XII, Yosida [14]. In what follows, X is a vector
lattice of equivalence classes of measurable real-valued functions on
a measure space (Ω, Σ, μ), where Ω is a set, J? is a σ-algebra of sub-
sets of Ω, and μ is a cr-finite extended real-valued positive measure.
We adopt here the measure theoretic terminology in Halmos [2]. A
functional (nonlinear in general) F:ϋ-+ R is said to be additive if
F(x + y) = F(x) + F(y) if x±y. If 36 is a topological vector lattice,
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we require F to be continuous. An additive functional p on a vector
lattice is said to be a modular if (1) x = 0 <=> p(x) = 0, (2) | x | ^ | y | =>
p(x) ^ ρ(y), (3) 0 <*xn\ x, sup/θ(ajΛ) < oo=>α;eϊ, and p(x) = sup/θ(α?Λ).
A vector lattice equipped with a modular is called a modular space.
For a discussion of modular spaces, we refer to Matuszewska and
Orlicz [8J. Condition (3) implies the axiom C of completeness in [8j.

A function || || on a vector space into nonnegative real numbers
is called an JFVnorm if (a) | | $ | | = 0<=>x — 0, (b) | |— x\\ = \\x\\y and
(c) \\x + y\\ ̂  | | # | | + \\y\\ for all vectors x and y. An jP-space is a
vector space, Ey equipped with a F-norm || || such that the metric
space (E, d), where d(x, y) — \\x — y\\, is complete.

If (X, p) is a modular space then the function

is an F-norm on 36 rendering X an F-space. The F-norm || |U induced
by the modular p, is said to be absolutely continuous if p(xn) —• 0 ==>
||a?nll^—>0. In what follows, we always assume that the i^-norm in-
duced by the modular under consideration is absolutely continuous.
For a discussion of the absolute continuity of || ||,, we refer to [8].

^ stands for a pre-ring of subsets of a set T i.e. (1) A, Be ^ ==>
Af] Be&Q, (2) A, Be&0, AaB there is a finite increasing sub-family
Cu •••, Cn e &o such t h a t A = Cu B=Cnand Ci~Ci-ιe&f

0,i = l, •••, n.

We denote the σ-ring generated by ^ by &.

DEFINITION, (a) A mapping ξ: β0 —• X is said to be a ί-orthogonally
scattered (l.o.s.) measure if ζ(A\J B) = ξ(A) + ξ(B), and ζ(A)±ξ(B)
whenever Af)B = 0,A9 Be&0, and A U Be^Q.

(b) If X is a topological vector lattice then ζ: ̂ J —> X is said to
be a countably additive Z-orthogonally scattered (c.a.l.o.s.) measure if
ζ is a l.o.s. measure and in addition ί((jΓ=i At) = ΣΓ=i f(-A<) whenever
{At} is a pairwise disjoint sequence from . ^ such that UΠ=i A« e ̂ Pξ.

EXAMPLE. (Indicator c.a.l.o.s. measure.) Let T = i3, ̂  = J? and
/ e X where X is normal (i.e. if g e X, gr' is a nonnegative measurable
function such that 0 ̂  gf <; # then gr'eX). Then f defined by the
formula ξf(A) = f XΛ is a c.a.l.o.s. measure on Σ into X.

If £ is a c.a.l.o.s. measure on ^ with values in a topological
vector lattice X and F is an additive functional on X then, ζF = F<> ξ
is a countably additive real measure on ^ J . We collect here few
elementary facts concerning £ and ξF. Since the results are immediate
consequences of the definitions, the proofs are not supplied.
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(1) If A, B e .^ 0 , B ~ A e ^Q and A ~ B G ̂ 0 , then

F(ξ(A) - ξ(B)) = F(ζ(A ~ 5)) + ί^-fCB - A)) .

(2) If 4 , ΰ G ^ 0 , ΰ c i , 4 - BeM, then

F(f (A) - ί(B)) = F(ζ(A)) - F(ζ(B)) .

( 3 ) If A, S G ,^ 0 and A - 5 e M, then

£(A ~ B) = f (A) - f (A n 5) .

(4) If A , B e ^ 0 , A - Be<^0,B~ Ae^Q, then

f(AJ5) = f(A) + f(B) - 2f(A Π B) if AJBe ^ 0 .

Further, we have the following elementary lemma.

LEMMA 1. Suppose ζ: ^ —> 36 is a c.ad.o.s. measure and F:3ί~^R
is an additive functional. Then the following two statements are
equivalent.

(a) For all A,Be.^Q sueh that BQA

F(ζ(A) - ζ(B)) = v(A) - v(B)

where v: ^ —+ R is a c.α. measure.
(b) ξF = v.

3. Here we proceed to discuss the Hahn extension of c.a.l.o.s
measure defined on a pre-ring ,^ 0 . In this connection we recall the
classical Hahn extension theorem on p. 54 in Halmos [2]. For con-
venience if v is any real countable additive measure on ^ then its
Hahn extension to & is denoted by v.

THEOREM 1. Let ζ:,^—+7i he a c.a.l.o.s. measure where (X, p)
is a modular space and ξp is the Hahn extension of ξp to &. Let
J?~ — {A\Ae ^ , ξp(A) < oo}. Then there exists a unique extension
I of ξ to ^ such that (ξ)p = ξP\jr

Proof. Let & be the ring generated by ^ . Let ξ be an ex-
tension of ξ to &. The existence of such an extension is verified
as follows. If A e ^ , choose an arbitrary family of pairwise disjoint
sets A1? . , An G ̂  such that A = U " i ^ ^nd let £(A) = ΣLi f(A,).
It is verified that ξ is a c.a.l.o.s. measure on & into X and an ex-
tension of ξ. By Theorem D, p. 56 of [2], it follows that if A G ^ ,
ε > 0, there exists Be& such that ξp{AΔB) < ε. Thus there exists
a sequence {Bn} c & such that ξp{AABn)~>0 as w—>°o. Further it
is verified that ξp(BmΔBn) —> 0 as w —• oo. Since
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ξP{BmΔBn) = p(ξ(Bm ~ Bn) + ξ(Bn ~ B J )

~ Bn)) + |O(f JB# - J5m)) ,

it follows that

p(ξ(Bm~Bn))->0 and

Hence, from (1) in §2

Since p is absolutely continuous

Since X is complete, there exists an x e X such that ζ(Bn) —• x. If not
{Cn} c &~ is another sequence such that ζo(AACn) —> 0 then ξ(Cn) —• ?/
for some 2/ e X. Since ξp{BnΔCn) — 0, p(£(BH) - £(<?»)) -> 0. Hence
||f(BΛ) - f(C.)| |-*0. Thus x = y. Let f: j ^ ~ ->X be the function
defined by f(A) = lim |(AΛ), if {A % }c^ is a sequence such that
fp(AΔAn) —> 0. Indeed f, thus defined, is a c.a.l.o.s. measure on J?~.
For let A, B e ^ " , A Π -B = 0 . Let {An}, {Bn} be sequences in &
such that ξp(AJAn) —> 0, and ξp(BΔBn) —• 0. Arguing as in Theorem
A, page 168, Halmos [2], it is verified that ξP((An — B»)ΛA)—>0, and
?,((Bn - AJJB) -> 0. Hence £(AΛ - Bn) ->f (A), and |(B% - AJ ~>f(B).
Arguing as in the proof of Lemma 1 in [8], it follows that there
exists a subsequence {wj of integers such that ξ(An. ~ Bn.) —>f (A)
and ξ(Bn. - An.) — ?(B), j« a.e. Since f(A,. - BΛ.) 1 |(B,. - AΛ.) it
follows that ?(A)±|(B). Further ?(A U J5) = lim |((An - BΛ) U (Bw ~
A )̂) = f(A) + |(J5). From the definition of f, it is verified that ξ is
ζ^-absolutely continuous. Thus from the preceding it follows that ξ
is a c.a.l.o.s. measure, since ξp is countably additive. An easy ap-
plication of Lemma 1 yields (ξp) = ξp\^~.

We proceed to exhibit a counterexample to show that in general
a c.a.l.o.s. measure does not admit a Hahn extension with respect to
arbitrary additive functionals on X.

EXAMPLE. Let & be the ring of all finite unions of disjoint
bounded left-closed right-open intervals in the real line R. Let X =
Lx(μ) where μ is the Lebesgue measure.

X is a vector lattice under the natural partial ordering x <̂  y
whenever x(t) ^ y{t) for μ almost all teR. Let φ\R—+R be a con-
tinuous function such that φ has support in [1/2,1], φ not identically
0, and range φa [0,1]. Let F be the additive functional defined by

F{x) = \ φ(x(t))dμ(t) , x e X .
JB
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F is well defined since ψoχ is a bounded measurable function
with bounded support. Let ξ: & —• L^μ) be a Coa.Lo.s. measure de-
fined by

H) χ < U n

where JΛ = [w, τι + 1).
It is verified that if ξF is the extension of ζF to σ(&), then

1̂ ,(22) < oo, indeed ξF(R) = limf^O, n) = ξF[0, 2). If ξ has an exten-
sion I to J ^ = {A IA c 22, f j,(A) < c>o}, then since ξF(R+) < ^J(R+)
is defined. However, since ξ is c.a.l.o.s. measure

~ξ{R+) = Σ f (/.) = Σ - Z / .

which is not in L^μ), a contradiction.

4* In the present section we deal with certain structure theorems
for c.a.l.o.s. measures. We recall briefly the necessary terminology.
(£?, Σ, μ) is a measure space where I7 is a σ-algebra of subsets of Ω
and μ is an extended real-valued nonnegative measure. If . ^ are
two σ-rings of sets then a mapping τ: . ^ —• . ^ is said to be a σ-
homomorphism if A< e . ^ , £ ̂  1 implies τ((J^i -A<) = U τ(Ai) and
r(A, - Λ) - τ(Ad - τ{A2).

PROPOSITION 1. Let X δβ αw F-space of equivalence classes of
measurable real-valued functions on a measure space (Ω, Σ, μ), μ not
necessarily σ-finite and let ξ: &? —>3£ be a c.a.l.o.s. measure on a σ-
ring ^ ( c 2 Γ ) . Then there exists a function / G 3 6 and a σ-homomor-
phism hJ: £$ —> Σ\Δ such that

ξ(A) - fχ
hΔu)

Proof. We note that if Szf c & such that Al9 A2 e sf implies
A, Π A2 = φ and A e j / implies ς(̂ 4) Φ 0 then card J ^ <; ^ 0 For if
card J ^ > V̂o consider {||f(A)||| A e Stf). There exists J ^ c ^ card
^K — 5̂ 0 and a positive number a such that A e s^> implies \\ξ{A) \\> a.
In such a case, since ζ is an l.o.s. measure it is at once verified that
{Σ*=i f(̂ -i) 1-4* £ ̂ &o}n>i is not a Cauchy sequence. Hence it does not
converge to ζ(\j A^, a contradiction.

Now applying Zorn's lemma it follows that there exists a maximal
family J^J c £%? such that J ^ is pairwise disjoint and A e s^ implies
ξ(A) Φ 0. Let To - Uie^ 0 A and ξ(TQ) = / e ϊ . Let KΔ\&-»Σ\Δ be
the mapping defined by /̂ (A) = supf(A), A e ^ . The mapping /^
is a σ-homomorphism on & into I7///. Indeed
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hΔ(A U B) = sup (ξ(A ~ B) + £(ii n B) +

(1) = sup (f (A ~ B) + ξ(A n 5)) U sup(f (A ΓΊ

- hΔ{A) U ΛJ(£)

and

if A c 5 then

(2) Λ'(B - A) = Λ'CB) ~ Λ'(A)

since ^(JB) = hΔ(B ~ A) (J hΔ{A) and &J(A.) and hΔ{B ~ A) are disjoint.
The fact that hΔ is a σ-homomorphism is implied by the tf-additivity
and Z-orthogonal scatteredness of ξ. Now if Acz To (the case A (£. To

may be reduced to the latter because ξ(A ~ To) = 0) then Γo = A U
(TO - A) and

Hence

Since f (A) 1 f (Γo ^ A) a n ( i support fχh*u) = ΛJ(A) = support f (A) we
obtain f (A) = fχhd{A), completing the proof of the proposition.

A σ-algebra of sets is said to be σ-perfect if every σ-ίilter is
determined by a point. We recall that a sub-family ^ of a σ-algebra
Σ of subsets of a set Ω is said to be a σ-filter if (a) A e ^ " , BID A,
BeΣ implies Be ^ , and (b) At e ^ , i ^ 1 implies Π -4* 6 ^ . A
filter ^~ of sets in Σ is said to be determined by a point x if ^ =
{A\AeΣ, xe A}. Further we note that every σ-algebra of sets is
isomorphic to a σ-perfect σ-algebra of sets, Sikorski [10]. We proceed
to show that Proposition 1 concerning the structure of ξ could be
improved in certain special cases. We adopt the following notation:
^fL(Q9 Σ, μ) is the space of all bounded measurable functions / on
(Ω, Σ, μ) and L^Ω, Σ, μ) is the space of all equivalence classes of
£?J$i, Σ, μ). In the next proposition we choose for 36 — L^Ω, Σ, μ)
with .Ŝ o 3 f—* (f)J € Ln as the canonical mapping.

PROPOSITION 2. If μ is σ-finite, ξ: & —> L^Ω, Σ, μ) is an c.a.l.o.s.
measure on a σ-perfect σ-algebra £$ of subsets of T then the homo-
morphism hΔ of the preceding proposition is induced by a pointwise
mapping, i.e. there exists a mapping τ: Ω —• T and there exists an
fe £fL(Ω, Σ, μ) such that

(*) ξ(A) = {fXτ-ι[A))
Δ , A e ^ .

Proof. From the hypothesis on μ (causing its strict localizability)
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there exists a lifting on L^ i.e. a multiplicative linear mapping
λ: L^ — &L such that (a) {\{f))Δ = / , (b) λ(l) = 1, (c) / ^ 0 => λ(/) ^ 0.
(Chapter 4, Ionescu-Tulcea [3].) It follows that λ is continuous and
it is a vector lattice homomorphism. Hence Xoξ; & —• ^^ is a
c.a.l.o.s. measure. Now we proceed as in the proof of the previous
proposition. Let us define h: & —* Σ by setting h(A) — support X(ξ(A))
and as before it is verified that h is a tf-homomorphism of & into
21. Since & is σ-perfect, every σ-homomorphism of & into any σ-
algebra of sets is induced by some point-wise mapping [10]. Hence
there is τ: Ω —> T such that h(A) = τ~ι(A), Ae έ$. As in Proposition
1, it is verified that X(ζ(A)) = fXτ-iU), Ae &, f being by definition
equal to X(ξ(T)) from which (*) follows.

Since for 1 <^ p < °o there exists no positive linear lifting on Lp,
the proof of Proposition 2 cannot be carried over for L^-spaces. Hence,
in general, we cannot claim that every c.a.l.o.s. measure is a com-
position of indicator c.a.l.o.s. measure and some rearrangement (r) of
the underlying set. However, if we restrict the class of σ -algebras
& on which ξ is defined, we can prove the similar result. For com-
pleteness sake, let us recall that the σ-algebra ά§ is said to be an
absolute Borel σ-algebra if it is a σ-algebra of Borel subsets of a
topological space homeomorphic to a Borel subset of a Hubert cube.
For instance, every σ-algebra of Borel subsets of a separable complete
metric space is absolutely Borel See page 138 in [10].

PROPOSITION 3. Let X be an F-space of equivalence classes of real-
valued measurable functions on a measurable space (Ω, Σ, μ), μ not
necessarily σ-finite, and let ξ\ & —>£ be a c.a.l.o.s. measure on the
σ-algebra & of subsets of T where it is assumed that & is absolutely
Borel. Then the σ-homomorphism hΔ of Proposition 1 is induced by
a point-wise mapping i.e. there exists a function / G Ϊ and a mapping
T: Ω —* T such that

ξ(A) = / χί-iu, , Ae^ .

The proof of this proposition is very similar in details to the
preceding one after noting Theorem 3.2.5, p. 139 [10]. Therefore, the
details are omitted.

5* The real measure ξF as defined in §2 is absolutely continuous
with respect to the c.a.l.o.s. measure ξ, and in this section we discuss
the existence of Radon-Nikodym derivative of ξ with respect to ξF.

THEOREM 2. Let ξ: 32—> LP(Ω, Σ, μ), 1 ^ p <; oo, be an c.al.o.s.
measure. Let F be a fixed nonnegative additive functional on LP{Ω, Σ, μ).
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If there exists Ae& such that (1) 0 < ξA(A) < oo, (2) {A, &M \ξ |)
is a non-atomic measure space, where \ξ\ is the total variation of ξ
and έ%?A is the trace of & on A then ξ does not admit a Radon-
Nikodym derivative with respect to ξF.

Proof. We can assume that ξ is absolutely continuous with respect
to ξF, for otherwise ξ does not admit a Radon-Nikodym derivative.
Further, let / be the function in LP(Ω, Σ, μ) determined by ξ so that
ς(A) — f Xh'u)t hΔ being the map defined in Proposition 1, §4. For
the sake of simplicity and without loss of generality, we assume that
/ ^ 0. Because of the representation of ξ and since ξ < < ξF it is
verified that \ζ| < < ξF. Indeed, if Be & and ξ(B) = 0 and \ξ\(B) =
δ > 0, there exists ^ e ^ such that | |f(A)| | > 0. Hence ξF(BJ Φ 0.
Since F is additive, ξ(BJ Φ 0. Since ξ(B) = 0 and / ^ 0, fχhj(Bl) =
ξ^) = O Further we note the following: (a) there exist a > 0, and
A1e^,Aι<z.A such that ξ(A,) Φ 0 and / χ * ^ ) ^ αχAjMl,, (b) the
measure ξF \ ΣAl < < μhΔ \ ΣAl. For if (a) were to be false then for each
a > 0 and for every set B c A, B e & such that ξ(B) Φ 0 there exists
a set Bl9 Bte &, BιczB with fχkjiSί) < a. Pick A,czA such that
ξ(AJ ^ 0 and fχhΔUύ < a. Then either f (A ~ AJ = 0 or else repeat-
ing the above procedure we obtain £(A2) Φ 0 and fχhjUz) < a. Thus
we obtain a finite family of pairwise disjoint ^-measurable sets
{Ax, A2, , An) such that f (A — \J^ A*) = 0 and fχhMΌAi) < a or else
there exists an infinite sequence of pairwise disjoint ^-measurable
sets {AJte!, f (A4) ^ 0 such that fXh^uA^ < a. In the first case,
fXhHA) < a We shall show in the second case also the same holds.
Let

Γ = {{AJ^ I A< Π A, = 0, i ^ j , Ai e &, A, c A and /χ*jU4> < a) .

Partially order Γ by inclusion. If ^ is a chain in Γ and if A, B e
then An B = 0 . Since Ae (J I? implies f(A) ^ 0, U i? is countable.
Further i e u ^ implies fχhΔ{A) < a. Thus U ̂  is a member of A
Hence by Zorn's lemma, there exists a maximal sequence J ^ =
{A4251} e A NOW if £(A ~ U^i ^*) ^ 0, it is verified that the maxi-
mality of J^J is contradicted. Thus

ξ(A) = f(jj A*) -

i.e. /χAjU) < a. Thus if (a) is false for every a > 0, /χ A j u , < α.
Since / :> 0 this implies that f (A) = /χA j ( 4 ) = 0, contradicting ξF(A) >0.
This completes the proof of (a) and there exists A1 e &, At c A,
f (AJ =7̂  0 such that fχhΔUl) ^ ccχkjUl) for some positive number #.

(b) follows directly from the representation of ξ stated in Pro-
position 1.
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Since

I I ? ( O I I P =

for all C e &£ c A1 it is verified that μ<>hJ\ ΣAχ is a finite measure.
Since ξF\ΣAl is a finite positive measure, we can chose a β > 0 such
that ξF(Ad - βμ ° /̂ (AO > 0. If for every BaA^Be^, ξF(B) -
βμohJ(B) ^ 0 then ξF(B) = 0 implies μohΔ{B) = 0 i.e. (*) μ o / ^ | 2 ^ < <
fί l ^ i Thus either (**) there exists a set A2 c Ax such that 0 Φ v =
£>l^ 2 - βμ°hΔ\ΣA% S 0 and v(A2) < 0 or else (*) holds. Next sup-
pose (*) holds. Since ξ(A^ Φ 0 from the representation of ξ it is
verified that μ ° h\A^) Φ 0. Hence from (*) it follows that ξF(Aj) Φ 0.
Thus there is a real number β > 0 such that (βμohΔ\ΣAl — IVXΛ) > 0.
Hence from Jordan decomposition theorem it follows that there is a
^-measurable set A2czA1 satisfying the property (**). Thus from
the preceding remarks we can choose the set A itself to have the
properties

(1) there exists a > 0 such that fχhju) > aχhΔU),
(2) there exists a 7 > 0 such that for all B e &, B c A, ξF(B) ^

Now choose a pair wise disjoint sequence of ^-measurable sets
At c A, ξ(Ai) Φ 0. Since ξ < < ξF, ξF{A%) > 0. We complete now the
proof of non-existence of Radon-Nikodym derivative of ξ with respect
to ξF by discussing the two cases 1 ^ p < oo9 p = oo separately. If
1 <£ p < oo with the sequence {AJ^! as chosen above consider the
inequality, for i Φ j , {ί, j , sufficiently large),

ξF{A)fχh,Ui) - ί

F{A) ξF{A)ξF{A3)

ΪAA) 7μ o h'(Ai) 7

Thus the sequence {/X/^^/fi^A;)} !̂ does not admit a convergent sub-
sequence. Hence it follows from Theorem 1, Rieffel [9] that ξF does
not admit a Radon-Nikodym derivative with respect to ξ. If p = oo
it is verified that

a

for i, j sufficiently large. Once again applying RieffePs theorem, the
proof of the theorem is completed for the case p = oo.

REMARK 1. We note from the preceding theorem and Theorem
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1 in [9] that ξ admits a Radon-Nikodym derivative with respect to

ξr iff
( 1 ) ξ«ξF,

(2) |f |, the variation of ξ, is a finite measure and
(3) (T, ^,\ξ\) is purely atomic.

REMARK 2. In §4, Masani [6] obtained sufficient conditions for
the non-existence of Radon-Nikodym derivative of a c.a.l.o.s. measure
ξ taking values in a Hubert space 36 with respect to the measure
ξF(.) = \\ξ(-)\\2 and F{x) = \\x\\2. The following analogue of Masani's
theorem for c.a.l.o.s. measures ζ is an immediate consequence of the
preceding theorem.

COROLLARY. Let ξ: & —> Sίf be a c.a.l.o.s. measure, where
is the Hilbert space L2(Ω, Σ, μ). Let F: £ίf —>R be the additive func-
tional defined by F(x) — | | # | | 2 . Then ξ admits a Radon-Nikodym
derivative w.r.t. ξF iff (1) \ξ\ is a finite measure and (2) (T, &, \ξ\)
is purely atomic.

6. In this section we apply the results obtained in the preceding
sections to a probabilistic problem concerning independently scattered
random measures.

Let 3K(7Γ, ̂ , P) be a complete metric linear space (topology de-
termined by convergence in probability) of all random variables on a
probability space (π, ̂  f P). An independently scattered random
measure on the Borel subsets & on the unit interval T is a mapping
M: & -+ 2K enjoying the following properties.

(+) for every sequence {Ei} of pairwise disjoint Borel sets

where the series converges with probability 1.
(++) for every sequence Eίy " ,En of disjoint Borel sets the

random variables M(E^, *",M(En) are independent. For the theory
of such measures, the reader is referred to [12] and references given
therein. The measure M is said to be non-atomic if M({a}) — 0 P.a.e.
for every one point set {α}. Let [M] denote the closed subspace
spanned in SW by range of M. The definition and the properties of
the integral of real functions on T with respect to M may be found
in [12]. L^M) denotes the space of Λf-integrable real-valued func-
tions on T.

THEOREM 3. Let M be a non-atomic and non-Gaussian independ-
ently scattered Έl-valued random measure. If N: & —> [M] is an
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independently scattered random "measure, then there exists a Borel
measurable mapping τ\ T —* T and a function f e LX{M) such that the
measure N has the following representation

N(A) = j _i{A)f(t)M(dt) , Ae<^ .

Proof. For every Borel set A, N(A) e [M]. Hence from the re-
presentation theorem in §2 of [12], there exists an fA^Lγ{M) such
that

N(A) = \/A(t)M(dt) .

Since the mapping N(A) —*fA is a continuous linear mapping, the set
function <S$ 9 A—+fA is a measure with values in the complete metric
space Li(M). If A and B are disjoint Borel sets then N(A) and N(B)
independent and from Theorem 2.1 in [12] fA and fB are orthogonal
in the sense of §1. Thus the iet function & B A—+ fA is a c.a l.o.s.

valued measure. It follows from Proposition 3 in §4 that

for some f e Lλ(M) and a Borel measurable mapping τ: T-+T. This
completes the proof of the theorem.

REMARK, Under the hypothesis of the preceding theorem, it fol-
lows from the theorem that M<< Noτ, where τ: T—* T is a Borel
measurable mapping.

In conclusion, it might be mentioned that we are not aware of
any immediate applications of Theorem 3 in Stochastic processes, but
the theorem itself seems to us to be surprising and of intrinsic interest.
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