PACIFIC JOURNAL OF MATHEMATICS
Vol. 43, No. 3, 1972

THE CONVEX CONE OF #-MONOTONE FUNCTIONS

R. M. RAKESTRAW

A reformulation of the Krein-Milman Theorem is used to
obtain an integral representation of each function in a
certain class of real monotonic functions defined on [0, 1].

Let {%1, %2, 43, *--} denote a fixed sequence all of whose
terms are either 0 or 1, and let M; be the set of real non-
negative functions f on [0, 1] such that

(=14 f(2) = (=D [fe+h)— f®)] =0,
h >0, for [z, x + h[ [0, 1]. Let M,, n» >1, be the set of
functions belonging to M,_; such that

(=16 g f(x) = (1) (A2 f(x + h) — 457" f(2)] = 0
for [x, x + nh] [0, 1]. If feM,, then f is said to be an n-
monotone function. Since the sum of two n-monotone func-
tions is in M, and since a nonnegative real multiple of an
n~-monotone function is an 7n-monotone function, the set M,
is a convex cone. It is the purpose of this paper to give
the extremal elements (i.e., the generators of extreme rays)
of this cone, and to show that for the n-monotone functions
an integral representation in terms of extremal elements is
possible.

A portion of this work appears in the author’s Ph. D. dissertation
written at Oklahoma State University under the direction of Profes-
sor E. K. McLachlan at which time the author was an NDEA Graduate
Fellow. The proof of Proposition 3 was suggested by the referee.
The author gratefully acknowledges the guidance given by Professor
McLachlan and the assistance of the referee’s comments.

1. Extremal elements of M,. Let f be a function in M, which
assumes exactly one positive value in [0,1]. If f=f, + f,, where
fi and f,e M, then f, and f, are zero where f is zero and f, and f,
are constant where f is constant. Therefore, f, and f, are propor-
tional to f and f is an extremal element of M,. On the other hand,
if f assumes at least two positive values in [0, 1], then a nonpropor-
tional decomposition can be given by taking

fi(®) = min {f(z), 1/2) [F(0) + FD)I}

and f, = f — f;. Therefore, the extremal elements of M, are precisely
the functions in M, which assume exactly one positive value in [0, 1].

Let feM,, n>1, and let @, =0 if 4, =0 and aq, =1 if 4, =1.
If f(a) > 0 and f is not constant, then take f,= f(a,) and f,=f—f..

735



736 R. M. RAKESTRAW

In so doing, f, and f,e M, and f, and f, are not proportional to f.
Therefore, the only extremal elements f of M, with f(a,) > 0 are the
positive constant functions.

Let feM,, n>1, and define a) =1 — a,, if %, =0 and a) = a, if
i, = 1, where a, is defined above. It can be shown that if fe M,
then f must be continuous on [0, 1] except at a; [9, p. 148]. It follows
that the only extremal elements of M, that are in M, are those
which are continuous on [0, 1] except, possibly, at a}, and these functions
are again extremal elements of M,.

If4,=0,feM, n>1, f is not constant on (0,1) and f is dis-
continuous at a) = 1 — a,, then take f,(x) = 0 for x€[0, 1] and z + a,

filag) = f(a) — limit f(x) >0
oo}

and f, =f — fi. In so doing, f, and f,e M, and f, and f, are not
proportional to f. Hence, whenever 7, = 0, the only extremal elements
of M, that are discontinuous at a, =1 — a, are the functions which
are positive at a) and zero elsewhere on [0, 1].

On the other hand, if ¢, =1, feM,, n» >1, f is not constant
on (0,1) and f is discontinuous at a; = a, then let

fi(x) = limi,t f@x) >0,
Ny
2€[0,1] and z == a), fi(a)) = 0 and f, = f — fi.. Then f, and f, are in
M, and f, and f, are not proportional to f. Therefore, whenever
1, = 1, the only extremal elements of M, that are discontinuous at
a; = @, are the functions which are zero at a) and equal to a positive
constant elsewhere on [0, 1].

Consequently, the extremal elements of M,, n >1, which are not
extremal elements of M, must be zero at a, and continuous on [0, 1].
It will be shown that these extremal elements of M, are indefinite
integrals of the extremal elements of a cone which is similar to M..
This cone is given in Definitions 1 and 2.

DerinITION 1. If ¢ is a real function monotonic on (0,1) and
n > 1, then define the (possibly extended real-valued) function I (g,
n — 1; +) by the equation

I(g,n —1;2) = r Stl cee Stn_s gtn"Z g{t) dt dt,_, « -+ dt, di,

ay Ap—3 JEp—2
for xz ¢ (0, 1), where a, = (1/2) [L — (—1)%’] and
o;=1/2)[1 — (-], 1<j<n—2.
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DEFINITION 2. Let K,, » >1, denote the convex cone of real
functions ¢ on (0,1) such that

(a) ¢ is right-continuous;

(b) (—=1)¢—rg(x) = 0, for ze (0, 1);

() (=DlLgx) =0, for 0<ae<az+ h<I;

@ I(g,n — 1; x) is finite, for x € (0, 1); and

(e) limitI(g, n — 1; x) exists and is finite.

z—1—a

Note. If geK,, n>1, then I(g,n —1; ) will denote the
function which is the continuous extension to [0, 1] of the function
given in Definition 1.

DEFINITION 3. Let a and b be two distinet numbers in the in-
terval [0, 1] and define the function ¥, on (0,1) by

Ywn®) =1, if z is between a and b or 0 < & = min {a, b};
Xwn(@) = 0, otherwise.

DEFINITION 4. If m is a nonzero real number, &£e[0,1] and
n > 1, then define the function e(m, &, » — 1; - ) by the equation

e(m, &, n —1; 2) = mI (Ym0, p, m — 1; @)

for 0 <« <1, where a,_, = (1/2) [1 — (—1)¢n—1Fin],

The principal theorem of this section can now be stated and the
remainder of the section will be devoted to its proof. The key results
are Lemma 3 and Proposition 2.

THEOREM 1. The extremal elements of M, are the functions in
M, which assume exactly one positive value in [0,1]. The positive
constant functions and the extremal elements of M, which are dis-
continuous at a; = (1/2) [1 + (—1)"M+2] are extremal elements of M,
n >1. The functions e(m, & n — 1; - ), where (—1)%— m >0 and
£e(0,1) or & =a,, are extremal elements of M,, n > 1. There are
no other extremal elements of M,. The only other extremal elements
of M,,m > 2, are those functions e(m, a,, k; « ), where (—1)%% m >0
and 1<k n — 2.

In the same manner that the extremal elements of M, were found,
it can be shown that the extremal elements of K, are precisely those
functions in K, which assume exactly one nonzero value in (0, 1).
Before determining the extremal elements of M,, it is shown in the
following three lemmas how the m-monotone functions are related to
the functions in K,, where n > 1.
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LemmA 1. If fe M,, then f{"VeK,, where n > 1.

Proof. Since (—1)%4 f(x) =0 for 0 Zx <2+ nh <1, then
f™? exists and is continuous on (0,1) and (—1)“»f™® is convex
[1]. Therefore (—1)“f* has a right-continuous, nondecreasing
right-hand derivative [4, p. 10]. It follows that (—1)% 4} f" " (x) = 0
for 0<az+h<l. If feM, then (—1)M—2V47"'f(x)=0 for
0=z<2+ (n— 1)k £1, which implies that

(__1)(in~1) Atln Aéz cee A;n_lf(x) =0

for 0ae<2x+06,+06,+ -+ +0,, <1 [1]. It then follows that
(=12 fi=(g) = 0 for 0 < 2 < 1, since f{"™ exists on (0,1). It
remains to show that

limit I (f{"™,n —1;2)

s—l—ag

exists and is finite and this proof will be by induction on #.
If fe M, then

@ =" fuae) d + Timit £@)
ao x—>u0
which implies that
limit I(f%,1; ) = limit £(z) — limit f(2)

z—1—ag r—1—ag z—ag

and this latter limit exists and is finite since f is monotonic on [0, 1]
[4, Theorem 1.1]. Now assume that fe M, implies that

limit I (£, 0 — 1; @)

z—1—ag

exists and is finite and let fe M,,.,. Then fe M, and it follows from
the first part of the proof that (—1)U»—!f®" ig nonnegative and
monotonic on (0,1) and

(=1 f=5(a, ) = limit (—1)éns fo=(c)

= inf {(—=1)%2fD(@): 0 < 2 < 1} .
Therefore,

limit I (f™, n; )

z-1—ag

= limit I (f*™ — f*(@,-), n — 1; %)

2—1—ag

= limit I (f", % — 1; &) — Fo @, ) I (1, n — 1; 2)

x —-)1'—110

exists and is finite by the induction hypothesis.
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LeEmMA 2. If ge K,, then I(g,n — 1; - )e M,, where n > 1.
Proof. The proof will be by induction on n. If ge K,, then
I(g,1; ) = So 9(t) dt
for x€[0, 1], and since (—1)"g(¢t) = 0, £ (0, 1), and
a = (1/2)[1 = (=],
then I(g,1;2)=0. If 0<2<2+ Ak =1, then

(D@41 L0 = (D dt 0.

Since (—1)“’g is nondecreasing, then I ((—1)"?g, 1;.) is convex [4,
p.13]. It follows that (—1)24I(g,1;2) =0 for 0 = x <2 +2r <1,
and hence, I(g,1; -)e M, Assume that I(g,n —1;-)eM, for ge K,
and n>1. If ge K,,,, then let

f@ =\ awat,

Cp—1
for z€(0,1). Since (—1)“’g is nonnegative and
Gy = (1/2) [l — (—1)nstin] ,

it is easily seen that fe K, and it follows from the induction hy-
pothesis that I(g,n; ) = I(f,n — 1; -)eM,. By a repeated applica-
tion of the mean value theorem for a Riemann integral, it can be
shown that

471 I (g, m; @) = " f(8)

for0s2<é<z+ (n—1)h =<1. Since (—1)“+Yg is nondecreasing,
then (—1)“%+’f is convex on (0,1) [4, p.13]. It follows that

(=1 g3t I(g, m; @) = (=1)% 045437 1 (g, n; @)
= (—1)(%4-1)4-}’;]‘(5) =0

for 0 <z< 2+ (n+ 1)h <1, and this inequality, together with the
fact that I (g, n; -) e M, implies that I(g, n; - )eM,,,.

In the proofs that follow, f*'(a,) should be interpreted as
f®(a,) = limit f*(x) ,
T—=ay

where feM,, n>2, and 1 <k <n— 2. Since f* ¢ K,,,, this limit
will always exist and be finite. It is a consequence of Lemmas 1 and
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2 that f=I(f"",n —1;.) whenever feM,, n>1, and f*(a,) = 0
for 0 <k <n — 2. Itis shown in the following lemma that extremal
elements of M, can be obtained directly from the extremal elements
of K,.

LEmMA 8. Ifge K, and f=1(g,n — 1;-), then [ is an extremal
element of M, if, and only if, g is an extremal element of K,, where
n > 1.

Proof. Suppose that f is an extremal element of M,. If g, and
g.€ K, such that ¢ = g, + ¢,, then

f=1I(g,n—1;+)=1(g, + g;yn—1; +)
=I(g,n—1; )+ I(gy,n—1;+).

If f,=1I(;,n—1;-),7=1,2, then f, and f,e M, and f = f, + f.
Since f is an extremal element of M,, there are numbers \; = 0 such
that f; = N;f, 7 = 1, 2, which implies that g; = /"™ = N;9,7 =1, 2,
and ¢ is therefore an extremal element of K,.

Conversely, if g is an extremal element of K, and f, and f,e M,
such that f=f, + f, then g, and g¢,¢ K, and g, + g, = f* " =g,
where g; is the (n — 1) th right derivative of f;, 4 =1,2. This
implies there are constants A; = 0,7 =1, 2, such that g, = ;9. It is
evident from the definition of f that f*(a,) = 0, where 0 <k < n—2.
This, together with the fact that f* ¢ K., for 1 < k < n—2, implies
that f/#(a,) =0, 7=1,2and 0k <n — 2.

Hence,

fi=I(,n—1+)=1I0Ng,n—1; ) =NI(g,n —1; ) =N\ f

for 7 = 1,2, and f is therefore an extremal element of M,.

PRrROPOSITION 1. The function e(m,&,w — 1; ) is an extremal
element of M,, n >1, where (—1)%—m >0 and £€(0,1) or & =a,_,.

Proof. Since my, ., , is an extremal element of K, whenever
(=129 >0 and £€(0,1) or & = a,_,, and

e(m’ 57 n — 1; ') = I(mX(f,l—m,,,_l), n — 1; ') y
the result follows immediately from Lemma 3.

PROPOSITION 2. The function e(m, a,, k; -) is an extremal element
of M,,n > 2, where (=1)%* m >0 and 1 <k <n — 2.

Proof. Since M, is a subcone of M,,, and e(m, a,, k; -) is an
extremal element of M,.,, it is sufficient to show that
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e(m, a,, k; -)e M, .
If f=e(m,a,k; ), then f =I(f* k; -), where
f(k)(w) = mX(ak,1~ak)(x) = MY o,n(T) = M

for 0 < ¢ < 1. Since f* is constant on (0,1), it follows from a
repeated application of the mean value theorem for a Riemann integral
that

47 f @) = 445 f () = BE4,fP(E) = 0

for 0e<z+(k+1DhA=<1, where z<é&<x+ kk and thus,

1f@)=0for 0Zex<x+ ph=<1land p=%k+ 1. Hence, fcM,, for
every m, which implies that f is an extremal element of M,, for
p=k+ 1.

It will follow, as a consequence of the next three lemmas, that
no other functions in M, are extremal elements of M,, n > 2.

LEMMA 4. Let fe M,, n > 2, such that f(a,) = 0, f is continuous
on [0,1] and f + e(m, a,, k; ) for (=1)%"m >0and 1<k<n— 2.
If there is an integer k such that 1 <k<n—2 and f*(a,) # 0,
then f is mot an extremal element of M,.

Proof. Let k denote the smallest integer such that f%(a,) = 0.
Then fe M,c M,,, implies that f%™e K,.,, and it follows from
Lemma 2 that I(f¥*™, k+1; -)e M,,,. Since f(a,) =0 and f*(a,) =0
for 1 < p < k, then

I(fE e+ 15 2) =I(fP, ks «) =) I, ks +) = f — e(m, a, k; +)
where m = f*(a,;). Since
dye(m, a, k; x) =0
for0Zz<z+ph<land k+1=<p=<nand feM,, it follows that
(DS RIS, b+ 1 8) = (~1) 2 (@) = 0
for0<aes<ox+ph<land k+ 1< p=<n Hence,
f—e(m,a,k; )eM,,

where m = f%*(a,), and a nonproportional decomposition of f can be
given by taking f, = e(m, a,, k; +) and f, = f — f,.. Thus f is not an
extremal element.

LEMMA 5. Let feM,, n >2, such that f+0, fla) =0, f s
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continuous on [0,1] and f = e(m,a, k; ) for (=1 m >0 and
1<ksn—-2. If f*Y =0 on (0,1), then f s mot an extremal
element of M,.

Proof. If f»V =0, then there is a positive integer £ < n — 2 such
that f* = 0 and f% is constant on (0,1). Thus, f*(a,) # 0 and it
follows from Lemma 4 that f is not an extremal element.

It follows from Lemmas 4 and 5 that if f is an extremal element
of M,, n > 2 such that f(a,) = 0, f is continuous on [0, 1] and either
[ =0 or f%a,)+#0 for some k, 1<k=<mn-—2 then f=
e(m, a,, k; +), where (1) m >0and 1<k <mn — 2.

LEMMA 6. Let fe M,, n =2, such that f is continuous on |0, 1],
f0 20 and f®a) =0 for 0=<k<n—2. If f is an extremal
element of M,, then f = e(m, &, n —1; ), where (—1)"—"m > 0 and
§e(0,1) or £ = au .

Proof. Since f*(a;) =0 for 0 <k <n — 2, then
f=I(f""n—1;-)

and it follows from Lemma 3 that f{ " is an extremal element of
K,. Thus, f{* = MY, 1, p for (=1)%—m >0and £€(0,1) or & =

Q> Wwhich implies that f=I(f"",n—-1;:)=e(m,&n—1;.).
This completes the proof of Theorem 1.

2. Integral representations. The set of functions M, — M,
n =1, forms the smallest linear space containing the convex cone
M,. With the topology of simple convergence, M, — M, is a Haus-
dorff locally convex space such that for each xe [0, 1], the linear
functional L, defined by L.(f) = f(x) is continuous.

PROPOSITION 3. The set M, is closed in M, — M, for n = 1.

Proof. The linear functional F' defined on M, — M, by F(f) =
47 f(x), for [z, x + nh] C [0, 1], is continuous in the topology of simple
covergence. By definition, M, is the intersection of a collection of
closed half-spaces corresponding to such functionals.

Since M, is closed and every m-monotone function f is nonnegative
and bounded by f(1 — a,), Tychonoff’s theorem implies that the nor-
malized n-monotone functions, namely

Co={feM,:fl—a)=1},
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form a compact base for M,, n =1. Thus, every nonzero n-monotone
function can be uniquely expressed as a positive multiple of some f
in C, and f is an extreme point of the convex set C, if, and only
if, f is an extremal element of M, which lies in C,.

DEFINITION 5. For n =2, let m, denote the number which
satisfies the equation e(m. &, n — 1;1 — a,) =1, where £€(0,1) or
&=a,,. For m >2, let m, denote the constant which satisfies the
equation e(my, o, k; 1 —a) =1, where 1 <k <n — 2. Let ext C,
denote the set of extreme points of C,, » =1, and let e(m,, a,, 0; +)
denote the unique function in ext C,, » = 2, which is discontinuous
at af = (1/2) [1 + (—1)“%+2]; that is, e(m,, a,, 0; ©) = (1/2)[1 — (=1)"]
for 0 < 2 < 1, e(m,, a, 0; a) = 0 and e(m,, a, 0; 1 — a,) = 1.

The principal theorem of this section can now be stated and the
remainder of the section will be devoted to its proof.

THEOREM 2. To each feC,, n =2, there correspond unique non-
negative regular Borel measures v and pt on [0,1] and
fe(my, ar, k3 <) 0=k =n — 2},

respectively, such that

2(10, 1) + f@) + 3 ple(ms, as, ks -)] = 1
and

F@ = | etm, & n = 1 0) (@) + f(@) + S ase(m, a,, b )

kg
for each xe 0, 1], where «, = ptle(m,, a, k; )] for each k and
e(ml-—-an_p 1-— Apyy W — 1; ') = e(mkoy Areys ko; ')

denotes the function which is the pointwise limit of the functions
e(m;, &, m —1; +) as & approaches 1 — a,_,. Thus, each n-monotone
function is o scalar multiple of such a representation.

Theorem 2 will be proved by using an integral reformulation of
the Krein-Milman theorem. In order to apply this result, it must
first be demonstrated that ext C, is closed.

PROPOSITION 4. The set of extreme points of C, is closed in C,,
n = 2.
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Proof. Since C, with the relative topology is a subspace of a
first countable space, it will suffice to show that if {f;} is a sequence
of functions in ext C, which converges pointwise to the function f,
then feext C, [3, p. 164]. Since all except a finite number of the
functions in extC, are of the form e(m,, &, n — 1; -), where &€ (0, 1)
or £ =a,_,, it can be assumed without loss of generality that f; =
e(m,, &, n — 1; +) for each 1.

If ay=a,= ..+ =a,_, then the function in C, are convex and

_ x — & v
fiw) = <—‘——"'—1 ~ o — E¢> X(e,1—-a0)(x)
for e (0,1). If the sequence {&;} of real numbers converges to 1—a,,
then it is easily seen that
limit fi(x) = 0

for 2€(0,1) or = a,. Since the topology of simple convergence is
a Hausdorff topology, it follows that f(1 —a) =1 and f(z) =0,
otherwise, which implies that f = e(m,, @, 0; -) and feextC,. On
the other hand, if {£;} does not converge to 1 — a,, then there is a
real number & %= 1 — a, and a subsequence {&;} of {&;} such that {&;}
converges to &. Hence,

limit f(0) = limit (25 )" g (o)

o e \1-a, - &
o — n—1
= (ﬁ) Liegri—ag (%)

= e(Mg,, &0, M — 1; @)

for each ze(0,1). Therefore, since the topology is a Hausdorff
topology, f = e(m,, &, n — 1; -) and it follows that feextC,.

If ,=0,=--+ =a,_, and @, #* a,_,, then the functions in C,
are concave and

fiw) =1~ <—%-:—EL>7H Xz nap (@)

a, — &;
for ze(0,1). If the sequence {£;} converges to a, then
limit fi(@) = 1
for xe(0,1) or x =1 — a, and f = e(m,, @, 0; -). On the other hand,

if there is a subsequence {£;} of {&} which converges to &, = a,
then
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1 T — Ej v
1m1t Si(@) = limit |1 — (——=L Xiejrap (%)
e a — &;

a, — &

for each x € (0,1) and f = e(m, &, n—1;+). In either case, it follows
that feextC,.
If there are exactly » > 0 integers k,, .-, k, such that

1§k1<k2<"'<kp§/n_2

and a;; # @,_, 1 =j < p, and a, = a,_,, then

710 = me [ C— S0 i@

Z P — @y — E)" LN — 2a0)kn TR — @)

FRED S SO ) —k,r_l)z---(k,-z—kjl)!(kjl)!]
for x€ (0, 1), where
- (1 — ao _ Si)”_l
T
bRy S e i 2,

= A= =Ty, =) ey, —Fes, )V o+ (= Feg)1y,)

If there is a subsequence {&;} of {&;} which converges to & = 1 — a,,
then it is easily seen that

Sf(x) = limit f;(x) = e(mg, &, n — 1; )

for each 2 (0,1). On the other hand, if {&} converges to 1 — a,
then

— o)k
liglit Silw) = my, ['(:BTG)'%—‘
<O 1 — 2ay)*r5i(x — an)*
1 (
* Z( 4 ’TZ—:T ng (k,,—k,-r)! (kjf‘kj,_l)! s (ka—kjl)! (k,-l)!]

= 3(mkp, 7 ky; @)
for xe (0, 1), where

_ (= 2a)®

ey = )
dgm1 (1 — 2a,)%

PRV E R e o T

In either case, it follows that feextC,.
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Finally if there are exactly p > 0 integers k, -+, k, such that
1§k1<k2< LR <kp§n_2andakj;éan—-ly1§j§p and Ay 7 Qyys
then

— (ao — Ei)n—l . (x — Si)n—l
- mei[ (7’1/ _ 1)! (/)7/ . 1)! X(Giyao)(x)
STEETE IO S} (@, — &) 4720, — 1%,
+ Tz:l( 1) jrz;r sz=,1 (%—k_yr—l)! (kjr—_kjr-—l)! ces (ka__kjl)! (kh)!

-y —1)r S T (ay— &)L 20, — 1) R (— 1 ) ¥y ]
rz=1 ( ) MZ;‘T jlz;‘l (n—kh—l)! (kjr—"kjr__l)! cee (ka__]cjl)! (kjl)!

for z < (0, 1), where

mg}
— (@, — &)™
(n — D!
T YERTL S (@ — &)" (20, — D,

r=1 ip=r 2171 (/n—kjr—l)!(kjr'—‘kjr_l)! LR (ka_kjl)!(kjl)! :

If there is a subsequence {£;} of {&} which converges to &, # a,, then
it is evident that

f{z) = limit f;(x) = e(m;, &, » — 1; )

for each 2¢(0,1). On the other hand, if {£;} converges to a, then

limit f3(x)
_ (2a,— )% (x — 1 + a,)*»
m"p[ (o) ! AN
= LT (2a,— 1)k R [(2a,— 1)k — (@ — 1+ a,) 1]
BRIV SO S
T A Ty, L (ka—kjl)!(kjl)!]

= e(mkp, akpy kl); x)
for xe (0, 1), where
mi,

_ (2a,—1)%

(Fey)!
p—1 p—1 Jg—1 20, — 1)()cp)
—1) SN (2a, .
D P I S 1TSS oy o I

In either case it follows that feextC, and this completes the
proof.
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DEFINITION 6. Let ¢, denote the function in extC, which is
identically one and let e(m,,,_,1 — a,,» —1; -) be the function
defined by

e(m, o, , 1 — @, n —1; ®) = limit e(m,, &, n — 1; )

§o1—a,

for 0 <z <1 and » > 1. Finally, let
e(Myy, pyy Kooy +) = €My, 1 — apyym — 15 +)

and notice that k, =0 if o, =a,= -+ =a,_, or k, is the largest
positive integer such that a, # a,_..

If the mapping 4: [0, 1] —ext C,, n = 2, is defined by
#(&) = e(m, &, m — 15 +) foro<ée=<1,

then it follows from the proof of Proposition 4 that ¢ is continuous.
If E = ¢4([0, 1]), then ¢ is a homeomorphism from [0, 1] onto E, since
[0, 1] is a compact space and E is a Hausdorff space. By the Krein-
Milman representation theorem, to each f in C, there corresponds a
regular Borel probability measure g on ext C, such that

L =\_ L
for each continuous linear functional L on M, — M,, since both C,
and ext C, are compact subsets of M, — M,, n=2. For 0 <z <1,
the evaluation functional L, defined by L.(f) = f(x) is continuous
on M, — M,, so that

f(x) - gextc Lxd#
(1) '
=\ Lodp + ple) + S, elms, a, I D)pletms, a I )]

kkg

for each x¢[0,1]. Define v on each Borel subset B of [0, 1] by
v(B) = pl¢(B)]; i.e., v = pg .
Since L.[¢(5)] = e(my, &, n — 1; @), then

[ Zedp = Lpdius) = | etme &, n—1; ) dre)

61
for 0 <2 < 1. Finally, by observing that p(e) = f(a,), since e, is
the only function in ext C, which is positive at a,, Equation (1) can
be written as
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@) = | etme, 8,0 — 1) (@)

n—2
+ f(ao) + ]_Z(l) e(,)nk’ ak’ k; ﬂ;) ;t [e(mky CLlcy k; * )] .
kky
It remains to prove that g is unique. Since g is supported by
ext C,, then g is a maximal measure in Choquet’s ordering [6, pp. 24,
70]. Thus, by the Choquet-Meyer uniqueness theorem, it suffices to
prove that C, is a simplex [6, p. 66].

LEMMA 7. Suppose fe M, — M, and n=2. Then there is a
function ge K, such that g — f* Ve K, and of h is any function
wm K, such that h — f» Ve K,, then it must follow that h — g€ K,.

Proof. First assume that ¢,_, = 4, = 0. Since f" Ve K, — K,
then f{*V is of bounded variation on every interval [0, ], where
0 <z < 1. Define g(x) = £ (0) + P¢ ("), where Py (f{"") denotes
the positive variation of f{» over [0,2], 0 < < 1 [8, p.85]. Then
both ¢ and ¢ — f{*V are nonnegative, nondecreasing and right-con-
tinuous on [0,1). If ke K, such that 2 — f{» Ve K,, then it follows
that 2 — ¢ is nonnegative, nondecreasing and right-continuous on
[0, 1). Therefore,

O0ZlimitI(h—g,n — 1; 2 <limitI(h, n — 1; ),
x—'l—do x—»l—ao
which implies that both ¢ and 2 — g are in K,.
If 4,_, and %, are not both zero, then define

y = (1/2) [1 — (=1)F—t(1 — 2m)]
and

F() = (=12 f " (y) for 0<a<1.

Let G(z)=F(0) + Py (F) for 0 <2 < 1 and define g(x) = (—1)“—G(y).
Then ¢ and ¢ — f" Ve K, and it follows from the first part of the
proof that if # and h — f* V¢ K,, then h» — gec K,.

DEeFINITION 7. If % is a function in M, — M,, n = 2, then define
the functions %, 0 <k <n — 2, by

U(%) = ula,) and
ux) = T{u®(a,), k; ) forl<k=<n-—2

where € [0, 1].

LEMMA 8. Suppose fe M, — M, and n = 2. Then there is a
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funtion ge M, such that g — fe M, and if h is any n-monotone
function such that h — fe M,, then it must follow that h — ge M,.

Proof. First assume that f®(a,) =0 for 0 <k <n — 2 and let
g denote the function in K, guaranteed by Lemma 7. Define g =
I(g»v, »—1; .); then ge M, and

g —F=I(@s™ —fr,n—1 -)eM,.

If A is an m-monotone function such that 2 — fe M,, then A and
AV — fi»Y e K, and it follows that Ay — g Ve K,. If A'%(a,)=0
for 0 <k <n— 2, then

h—g=I0hA" -9, n~—1;-)eM,.

If there is some integer p such that 0 < p <n — 2 and A" (a,) # 0,
then let

|
o

n

E:h_ hk,

-
Il
°

where h, = h(a,) and h, = I(h'*¥(a,), k; -) for 1 <k <n— 2. Then
h%(a,) =0 for 0<k<n—2 and h and h — fe M,, since h and
h — fe M, (cf. proof of Lemma 4). It follows that ~ — ge M, which
implies that

h—g:ﬁ—g-i—;ghkeMn

since A, is an n-monotone function for 0 <k <n — 2.
On the other hand, if there is a nonnegative integer p < n — 2
such that f*(a,) # 0, then let

n—2

f:f_ggf’c

where f, is given by Definition 7. Since fe M,— M, and f*®(a,) = 0
for 0 <k <mn— 2, it follows from the first part of the proof that
there is an n-monotone function g such that § — fe M, and if % is
an n-monotone function such that o — fe M,, then h — ge M,. Let
k;,0<j < p<m—1, denote those integers for which

(= 1) f*(ay;) >0
and define
g = g + :gsfkj .

Then ge M, since
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fkj = I(f(kj)(akj)’ kj; ') = e(f(kj)(akj)’ akj) k.?; ° ) € Mn

for 0 <75 < p, and
g—f=0+2F,—F=0—F—> fieM,
7=0 kaékj

since —f,e M, if k = k;. Suppose that h is an nm-monotone function
such that » — fe M,. Then

h—f—3(h—fueM,
which implies that

h=f =35 = Pe=h—=F =30 = et 3 b~ e M,
since (h — f)i; € M,(cf. proof of Lemma 4). Since h, is an n-monotone
function for 0 < k < n — 2, then
h'—f“‘ka:h—f—Z (hk—fk)+Z hk
Kk, =vp EZk
=h—f=2h—=Fh+> heM,.
k—-,&kj k;&kj

Therefore,

h=3 o, ~F=h—7+3 fiel,
and b — 372 fi; € M, since h — 32 h;;€ M, and

h= 3 fi; = h = Sy + 3 Oy = f) = h = Dby + 3 (b = F), -

It follows that » — >\7_, fkj — g€ M,, which implies that » — ge M,.

If the function g of Lemma 8 is denoted by f VY 0, then the least
upper bound of two functions f, and f,e M, — M, can be given by
fi+ (f;—f)V 0 and therefore M, — M, is a vector lattice. Thus,
C, is a simplex and the proof of Theorem 2 is complete.

3. REMARKS. If 4, = 0, then C, is the set of functions f which
are monotonic and convex on [0, 1] such that max {f(z): 02 <1}=1.
If 4, = 0, then the C, functions are nondecreasing and e(m,, &, 1; x) = 0,
ze[0, €] and (x — &)/(1L — &) for xe[&, 1], where 0 <& < 1. Thus, to
each feC, there corresponds a unique nonnegative regular Borel
measure v on [0, 1] such that

7@ = 10 + [ S=S ae)
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for 0 < 2 < 1. On the other hand, if 4, = 1, then these functions are
nonincreasing and e(m,, &, 1;2) =1 — (z/§), x€[0,&] and 0 for
xze[é, 1], where 0 < ¢ < 1. It follows from Theorem 2 that to each
f in C, there corresponds a unique nonnegative regular Borel measure
v on [0, 1] such that

f@ = + | 1L = @) e

for 0 <2 < 1.
If 9, =0 for every k <mn, then e(m, & n —1;2) =0, 2€][0, &]
and [(x — &)/(1 — &)]** for xe[&, 1], where 0 < & < 1, and

e(my, 0, k; ) = «*

for « [0,1], where 1 <k <n — 2. Thus, for each function f in C,,
there exist unique nonnegative real numbers «,, -+, @,_, and a unique
nonnegative regular Borel measure v on [0, 1] such that

_ n—2 A Sz x — E n—1
@) =50 + Sast+| ($=5)7 e
for 0 < # < 1. In this case, the intersection of the M, cones is the
class of absolutely monotonic functions on [0, 1]. It is well known that
if feC, for every =, then

f@) =370 (@"/nl)

n=0

for 0 <2 < 1. For a discussion of these cones see [5].
Lastly, if 4, = (1/2)[1 + (—1)*] for 1 <k < n, then

e(mg, §,n —1;0) =1 — [1 — (2/6)]",
ze[0,&] and 1 for ze[€, 1], where 0 < £ <1, and
em,, 1L, k;2) =1 — (1 — x)*

for x€[0,1], where 1 <k <n — 2. It follows from Theorem 2 that
for each function f in C,, there exist unique nonnegative real num-

bers a,, «++, a,_, and a unique nonnegative regular Borel measure v
on [0, 1] such that

f@) =1— :zja,,(l — o) — X [1 — (@& dv(©)

for 0 < x < 1. In this case, the C, functions were called alternating
of order » by Choquet [2,p.170]. It can be shown that if feC,
for every =, then

o

f@) =3 Q) [(@ — 1/nl]

n=0
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for 0 < 2 < 1. For a proof of this fact together with a discussion
of these cones see [7].
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