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CLASSES OF UNIMODULAR ABELIAN GROUP MATRICES

DENNIS GARBANATI AND ROBERT C. THOMPSON

Let G be a finite abelian group, let Go be the set of
unimodular group matrices for G with rational integer entries,
let Gi be the symmetric members of Go, and G2 the positive
definite symmetric members of Go. Let K be either Gi or G2.
On K impose the equivalence relation of group matrix con-
gruence by asserting A~B (for A,BeK) if and only if
Ce Go exists such that A = CBC^~, where ^ denotes transposi-
tion. M. Newman has estimated the number of classes under
this equivalence relation, when G is cyclic. In this paper
his study is continued for abelian groups. As part of the
results it is shown that the class number of K is always a
power of two, and when K is Gi the exact value of this class
number is obtained. When K is G2 an upper bound for class
number is found and shown to be sharp by exhibiting an in-
finite class of groups for which it is achieved.

We now give a more detailed summary of our results. Let the
abelian group G have order n and for g eG let g —> P(g) be the regular
representation of G into the group of ^-square permutation matrices.
Let SI denote the enveloping algebra over the complex numbers (£ of
the permutation matrices P{g), that is,

The group matrices for G are by definition the elements of 21. When
G is a cyclic group, the elements of SI are circulants. Mostly we
shall be concerned with the subring Sί0 consisting of those elements
of SI whose entries lie in the rational integers Z. Within SI0 lie the
groups Go, Gl9 G2 consisting respectively of the unimodular, symmetric
unimodular, and positive definite symmetric unimodular elements of
Sto.

If A, Be K and A ~ B we say A and B are G-congruent. The
number of G-congruence classes in K is known [5, 8] to be finite, and
upper bounds and exact values for these class numbers in a number
of special cases may be found in [5, 6, 9].

In another direction, the rank of the group G2 is given in [1] in
the special case when G is cyclic. Estimates of the rank of Go for
cyclic G were previously obtained in [5]. However, in earlier work
[4] the rank of Go (for all abelian G) was essentially determined,
although an explicit formula was not given.

In this paper we shall compute the rank of all three groups Go,
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(?i, G2 Then we shall show that the number of (?-congruence classes
in K is a power of two, and, using our knowledge of the rank, we
shall compute the precise power of two in the case K — Gu and we
shall estimate from above the power of two when K is G2. Next,
we exhibit a class of groups for which this estimate gives the exact
result. Other results that will be obtained include an interesting an-
alogue of the polar factorization theorem, valid within Go. At the
end of the paper we summarize the corresponding results for the
group of unimodular integral skew circulants. (The congruence classes
within this group were recently studied in [3].)

We wish to acknowledge that the results of §§2-4 in the special
case when G is a cyclic have also been obtained by M Newman, and
will appear in a forthcoming book by him.

1* Notation* The entries of the group matrix A will henceforth
be in Q (the rational numbers) and usually in Z (the rational integers).
Let G denote the group of complex valued characters on G and let
χ denote the typical character. Of course, G is isomorphic to G. Let

(1) A = Σ agP(g) e % .
geG

For deίiniteness we let P be the left regular representation of G.
Using the elements of G to index the rows and columns of P, it then
follows that the (k, h)-entτγ of P(g) is one if gh = k, and zero if gh Φ k.
Let Ω denote the matrix

O = (X(9))zeδ.geσ

Here the rows of Ω are indexed by the characters χ 6 G and the
columns are indexed by the group elements geG. Then the matrix
U — n~U2Ω is unitary and furthermore UA U* = UA U"1 is a diagonal
matrix in which the diagonal entries (the eigenvalues of A) are the
numbers λχ defined by

(2) λz = λz(A) - Σ agχ(g) , χeG .
geβ

We may write this relation as

(3) (•• ,λ z(Λ),...) 5r = fl( , α . , . . . ) 5r

where the vector on the left-hand side has the λχ as entries and the
vector on the right-hand side has the ag as entries.

Notice that each character χ determines and is completely deter-
mined by the entries in a particular row of Ω.

Let G = <#!> x x (gk} be the direct product of cyclic groups
•• , <f/fc> of orders nu ,nk respectively. Define the basic
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characters χt by

χt(gt) = exp (2πi/nt) , χt{g5) = 1 for j Φ t

t = 1, • ••,&. The typical character χ e G is then uniquely representa-
ble as

where elf , ek are integers with 0 ̂ e«< nu t — 1, • ••,&. Analogously
the typical element g of G has the form

where again 0 ^ et < w*, for £ — 1, , k.
The symbol A* will denote the complex conjugate transpose of

matrix A.

2* The ranks of the groups Go, G19 G2.

LEMMA 1. Rank GQ — rank Gι — rank G2 < oo.

Proof. If A 6 Go then each eigenvalue of A is a unit in a cyclo-
tomic number field, hence Go is contrained in the direct product of
a number of groups of finite rank, hence rank Go < oo. (See [5].) We
clearly have Go 2 Gt 3 G2. It will suffice to find an exponent m such
that G2 a GJΓ Let A e Go. Then each eigenvalue λχ(A) of A is a
unit in the algebraic integer ring of the cyclotomic field Q(ζ»). Here
£« = e2H/%. It is known [10] that an exponent m exists such that for
any unit u in Q(ζw), the unit um is real and positive. Thus each
eigenvalue of Am is real and positive. Since Am is a real normal
matrix, if it has positive real eigenvalues it must be symmetric and
definite. Thus Am e G2.

If A 6 Go then each eigenvalue λχ(A) is a unit in Q(ζn). But
these eigenvalues are not independent of one another, since any con-
jugate of Xχ(A) under an automorphism of Q(ζn) will also be an eigen-
value of A. We wish to identify the conjugacy classes of the
eigenvalues of λχ(A) of A. For this we use formula (2).

First we observe that if character χ has order d (as a member
of the group G) then for each g e G, the cemplex number χ(g) is a
dth root of unity. Furthermore, for at least one g e G the complex
number χ(g) is a primitive dth root of unity. For the map g —+ χ(g) is a
homomorphism from G into the complex number field and so the range
of χ, as group in this field, is a cyclic group. Let g0 e G be such that
lido) generates the range of χ. Then the order of χ in G is the order
of χ(g0) in the multiplicative group of (£. Thus χ(g0) is a primitive dtu
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root of unity. Because at least one entry of the vector ( , %(</), )^eσ

(a row of Ω) has order d, the conjugates of this vector (obtained by
applying to the entries the automorphisms of the field Q{ζd)) are
exactly φ{d) in number. Consequently it follows that each character
χ of order d belongs to a class of φ{d) distinct conjugate characters.

From each such class of conjugate characters select one repre-
sentative character. We call these selected characters the independent
characters, and as χ ranges over the independent characters we call
the associated eigenvalues Xχ(A) the independent eigenvalues of A.

How many independent characters (or eigenvalues) are there?
Each independent character of order d belongs to a class of φ(d)
characters, each having order d. Let &(d) denote the number of
elements of order d is G. The elements of order d in G thus produce
exactly ^3>(d)/φ(d) independent characters. We may make this calcula-
tion for each d\n. It is a simple matter to see that ^3>(d)/φ(d) = N{d),
where N(d) denotes the number of cyclic subgroups of order d in G.
We thus arrive at the following conclusion.

LEMMA 2. The independent eigenvalues of A are in one-to-one
correspondence with the cyclic subgroups of G.

If we know the values of the independent eigenvalues of the
group matrix A (for which the entries are in Q) then the values of
all other eigenvalues of A are determined. Conversely, suppose we
assign to each independent eigenvalue Xχ an arbitrary value from the
field Q(ζd) (where d is the order of χ) and use the conjugacy relations
to determine from these independent eigenvalues values to be assigned
to the nonindependent eigenvalues. Rewriting (3) as

(4) (••-,<*„ . . . ) Γ = ^-1ί2*(.. ,λχ, . . . ) Γ

we may determine a group matrix A which has the assigned Xχ as
its eigenvalues. We claim that this A must have rational numbers as
entries. From (4) we see that

where, for a fixed independent character χ, the sum Σ 2 is over all
characters conjugate to it, and Σ t is the sum over the different
independent characters. Since the λz take conjugate values in exactly
the same manner as the χ do, the sum X2 is fixed under each automor-
phism and therefore is a rational number. Consequently, ag is a sum
of rational numbers and hence ag e Q.
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Let (?__! denote the set of group matrices A having rational entries,
obtained as follows. For each independent character χ let λ̂  be an
arbitrary unit in the group of units of the algebraic integer ring of
the number field Q(ζd), d being the order of χ. Use the conjugacy
relations to obtain values to assign to the remaining Xχ. Let G^ be
the group matrices with rational entries obtained in this way. Thus
(?_! is isomorphic to a direct product of N abelian groups, where N
is the number of cyclic subgroups of G. Let us compute the rank
of (?_!• This rank is the sum of the ranks of the constituent direct
factors of G_1? and the constituent direct factor associated with Xχ

has rank

(5) λφ(d)-i if d > 2 , 0 if d = 1 or 2 .
Δ

The number (5) contributes to the sum giving the rank of G_x pre-
cisely as many times as there are cyclic subgroups in G of order d.
This yields Lemma 3.

LEMMA 3. Rank G_x = r where

(6)
d\n

d>2

Here N(d) denotes the number of cyclic subgroups in G of order d.

We are now ready to prove our first main result.

THEOREM 1. The common rank of the groups Go, Gx, G2 is the
number r given by (6).

Proof. Clearly Go is a subgroup of G-ίf and G_x has rank r. To
prove that rank Go — r it will suffice to prove that G~ι S Go for some
exponent m. For this we use a device from [4] Let R be the
algebraic integer ring of Q(ζn), and let Rf be the quotient ring R/(n).
Each independent eigenvalue λχ, being a unit in R, determines a unit
in the finite group of units of the finite ring R\ Hence for some
fixed exponent m we have λj = 1 (modw). Therefore λj1 = 1 + iχn
where iχ is an algebrac integer. For the matrix Am the associated
eigenvalues are the λj, and if we apply formula (4) to find the entries
of Am, we find that they take the form

^Σχίflflλ? = n-^m + ΣJxXig)
χeG χeG χeG

Here Σ Λ % is an algebraic integer, and n"1 Σ*X(f7) — 0 or 1 according
as g is not or is the identity. Thus the entries of Am are algebraic
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integers. Since Am has rational entries, it follows that Am e Go There-
fore Gΐi §Ξ Go, completing the proof. (This trick is taken from [4,
page 238].)

3* The quotient group G0/Gi*

THEOREM 2. Go/G1 ~ G2, where G2 is the group of squares in G.

Proof. Let AeG0, say

( 7 ) A = Σ α . P ( 0 ) , ageZ.

Define a map σ: Go —> Go by σ(A) = A~ιA^'. Clearly cr is a homomor-
phism since Go is abelian. Because λz(AB) = λz(A)λz(I?) and λz(A^) =
λχ(A*) — λχ(A), we see that

Thus \Xχ(σ(A))\ = 1 for each χ e G. We already know that λz(A) is
a unit in Q(ζw). Therefore Xχ(σ(A)) is a root of unity, and hence
o(A) has finite order. In order to exploit this fact we now give the
following lemma, a special case of a result in [4].

LEMMA 4. // BeG0 has finite order then B~ dzP(g) for some
geG.

Proof. There is an element geG such that C= ±P{g)B has a
positive entry in the (1,1) position. Since the only P(h)> heG> which
has a nonzero entry in the main diagonal is P(e) (e is the identity of
G) and since C is a linear combination of the P(h), we see that C
has a positive integer, call it c0, as its common entry down the main
diagonal. Since C has finite order each Xχ(C) is a root of unity.
Therefore,

trace C - ne0 = | Σ λ z ( C ) | ^ Σ | λ , ( C ) | - n .
1 1

Thus 0 < c0 ̂  1, hence c0 — 1, hence equality holds in this application
of the triangle inequality, hence the Xχ(C) are equal, and hence C
is scalar. Since C is integral and unimodular, we get C = ±In. Thus
B — ±P(g~1), as desired.

Applying Lemma 4 to σ(A), we see that o(A) = ±P(h) for some
heG. We now exclude the possibility of the minus sign. If we had
σ(A) = -P(h), then from A^ = -P(h)A we get

Σ α,P(βΓ ι)=
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or

Z-jUg-Lyg ) — — 2 - L Ug~~ιh~ι L\y )
geG geG

Thus

(8) a g = - a g - ι h - i , a l l g e G ,

since the matrices P(g) are linearly independent.
Let / denote the permutation on G defined by /: g -+ g"ιh~\ Then

f2 is the identity, and hence / is a product of one cycles and two
cycles. For each g fixed by / we obtain from (8) that

(9.1) ag = 0

and for each g moved by / we obtain from (8) that

(9.2) ag + af(g) = 0 .

On A perform the elementary operations in which we add to the
first column of A all the other columns of A. The common entry
down the first column of the resulting matrix is Σ A and this sum,
by (9), equals 0. Thus A is singular, a contradiction.

Consequently σ(A) — P(h). Suppose h is not a square in G. Then
the permutation / above has no fixed points. From A^ = P(h)A we
obtain (in place of (8)) the formula

(10) ag = afig) , and g Φ f{g) .

Adding together, as above, all the columns of A, we see from (10)
that the common entry ^gag in the first column must be an even
integer. Thus det A ΞΞ 0 (mod 2). This contradicts the unimodularity
of A.

We now know that o(A) = P(h) and h = g2 for some element g e
G. Since o(P(g~1)) — P(g2), it follows that σ is a homomorphism from
Go onto the group of all P(g2)9 geG. What is kernel of σ? A short
calculation shows it to be G. Thus Gro/Gi = the group of all P(g2) for
geG. This completes the proof of Theorem 2.

Theorem 2 yields the following interesting variant of the polar
factorization theorem.

T H E O R E M 3 . L e t A e Go. T h e n A = P{g)B, for some geG and
some

Proof. Let σ(A) = P(g~2). Then A^ = P(^~2)A, hence
P(g~ι)A. Thus B = P(g~ί)A is symmetric so that BeGx. Since A =
P(g)B, the result is at hand.
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4* The class numbers*

THEOREM 4. Let K be either G1 or G2. Then the number of G-
congruence classes in K is [K: Gl]

Proof. If A, Be K and are G-congruent then B = CAC^ where
C e Go. By Theorem 3, C = P^C, where C, e Gx. Hence B = CtACf =
CIA. Thus B and A are in the same residue class of A modulo G\.
Conversely, if A = B mod G\ then A = BCt for Cx e G19 hence A =
CJSCf and so A and B are G-congruent. Thus the number of G-
congruence classes is exactly [K: Gl].

COROLLARY 1. If two group matrices in Go are G-congruent,
they are G-congruent by a matrix from Gλ.

THEOREM 5. The number of congruence classes in Gx by elements
of Go equals the number of congruence classes in Gx by elements of
Gx, and is 2 r + ί + 1, where r is given by (6) and t is the number of basis
elements in the Sylow 2 subgroup of G

Proof. This number is [G^ Gl]. The rank of Gι is r, and hence
Gx is a direct product of its subgroup of finite order elements and r
cyclic groups of infinite order. The finite order elements in Gx are, by
Lemma 4, of the form ±P(g) and in order for P{g) to be symmetric,
we must have P{g) = P{g~ι), that is, g2 = e. Thus the finite order
subgroup of Gx is the direct product of t cyclic groups of order 2 and
the group <—!»>. The only finite order element in G\ is In. Hence
the finite order part of Gx contributes 2 ί + 1 to [Gx: Gl]. The infinite order
generators contribute 2 r to [G^ Gl]. This yields the result.

THEOREM 6. The number of congruence classes in G2 by elements
of Go equals the number of congruence classes in G2 by elements of
Gi and this class number is a divisor of 2r, where r is given by (6).

Proof. This number is [G2: Gl]. Now GJG2 ~ (GJGD/iGJGl) and
hence

[G2: Gt] = [GL: Gl]/[GL: G2] .

By the proof of Theorem 5, [Gt: Gl] = 2r+t+1, and thus [G2: Gl] is a
divisor of 2 r + ί + 1 . Thus [G2: Gl] is a power of two. However, all of
the group matrices of the form ±P(g) for g2 = e lie in different cosets
of Giinod G2. For if gl — g\ = e and ±P(gίgT1) is positive definite, it
follows that each eigenvalue of ±P(gigϊι) (being a positive real root
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of unity) must be one, and hence ±P(g1gτ1) = i* = P(e) This says
9\ = On and the ± sign is + . Consequently the 2*+1 matrices ±P(g)
as g ranges over the solutions of g2 — e are distinct mod G2. Since
these matrices form a subgroup of G19 we see that 2*+1|[G1: G2]. Thus
[G2: G i is divisor of 2r.

5* An example* One may ask how close to the actual class
number is the upper estimate 2r for the number of G-congruence
classes in G2. In some instances it is too high; as an example take
G to be the cyclic group of odd prime order p. In this case r —
(P — 3)/2 and so Theorem 5 tells us that for this G the number of
G-congruence classes in G2 is a divisor of 2{p~z)!\ However, it is
known (this is unpublished; see [1]) that for all p <£ 100, with a single
exception, the actual number of G2 classes is one. Thus our bound is
much too large in these cases.

In some cases, however, our bound 2r is the precise number of
G-congruence classes in G2. This is so when G2 is the direct product
of cyclic groups of orders 2 and/or 4 and also when G2 is the direct
product of cyclic groups of orders 2 and/or 3, since in these cases
r = 0, i.e., there is only one G class. Thus our estimate is exact, but
in a trivial way.

In all examples heretofore known the number of G-congruence
classes in G2 is one or two. In view of this evidence it is natural to
ask whether this class number can ever become larger than two.

We now give an example of a class of groups G for which the
number of G-congruence classes in G2 is exactly 2% and for which
this number can be made arbitrarily large by selecting an appropriate
group from the class.

Let H be a cyclic group of order eight and let K be an elementary
abelian 2-group of order 2*. Set G = H x K. Then we claim, for
this group G, that r — 2t and that the number of G-congruence classes
in G2 is

2r = 22ί .

Proof. Let h, k denote the typical elements of H, K respectively.
Let φ, p be the typical characters on H, K respectively, and prolong
them to characters on G by setting ψ(k) = p(h) = 1. Then the typical
character χ on G has the form χ = ψp and the typical element of G
is g = hk. Let

-A = Σ aβP(g) = Σ Σ ahkP(hk)
geG heH keK

belong to Go. The matrix A is symmetric if and only if ag = ag-i;
this is equivalent to
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for all heH, keK. The eigenvalues of A are

V Λ ) = Σ Σ ahkψ(h)ρ(k)
(11) * *

= Σ Ήh) Σ ahtp(k) + Σ (Ήh) + ψih'1)) Σ ahkp(k).
h k h k

Σ
k

The first Σ * denotes the sum over all h such that h2 = e, the second
Σ Λ denotes the sum over all pairs (h, h~ι) for which h Φ h~\ Let

(12) Ahp =
k

Then

(13) XΨp(A) = Σ ^Wil», + Σ (Ψ(h) + ψ{h~ι))Ahp .
h hΣ

h
2

For fixed h, by letting p range over K, we may view (12) as a system
of linear equations in the ahk for which the coefficient matrix

(p(k))Peκtkeκ is a nonsingular matrix with entries ± 1 . ίln fact the

matrix is the Kronecker product of t copies of L i •) Thus

assigning arbitrary values to the Ahp yields unique ahk, lying in the
same field as the Ahp.

Let h0 be the generator of H and ψ0 the generator of H for which
fo(ho) = (1 + ΐ)2~1/2. Then from (13) we obtain

— A Λ~ A i —\— *? A 9 —I- 9 A -l— 9 A 3

p — - t i p \ ^h^p 1 ^ ^ / I Q P I ^^IIQP \ ^jt±h^ρ >

"\ J /4 I Λ A i O /4 o O ^ ty A 3

i^ψ p — -"-jO \ -"-hJ> ~T" £*<£*-h p ^-^h^p ^•^•Λ.QJO

Here λ. = ± 1 . λ^v = ± 1 (since these numbers are units and rational) •

Subtracting, we find

λ̂  — λ^^ = 0 (mod 4) .

Hence

ι\JΓ) /\j'ψ>*n , Λ j j , n "I" jn.fι°p \J

Thus also

(14) XP = Ap + AA^ + 2A^p .

From (13) we next get

(15) X^p — A p -\- AhiQP — 2Ah*p

and therefore (since the right-hand side of (15) is rational), we get
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\ψ2p = ± 1 .

Subtracting (15) from (14) we obtain

and therefore

\p = Xf*p , Ah*p = 0\p = Xf*p , Ah*p

Define εp = Xp, so that εp = ± 1 . We now have

(16) εp = λ, = λ ^ = \+<p = x ^ = 4 ,

(17) A ψ = 0 = AΛJJ, , A*;, - - A

Returning to (13) we also have

λ*0, = Ap - Ah> + 2 ^ ( A V -
1 ^

Thus λ̂ ĉ , is a unit in #[2 ι/2] and hence has the form ± ( 1 + 21/2)r.
But (1 + 21/2)Γ = α + /9 21/2 has /3 Ξ 0 (mod 2) if and only if τ is even.
Therefore we must have

λ ^ = (2A, - e,) + 2 21'2 A M - ίP(3 + 2.21/2)

where δ̂ , = ± 1 , up e ̂ , Vp e Z. Then also

X ^ — up — 2ll2vp = λ ^ , λ^7p = tt^

Next, observe (by (16)) that

£p = Σ / ( ) Σ
A; k

Let |0' be a fixed character on &. Then

Σ w ( ) Σ * ί
= 2 Σ αt/0(A;) + 2Σ / ( ) Σ

k k
p'(k)=l p'(k)=l

The last two sums here are over all k for which p'(k) = 1. Hence

(e, + ePP>)/2 = Σ πΩ(^ + v, + e^0/2 - Σ α*/0(fc) + Σ

Thus

(ê  + sPp')/2 = Σ % + Σ α/̂ /c (mod 2) .
k k υ

On the right-hand side here no character other than p' appears. There-
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fore, for any character p and px we have

(ε, + εPP.)β = (ePl + ePlP,)/2 (mod 2) ,

and this implies that

ε, + εppf = εPl + εPlP, (mod 4) .

Consequently ε̂  = s(pf)εpp,, for all p, where s(p') — ± 1 and s(p') depends
only on ρ\ Changing notation, we get

(19) e P l P 2 =

LEMMA 5.

( i ) τp = τPr (mod 2) for every p, p' e K.

(ii) / / ε^ — εp, then XψcP and λ^0/O, have the same sign.

Proof.

(i) We have

A h Q P = vp/2 .

Now AhQP Ξ AKP, (mod 2) since

AhoP ΞΞ X α^oA; (mod 2) .
k

Therefore vp = vp, (mod 4). But

(3 + 2 21/2)r = {-1Y + (1 - (-1)Γ)21/8 (mod 4)

for any integer exponent r. Thus

JO (mod 4) if τp = 0 (mod 2) ,
V o - — * —»'- (2 (mod 4) if τp = 1 (mod 2) .

Therefore (i) is proved.
We also have 2AP — εp = up = dp( — l)τρ (mod 4), Thus, if ε̂  — εp>

then

δp - δp, = (-iyP2(AP - AP) (mod 4) .

Since Ap = Ap, (mod 2) we get δp = δp, (mod 4) and this implies δp —
δp,. That is, (ii) holds.

Notice that, if keK, then Xψp{P(k)) = /θ(fc)
Let &i, k2, ••, kt be basis elements of K and let ft, p2y , pt be

the associated dual characters (that is, Pi(kj) = 1 if i Φ j , = — 1 if
ί = i ) . Let

p = ρ\ι ... pe

tt, eu . , ^ = 0 or 1 .

Then from (19) we see that
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*P = δ(ft) 6 1 * 8(p*)β*6

= (-I)"1*1 . . (-l)σ*e>ε

where ε = ± 1 , and depends on A but not on p, and where σl9 , σk

are defined by (- l )^ = s(ft), , (-l)σ* = s(ρt). Let Λ ^ P ^ ί 1 Jcσ

tήA.
Then

= ε .

That is, for Aι% all ε̂  are the same, and hence, denoting At by A,
we have in A that ε̂  = ε, independent of p. Multiplying A by ε,
we can assume all εp = + 1 . Thus in A we have all λ^ = λ ^ = χ^p =
Xψβp = + 1 , and all XfcP have the sign 8 (independent of p) (by Lemma

5).°
Next observe that Xψp(P(h4

0)) = φ(hi). Thus

If <5 — + 1 then all X^p of A are positive. If 8 = — 1, then in P(hi)A
all λ̂ , = Xψ2p — Xψ^p = Xjrif, = + 1 and λ^(P(&o)A) has the sign of — 8 >
0, so that in P(hl)A each eigenvalue is positive. The outcome of this
discussion is the following: starting with our original A e G19 we have
found ±P(g), with g2 = e, such that ±P(g)A has each eigenvalue
positive. That is, ±P(g)A e G2 for some # with gr2 = e. We summarize
this as Lemma 6.

LEMMA 6 If AeGx then ±P(g) exists, geG with g2 — e, such

that ±P(g)AeG2.

Since {±P{g)A)B{±P(g)A)5Γ = ABA^, in computing the matrices
ABA^ of the (^-congruence class of a positive definite B e G2, we may
do our computation using only A in G2. Thus the number of G-con-
gruence classes in Gz is [G2: Gt]. Since G2 is the direct product of r
infinite cyclic groups, we easily see that [G2: Gt] = 2r. It is easy to
compute from (6) that for the group G in question we have r = 2*.
We have completed the proof of Theorem 7.

THEOREM 7. If G is the direct product of a cylic group of order
eight and t cyclic groups of order two, then the number of G-congruence
classes in G2 is

2r - 22ί .

6* Skew circulants* Let P be the companion matrix of the
polynomial Xn + 1. Let C = ΣΓ=o UtP* where at e Z. The matrix C is
an integral skew circulant. It may be symmetric and even positive
definite symmetric. Let So be the group of integral unimodular skew
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circulants, Si the group of symmetric integral unimodular skew cir-
culants, S2 the group of positive definite symmetric integral uni-
modular skew circulants. By using the techniques above, with some
minor modifications, the following facts may be proved.

( i ) rank So = rank Sλ = rank S2 = r, where

(20) r - Σ (^Ψ(2n/d) - l) .
d\n V 2 /

d

d\n
dodd
d<n

(ii) For Ae SQ the map σ: A —> A~ιA^ is a homomorphism from
So onto the group P2t, t — 0,1, , n, with kernel Sx.

(iii) Given A e So, there exists teZand Be Sλ such that A = PιB.
Let K be either S1 or S2. On j£ define the equivalence relation of

skew circulant congruence by A ~ B if and only if A = CBC^ for
some C e GQ. Here A, B e K. Then:

(iv) Two members of K congruent by an element of So are also
congruent by an element of Sx.

(v) When K is Sί9 the number of skew circulant congruence
classses is 21 + r where r is given by (20).

(vi) When K is S2, the number of skew circulant congruence
classes is a divisor of 2r, where r is given by (20).

For calculation of the number of skew circulant classes in S2 for
some values of n, see [3].
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