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CLASSES OF UNIMODULAR ABELIAN GROUP MATRICES

DENNIS GARBANATI AND ROBERT C. THOMPSON

Let G be a finite abelian group, let G, be the set of
unimodular group matrices for G with rational integer entries,
let G4 be the symmetric members of G,, and G the positive
definite symmetric members of G,. Let K be either G; or G..
On K impose the equivalence relation of group matrix con-
gruence by asserting A~ B (for A,Be K) if and only if
C € Gy exists such that A = CBC~, where ©~ denotes transposi-
tion. M. Newman has estimated the number of classes under
this equivalence relation, when G is cyclic. In this paper
his study is continued for abelian groups. As part of the
results it is shown that the class number of K is always a
power of two, and when K is G; the exact value of this class
number is obtained. When K is G: an upper bound for class
number is found and shown to be sharp by exhibiting an in-
finite class of groups for which it is achieved.

We now give a more detailed summary of our results. Let the
abelian group G have order n and for g€ G let g — P(g) be the regular
representation of G into the group of »-square permutation matrices.
Let & denote the enveloping algebra over the complex numbers € of
the permutation matrices P(g), that is,

oA = {%%P(g)lage@}.

The group matrices for G are by definition the elements of %. When
G is a cyclic group, the elements of 2 are circulants. Mostly we
shall be concerned with the subring 2, consisting of those elements
of 90 whose entries lie in the rational integers Z. Within 2, lie the
groups G,, G, G, consisting respectively of the unimodular, symmetric
unimodular, and positive definite symmetric unimodular elements of
DI

If A, Be K and A ~ B we say A and B are G-congruent. The
number of G-congruence classes in K is known [5, 8] to be finite, and
upper bounds and exact values for these class numbers in a number
of special cases may be found in [5, 6, 9].

In another direction, the rank of the group G, is given in [1] in
the special case when G is cyclic. Estimates of the rank of G, for
cyclic G were previously obtained in [5]. However, in earlier work
[4] the rank of G, (for all abelian G) was essentially determined,
although an explicit formula was not given.

In this paper we shall compute the rank of all three groups G,
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G,, G,. Then we shall show that the number of G-congruence classes
in K is a power of two, and, using our knowledge of the rank, we
shall compute the precise power of two in the case K = G,, and we
shall estimate from above the power of two when K is G,. Next,
we exhibit a class of groups for which this estimate gives the exact
result. Other results that will be obtained include an interesting an-
alogue of the polar factorization theorem, valid within G,. At the
end of the paper we summarize the corresponding results for the
group of unimodular integral skew circulants. (The congruence classes
within this group were recently studied in [3].)

We wish to acknowledge that the results of §§2-4 in the special
case when G is a cyclic have also been obtained by M. Newman, and
will appear in a forthcoming book by him.

1. Notation. The entries of the group matrix A will henceforth
be in Q (the rational numbers) and usually in Z (the rational integers).
Let G denote the group of complex valued characters on G and let
¥ denote the typical character. Of course, G is isomorphic to G. Let

(1) A=§&agP(g)e%.

For definiteness we let P be the left regular representation of G.
Using the elements of G to index the rows and columns of P, it then
follows that the (&, k)-entry of P(g) is one if gh = k, and zero if gh +# k.
Let 2 denote the matrix

Q= (9)seb,0ee -

Here the rows of 2 are indexed by the characters yeG and the
columns are indexed by the group elements ge G. Then the matrix
U = n7%Q is unitary and furthermore UAU* = UAU™! is a diagonal
matrix in which the diagonal entries (the eigenvalues of A) are the
numbers )\, defined by

(2) M= N(4) = 3 ai(9) reC.
We may write this relation as
(3) ("'77\’2{(‘4)".')fz‘Q(°"yay,°")f

where the vector on the left-hand side has the )\, as entries and the
vector on the right-hand side has the a, as entries.

Notice that each character ) determines and is completely deter-
mined by the entries in a particular row of 2.

Let G = {g) X +++ x {g,» be the direct product of eyclic groups
{9y, +++,{gyy of orders m,, ---,n, respectively. Define the basic
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characters y. by

X:(9:) = exp 2mi/n) ,  Xl9;) =1 for j=+#1¢;

t=1, ..., k. The typical character y ¢ G is then uniquely representa-
ble as

x:x:l cee x}gk

where ¢,, -+ -, ¢, are integers with 0 <e, <m,, t=1, ---, k. Analogously
the typical element g of G has the form

g=gpee g

where again 0 <e, < mn, fort=1, .-, k.
The symbol A* will denote the complex conjugate transpose of
matrix A.

2. The ranks of the groups G, G;, G..
LEMMA 1. Rank G, = rank G, = rank G, < .

Proof. If Ae @G, then each eigenvalue of A is a unit in a cyclo-
tomic number field, hence G, is contrained in the direct product of
a number of groups of finite rank, hence rank G, < «. (See [5].) We
clearly have G, 2 G, 2 G,. It will suffice to find an exponent m such
that G, 2 Gy. Let Ae G, Then each eigenvalue \,(A) of A is a
unit in the algebraic integer ring of the cyclotomic field Q(£,). Here
{, = e It is known [10] that an exponent m exists such that for
any unit # in @Q({,), the unit w™ is real and positive. Thus each
eigenvalue of A™ is real and positive. Since A™ is a real normal
matrix, if it has positive real eigenvalues it must be symmetric and
definite. Thus A™e G,.

If Ae(@, then each eigenvalue \,(A) is a unit in Q(,). But
these eigenvalues are not independent of one another, since any con-
jugate of \,(A) under an automorphism of Q(Z,) will also be an eigen-
value of A. We wish to identify the conjugacy classes of the
eigenvalues of \,(4) of A. For this we use formula (2).

First we observe that if character ) has order d (as a member
of the group G) then for each ge G, the cemplex number ¥(g) is a
d™ root of unity. Furthermore, for at least one ge G the complex
number ¥(g) is a primitive d*® root of unity. For the map g — x(g9) isa
homomorphism from G into the complex number field and so the range
of x, as group in this field, is a cyclic group. Let g,€ G be such that
%(9,) generates the range of ¥. Then the order of y in G is the order
of %(g,) in the multiplicative group of €. Thus y(g,) is a primitive d**
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root of unity. Because at least one entry of the vector (---, x(9), *+*)see
(a row of Q) has order d, the conjugates of this vector (obtained by
applying to the entries the automorphisms of the field Q{C,;)) are
exactly ®{(d) in number. Consequently it follows that each character
y of order d belongs to a class of @(d) distinct conjugate characters.

From each such class of conjugate characters select one repre-
sentative character. We call these selected characters the independent
characters, and as Y ranges over the independent characters we call
the associated eigenvalues \,(A4) the independent eigenvalues of A.

How many independent characters (or eigenvalues) are there?
Each independent character of order d belongs to a class of @(d)
characters, each having order d. Let «’(d) denote the number of
elements of order d is G. The elements of order d in G thus produce
exactly «(d)/»{d) indepsndent characters. We may make this calcula-
tion for each d|nz. It is a simple matter to see that «(d)/»(d) = N(d),
where N{(d) denotes the number of cyclic subgroups of order d in G.
We thus arrive at the following conclusion.

LEMMA 2. The independent eigenvalues of A are im one-to-one
correspondence with the cyclic subgroups of G.

If we know the values of the independent eigenvalues of the
group matrix A (for which the entries are in @) then the values of
all other eigenvalues of A are determined. Conversely, suppose we
assign to each independent eigenvalue \, an arbitrary value from the
field Q(£;) (where d is the order of %) and use the conjugacy relations
to determine from these independent eigenvalues values to be assigned
to the nonindependent eigenvalues. Rewriting (3) as

(4) (+0ny gy oo e = Q5 (oo Ny e )

we may determine a group matrix A which has the assigned X\, as
its eigenvalues. We claim that this A must have rational numbers as
entries. From (4) we see that

a, = 17 3 TN,
1eG
= B 700,

where, for a fixed independent character y, the sum Y, is over all
characters conjugate to it, and 3}, is the sum over the different
independent characters. Since the A, take conjugate values in exactly
the same manner as the y do, the sum 3, is fixed under each automor-
phism and therefore is a rational number. Consequently, a, is a sum
of rational numbers and hence a, € Q.
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Let G_, denote the set of group matrices A having rational entries,
obtained as follows. For each independent character y let A, be an
arbitrary unit in the group of units of the algebraic integer ring of
the number field Q(¢,), d being the order of y. TUse the conjugacy
relations to obtain values to assign to the remaining »,. Let G_, be
the group matrices with rational entries obtained in this way. Thus
G_, is isomorphic to a direct product of N abelian groups, where N
is the number of cyclic subgroups of G. Let us compute the rank
of G_,. This rank is the sum of the ranks of the constituent direct
factors of G_,, and the constituent direct factor associated with X\,
has rank

(5) -%-cP(d)—l if d>2, 0 if d=1 or 2.

The number (5) contributes to the sum giving the rank of G_, pre-
cisely as many times as there are cyclic subgroups in G of order d.
This yields Lemma 3.

LeEMMA 3. Rank G_, = r where

(6) r= Z(%@(d) ~ NG .

din
a>2

Here N(d) denotes the number of cyclic subgroups in G of order d.

We are now ready to prove our first main result.

THEOREM 1. The common rank of the groups G, G, G, is the
number r given by (6).

Proof. Clearly G, is a subgroup of G_,, and G_, has rank ». To
prove that rank G, = r it will suffice to prove that G™, & G, for some
exponent m. For this we use a device from [4]. Let R be the
algebraic integer ring of Q({,), and let R’ be the quotient ring R/(n).
Bach independent eigenvalue \,, being a unit in R, determines a unit
in the finite group of units of the finite ring R’. Hence for some
fixed exponent m we have A} =1 (modn). Therefore \} =1+ 4,
where 4, is an algebrac integer. For the matrix A™ the associated
eigenvalues are the A7, and if we apply formula (4) to find the entries
of A™, we find that they take the form

= B AN = 07 2 7(9) + 3 4.%(9)

1E€G 1EG Xeq@

Here >,7,x is an algebraic integer, and n™ >},%(9) = 0 or 1 according
as ¢ is not or is the identity. Thus the entries of A™ are algebraic
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integers. Since A™ has rational entries, it follows that A” ¢ G, There-
fore G, < G,, completing the proof. (This trick is taken from [4,
page 238].)

3. The quotient group G,/G,.
THEOREM 2. G,/G,= G*, where G* is the group of squares in G.

Proof. Let Aec(G, say
(7) A=>aPyg, aeZ.
geqd

Define a map o0: G,— G, by 0(4) = A7*A”. Clearly o is a homomor-
phism since G, is abelian. Because \,(4AB) = N\, (A ,(B) and (A7) =
A (A*) = N, (A), we see that

M(0(A)) = N (A)/M(4)

Thus |\, (c(A))| = 1 for each Xe@. We already know that ), (A4) is
a unit in Q(,). Therefore \,(0(4)) is a root of unity, and hence
0(4) has finite order. In order to exploit this fact we now give the
following lemma, a special case of a result in [4].

LeMMA 4. If Be G, has finite order them B = +P(g) for some
geq.

Proof. There is an element g G such that C = +P(g)B has a
positive entry in the (1, 1) position. Since the only P(R), ke G, which
has a nonzero entry in the main diagonal is P(e) (e is the identity of
G) and since C is a linear combination of the P(h), we see that C
has a positive integer, call it ¢, as its common entry down the main
diagonal. Since C has finite order each X\, (C) is a root of unity.
Therefore,

trace C = nc, = | S 0,(C)| = 1 (C)| = n .

Thus 0 < ¢, < 1, hence ¢, = 1, hence equality holds in this application
of the triangle inequality, hence the \,(C) are equal, and hence C
is scalar. Since C is integral and unimodular, we get C = +1,. Thus
B = +P(9™), as desired.

Applying Lemma 4 to o(4), we see that 0(4) = = P(h) for some
heG. We now exclude the possibility of the minus sign. If we had
o(A) = —P(h), then from A~ = —P(h)A we get

g;o a'gP(g—l) = _ggnaafgp(gk} ’
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or

2,a,P(g7) = =3, ayu-Plg™) -
Thus
(8) a, = —a,—,-1, al geG,

since the matrices P(g) are linearly independent.

Let f denote the permutation on G defined by f: g — ¢ '2™'. Then
f? is the identity, and hence f is a product of one cycles and two
cycles. For each g fixed by f we obtain from (8) that

9.1) a, =0
and for each g moved by f we obtain from (8) that
(9.2) Uy + Gy =0

On A perform the elementary operations in which we add to the
first column of A all the other columns of A. The common entry
down the first column of the resulting matrix is >),a, and this sum,
by (9), equals 0. Thus A is singular, a contradiction.

Consequently o(4) = P(h). Suppose k is not a square in G. Then
the permutation f above has no fixed points. From A~ = P(h)A we
obtain (in place of (8)) the formula

(10) Ay = Qs » and g =# f(g) .

Adding together, as above, all the columns of A, we see from (10)
that the common entry >,a, in the first column must be an even
integer. Thus det A = 0 (mod 2). This contradicts the unimodularity
of A.

We now know that o(A) = P(k) and h = ¢g* for some element ge
G. Since a(P(g™)) = P(¢?, it follows that o is a homomorphism from
G, onto the group of all P(¢*), g€ G. What is kernel of ¢? A short
calculation shows it to be G. Thus G,/G, = the group of all P(g*) for
g€ G. This completes the proof of Theorem 2.

Theorem 2 yields the following interesting variant of the polar
factorization theorem.

THEOREM 3. Let A€ G, Then A = P(9)B, for some g G and
some Be @G,

Proof. Let c(A)= P(97%). Then A” = P(¢97®)A, hence (P(g™)A4)" =
P(g™)A. Thus B = P(g™")A is symmetric so that Be G,. Since 4 =
P(9)B, the result is at hand.



640 D. GARBANATI AND R. C. THOMPSON
4, The class numbers.

THEOREM 4. Let K be either G, or G,. Then the number of G-
congruence classes in K is [K: G%]

Proof. If A, Be K and are G-congruent then B = CAC” where
CeG,. By Theorem 3, C = P(g)C, where C, € G,. Hence B= C,AC =
C:A. Thus B and A are in the same residue class of A modulo G2
Conversely, if A = B mod G? then A = BC? for C,eG,, hence A =
C,BC7 and so A and B are G-congruent. Thus the number of G-
congruence classes is exactly [K: G3].

COROLLARY 1. If two group matrices in G, are G-congruent,
they are G-congruent by a matrix from G,.

THEOREM 5. The number of congruence classes in G, by elements
of G, equals the number of congruence classes in G, by elements of
G, and 1s 2", where r 1s given by (6) and t is the number of basis
elements in the Sylow 2 subgroup of G.

Proof. This number is [G,: G}|. The rank of G, is 7, and hence
G, is a direct product of its subgroup of finite order elements and »
cyclic groups of infinite order. The finite order elements in G, are, by
Lemma, 4, of the form + P(g9) and in order for P(g) to be symmetric,
we must have P(g) = P(g™"), that is, ¢* = e. Thus the finite order
subgroup of G, is the direct product of ¢ cyclic groups of order 2 and
the group (—1I,>. The only finite order element in G? is I,. Hence
the finite order part of G, contributes 2:** to [G,: G!]. The infinite order
generators contribute 2" to [G: G¢]. This yields the result.

THEOREM 6. The number of congruence classes in G, by elements
of G, equals the number of congruence classes in G, by elements of
G, and this class number is a divisor of 27, where r is given by (6).

Proof. This number is [G,: G]. Now G,/G, = (G,/G)/(G,/G?) and
hence

[G:: GI] = [Gi: GI/[Gi: G -

By the proof of Theorem 5, [G.: G} = 2", and thus [G.: G} is a
divisor of 27+**!, Thus [G,: G?] is a power of two. However, all of
the group matrices of the form = P(g) for g* = e lie in different cosets
of G,mod G,. For if g2 = ¢ = ¢ and +P(9.97") is positive definite, it
follows that each eigenvalue of =+ P(g.9;') (being a positive real root
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of unity) must be one, and hence +P(g,9;') = I, = P(e). This says
g, = ¢, and the =+ sign is +. Consequently the 2! matrices =+ P(9)
as g ranges over the solutions of ¢ = ¢ are distinet mod G,. Since
these matrices form a subgroup of G,, we see that 2'*'|[G,: G;]. Thus
[G.: G7] is divisor of 27,

5. An example. One may ask how close to the actual class
number is the upper estimate 2' for the number of G-congruence
classes in G,. In some instances it is too high; as an example take
G to be the cyclic group of odd prime order p. In this case r =
(» — 3)/2 and so Theorem 5 tells us that for this G the number of
G-congruence classes in G, is a divisor of 2%~ However, it is
known (this is unpublished; see [1]) that for all » < 100, with a single
exception, the actual number of G, classes is one. Thus our bound is
much too large in these cases.

In some cases, however, our bound 2" is the precise number of
G-congruence classes in G,. This is so when G, is the direct product
of cyclic groups of orders 2 and/or 4 and also when G, is the direct
product of cyclic groups of orders 2 and/or 3, since in these cases
r = 0, i.e., there is only one G class. Thus our estimate is exact, but
in a trivial way.

In all examples heretofore known the number of G-congruence
classes in G, is one or two. In view of this evidence it is natural to
ask whether this class number can ever become larger than two.

We now give an example of a class of groups G for which the
number of G-congruence classes in G, is exactly 27, and for which
this number can be made arbitrarily large by selecting an appropriate
group from the class.

Let H be a cyclic group of order eight and let K be an elementary
abelian 2-group of order 2!, Set G = H x K. Then we claim, for
this group G, that r = 2¢ and that the number of G-congruence classes
in G, is

2r =2",

Proof. Let h, k denote the typical elements of H, K respectively.
Let 4, 0 be the typical characters on H, K respectively, and prolong
them to characters on G by setting (k) = o(h) = 1. Then the typical
character y on G has the form ¥ = 0 and the typical element of G
is g = hk. Let

A=>a,Plg) = > > a..Phk)
ge@ heH ke K

belong to G,. The matrix A is symmetric if and only if a, = a,—;
this is equivalent to
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Ap=1; = Qhp
for all he H, ke K. The eigenvalues of A are
Myo(4) = ; ; (k) o(k)
= 21 ¥(h) 3 ano®) + 3 (k) + p(h7)) 3 ano(k) -

h2=¢ h2e

(11)

The first 3}, denotes the sum over all % such that %#* = e, the second
> denotes the sum over all pairs (k, 2™') for which 2 = ™. Let

(12) A, = Ekl an0(k)
Then
(13) Ayo(4) = Ehl YR Awe + 25 (v(R) + Y(h™) A -

For fixed h, by letting p range over R, we may view (12) as a system
of linear equations in the a,, for which the coefficient matrix

(k) pe #.1ex 18 @ nonsingular matrix with entries =+1. (In fact the

matrix is the Kronecker product of ¢ copies of B _ﬂ) Thus
assigning arbitrary values to the A,, yields unique a,;, lying in the
same field as the A4,,.

Let &, be the generator of H and «+ the generator of H for which

o) = (L + 9)27%, Then from (13) we obtain

No = A, + Ah‘ép + 2Ah§p + 24,, + 2Ah§p )
Nydp = A, + Ahgp 4 2Ah§,, — 24,, — 2Ahg,, .

Here \, = +1, M4, = +1 (since these numbers are units and rational).
Subtracting, we find

o — Agto = 0 (mod 4) .

Hence

No = Mypdo s Appot+ Aizo =0
Thus also
(14) Ao = A, + Ahgp + 2Ah§p .

From (13) we next get
(15) Myp2p = A, + Ahép — 2Ah§,,

and therefore (since the right-hand side of (15) is rational), we get
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Ay = 1.
Subtracting (15) from (14) we obtain
Mo — My2o = 44,2, ,
and therefore
Mo = Ny2o s Apze =0,
Define ¢, = \,, so that ¢, = +=1. We now have
(16) o= Mo = M2p = Mpto = My, = Ay + Asto
) Ahgp =0= Ahgp R Ahgp = —Aup -
Returning to (13) we also have

Mo = A, — Ahép + 21/2(Ah0p - Ahgp)

18 = (24, — &) + 24,,-2"" .

Thus Ay, is a unit in Z[2’] and hence has the form (1 + 2%,
But (1 + 2/*" = a + B8-2Y* has 8 = 0 (mod 2) if and only if = is even.
Therefore we must have

Mo = (2Ap — &) + 222 A, , = 5,(3 + 2:2/%)% = u, + 20,
where 6, = +1,u,€ Z, v, Z. Then also
Mgo = Up — 20, = Ny, NyTp = U, + 2%, .
Next, observe (by (16)) that
g = ; a,0(k) + Zk, an0(k) -
Let 0’ be a fixed character on k. Then
& + o = 0400 + S a,p0() + 3 a0 (R0’ (k) + 3 ar00)0' )
=23 aok) +2 3 apok) .

o0’ (k)=1 o’ (k)=1

The last two sums here are over all & for which p'(k) = 1. Hence

(60 + €00)/2 = ; a,0(k) + ; @1 0(K)

o (k)=1 o7 (k) =1

Thus

(&p + €00)/2 = ; oy + ; Qntr (mod 2) .

o’ (k)=1 o’ (k) =1

On the right-hand side here no character other than o’ appears. There-
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fore, for any character p and o, we have
(&0 + €00 )/2 = (&5, + &00)/2 (mo0d 2),
and this implies that
€ + €opr = &y, + . (mod 4) .
Consequently ¢, = s(0')e,,, for all p, where s(0’) = +1 and s{0’) depends
only on o’. Changing notation, we get

(19) 6/01”2 - S(p1)€p2 .

LEMMA 5.
(i) 7o =17, (mod2) for every p, 0’ € K.
(i) If e, = ¢, then My, and Ny, have the same sign.

Proof.
(i) We have

Ah(]‘o - ?}p/2 .
Now A,, = A, (mod2) since

Ay = ; @ (mod2) .

Therefore v, = v,, (mod 4). But
(8 + 2.2 = (=1 + (1 — (—=1))2"® (mod 4)
for any integer exponent . Thus

B (0 (mod4) if 7,=0 (mod2),
Vo = 0ol — (=1)7) = 2 (mod4) if 7,=1 (mod?2).

Therefore (i) is proved.
We also have 24, — ¢, = u, = 0,(—1)" (mod 4). Thus, if ¢, = ¢,
then
0, — 0, = (—1)v2(4, — A,) (mod4) .

Since A, = A, (mod 2) we get J, = J,, (mod 4) and this implies §, =
0, That is, (ii) holds.

Notice that, if ke K, then hy,(P(k)) = ok).

Let &, k,, -+, k, be basis elements of K and let o, 0,, ---, p, be
the associated dual characters (that is, pi(k;) =1 if 1+, =—1if
7 =7). Let

O = Oftees 0t, €,++e,e,=0 or 1.

Then from (19) we see that
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& = s(p)" - s(0)"te
= (=17 een (— 1)

where ¢ = 41, and depends on A but not on p, and where o, ---., g,
are defined by (—1):=s(0,), ++-, (—1)*=s(0,). Let A, =Pk ... k")A.
Then
€o(A1) = Np(Ay) = Np(P(ET + - +))Np(A4)
— (_1)e101+...+etatsp(A) = €.

That is, for A,, all ¢, are the same, and hence, denoting A, by A4,
we have in A that ¢, = ¢, independent of p. Multiplying A by e,
we can assume all ¢, = +1. Thus in A we have all A, = Ay, = Aytp =
My, = +1, and all Ay, have the sign 0 (independent of o) (by Lemma

0
5).
Next observe that \y,(P(hi)) = +(h}). Thus

Mo(P(1)) = Mo PUE)) = Mpto PUE)) = hpso(PRE)) = 1

If 6 = +1 then all Ay, of A are positive. If 6 = —1, then in P(h})A
all Ny = My2o = Mpto = My = +1 and Ay o(P(h7)A) has the sign of —d >
0, so that in P(hi)A each eigenvalue is positive. The outcome of this
discussion is the following: starting with our original A € G,, we have
found +P(g), with ¢°* = e, such that +P(g)A has each eigenvalue
positive. That is, &= P(g9)A € G* for some g with ¢* = e. We summarize
this as Lemma 6.

LEMMA 6. If Ac @G, then FP(g) ewxists, g€ G with ¢* = e, such
that +P(9)A € G..

Since (4 P(9)A)B(x+P(9)A)” = ABA”, in computing the matrices
ABA” of the G-congruence class of a positive definite Be G,, we may
do our computation using only 4 in G,. Thus the number of G-con-
gruence classes in G, is [G;: Gi]. Since G, is the direct product of r
infinite cyclic groups, we easily see that [G.: Gi] = 2". It is easy to
compute from (6) that for the group G in question we have r = 2°.
We have completed the proof of Theorem 7.

THEOREM 7. If G s the direct product of a cylic group of order
eight and t cyclic groups of order two, then the number of G-congruence
classes in G, s

2 =2,

6. Skew circulants. Let P be the companion matrix of the
polynomial \* + 1. Let C = 3=} a,P* where a,€ Z. The matrix C is
an integral skew circulant. It may be symmetric and even positive
definite symmetric. Let S, be the group of integral unimodular skew
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circulants, S, the group of symmetric integral unimodular skew cir-
culants, S, the group of positive definite symmetric integral uni-
modular skew circulants. By using the techniques above, with some
minor modifications, the following facts may be proved.

(i) rank S, = rank S, = rank S, = r, where

(20) r=3 (%—sv(Zn/d) - 1) .

dodd
d<n

(ii) For Ae S, the map 0: A — AA” is a homomorphism from
S, onto the group P*,¢=0,1, .-+, n, with kernel S..

(ili) Given A€ S,, there exists t € Z and Be S, such that A = P'B.

Let K be either S, or S,. On K define the equivalence relation of
skew circulant congruence by A ~ B if and only if A = CBC” for
some Ce G, Here A, Be K. Then: \

(iv) Two members of K congruent by an element of S, are also
congruent by an element of S..

(v) When K is S, the number of skew circulant congruence
classses is 2'*" where r is given by (20).

(vi) When K is S,, the number of skew circulant congruence
classes is a divisor of 2", where » is given by (20).

For calculation of the number of skew cireulant classes in S, for
some values of n, see [3].
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