CLASSES OF UNIMODULAR ABELIAN GROUP MATRICES

DENNIS GARBANATI AND ROBERT C. THOMPSON

Let G be a finite abelian group, let G^o be the set of unimodular group matrices for *G* **with rational integer entries, let** *Gi* **be the symmetric members of Go, and** *G²* **the positive definite symmetric members of** G_0 **.** Let *K* be either G_1 or G_2 . **On** *K* **impose the equivalence relation of group matrix con gruence by asserting** $A \sim B$ (for $A, B \in K$) if and only if $C \in G_0$ exists such that $A = CBC^{\sigma}$, where σ denotes transposi**tion. M. Newman has estimated the number of classes under this equivalence relation, when G is cyclic. In this paper his study is continued for abelian groups. As part of the results it is shown that the class number of** *K* **is always a** power of two, and when K is G_1 the exact value of this class **number** is obtained. When K is G_2 an upper bound for class **number is found and shown to be sharp by exhibiting an in finite class of groups for which it is achieved.**

We now give a more detailed summary of our results. Let the abelian group G have order *n* and for $g \in G$ let $g \to P(g)$ be the regular representation of G into the group of n -square permutation matrices. Let $\mathfrak A$ denote the enveloping algebra over the complex numbers $\mathfrak C$ of the permutation matrices $P(g)$, that is,

$$
\mathfrak{A} = \left\{ \sum_{g \in G} a_g P(g) \, | \, a_g \in \mathfrak{S} \right\} .
$$

The group matrices for G are by definition the elements of \mathfrak{A} . When *G* is a cyclic group, the elements of $\mathfrak A$ are circulants. Mostly we shall be concerned with the subring \mathfrak{A}_0 consisting of those elements of $\mathfrak A$ whose entries lie in the rational integers Z . Within $\mathfrak A_0$ lie the groups G_0, G_1, G_2 consisting respectively of the unimodular, symmetric unimodular, and positive definite symmetric unimodular elements of \mathfrak{A}_0 .

If $A, B \in K$ and $A \sim B$ we say A and B are G-congruent. The number of G-congruence classes in *K* is known [5, 8] to be finite, and upper bounds and exact values for these class numbers in a number of special cases may be found in [5, 6, 9].

In another direction, the rank of the group $G₂$ is given in [1] in the special case when G is cyclic. Estimates of the rank of G_0 for cyclic G were previously obtained in [5]. However, in earlier work [4] the rank of G_0 (for all abelian G) was essentially determined, although an explicit formula was not given.

In this paper we shall compute the rank of all three groups G_0 ,

 $G₁$, $G₂$. Then we shall show that the number of G -congruence classes in *K* is a power of two, and, using our knowledge of the rank, we shall compute the precise power of two in the case $K = G_i$, and we shall estimate from above the power of two when *K* is *G² .* Next, we exhibit a class of groups for which this estimate gives the exact result. Other results that will be obtained include an interesting an alogue of the polar factorization theorem, valid within *G^o .* At the end of the paper we summarize the corresponding results for the group of unimodular integral skew circulants. (The congruence classes within this group were recently studied in [3].)

We wish to acknowledge that the results of §§2-4 in the special case when *G* is a cyclic have also been obtained by M. Newman, and will appear in a forthcoming book by him.

1. Notation. The entries of the group matrix A will henceforth be in *Q* (the rational numbers) and usually in *Z* (the rational integers). Let *G* denote the group of complex valued characters on *G* and let χ denote the typical character. Of course, \tilde{G} is isomorphic to G . Let

(1)
$$
A = \sum_{g \in G} a_g P(g) \in \mathfrak{A}.
$$

For definiteness we let P be the left regular representation of G. Using the elements of *G* to index the rows and columns of *P,* it then follows that the (k, h) -entry of $P(g)$ is one if $gh = k$, and zero if $gh \neq k$. Let *Ω* denote the matrix

$$
\varOmega\,=\,(\chi(g))_{\chi\,\epsilon\,\hat{\mathcal{G}},g\,\epsilon\,G}\;.
$$

Here the rows of *Ω* are indexed by the characters $\chi \in \hat{G}$ and the columns are indexed by the group elements $g \in G$. Then the matrix $U = n^{-1/2}\Omega$ is unitary and furthermore $UAU^* = UAU^{-1}$ is a diagonal matrix in which the diagonal entries (the eigenvalues of *A)* are the numbers λ_{γ} defined by

(2)
$$
\lambda_{\chi} = \lambda_{\chi}(A) = \sum_{g \in G} a_g \chi(g) , \quad \chi \in \widehat{G} .
$$

We may write this relation as

(3)
$$
(\cdots, \lambda_{\chi}(A), \cdots)^{\mathcal{T}} = \Omega(\cdots, a_{g}, \cdots)^{\mathcal{T}}
$$

where the vector on the left-hand side has the λ_{χ} as entries and the vector on the right-hand side has the a_g as entries.

Notice that each character *χ* determines and is completely deter mined by the entries in a particular row of *Ω.*

Let $G = \langle g_1 \rangle \times \cdots \times \langle g_k \rangle$ be the direct product of cyclic groups $\cdots, \langle g_k \rangle$ of orders n_1, \cdots, n_k respectively. Define the basic

characters *χ^t* by

$$
\chi_{t}(g_{t}) = \exp (2\pi i/n_{t}), \qquad \chi_{t}(g_{j}) = 1 \quad \text{for} \quad j \neq t ;
$$

 $t = 1, \dots, k$. The typical character $\chi \in \hat{G}$ is then uniquely representable as

$$
\chi=\chi_1^{e_1}\cdots\chi_k^{e_k}
$$

where e_1, \dots, e_k are integers with $0 \le e_i < n_i$, $t = 1, \dots, k$. Analogously the typical element *g* of G has the form

$$
g=g_1^{e_1}\cdots g_k^{e_k}
$$

where again $0 \leq e_t < n_t$, for $t = 1, \dots, k$.

The symbol A^* will denote the complex conjugate transpose of matrix A.

2. The ranks of the groups G_0 , G_1 , G_2 .

LEMMA 1. Rank
$$
G_0
$$
 = rank G_1 = rank G_2 < ∞ .

Proof. If $A \in G_0$ then each eigenvalue of A is a unit in a cyclo tomic number field, hence *G^o* is contrained in the direct product of a number of groups of finite rank, hence rank $\,G_{\textrm{o}}\xspace<\infty$. (See [5].) We clearly have $G_0 \supseteq G_1 \supseteq G_2$. It will suffice to find an exponent m such that $G_z \supseteq G_0^m$. Let $A \in G_0$. Then each eigenvalue $\lambda_\chi(A)$ of A is a unit in the algebraic integer ring of the cyclotomic field $Q(\zeta_n)$. Here $\zeta_n = e^{2\pi i/n}$. It is known [10] that an exponent m exists such that for any unit *u* in $Q(\zeta_n)$, the unit u^m is real and positive. Thus each eigenvalue of A^m is real and positive. Since A^m is a real normal matrix, if it has positive real eigenvalues it must be symmetric and definite. Thus $A^m \in G_2$.

If $A \in G_0$ then each eigenvalue $\lambda_{\gamma}(A)$ is a unit in $Q(\zeta_n)$. *).* But these eigenvalues are not independent of one another, since any con jugate of $\lambda_{\chi}(A)$ under an automorphism of $Q(\zeta_n)$ will also be an eigen value of A. We wish to identify the conjugacy classes of the eigenvalues of $\lambda_{\chi}(A)$ of A. For this we use formula (2).

First we observe that if character χ has order *d* (as a member of the group \hat{G}) then for each $g \in G$, the cemplex number $\chi(g)$ is a dth root of unity. Furthermore, for at least one $g \in G$ the complex number $\chi(g)$ is a primitive d^{th} root of unity. For the map $g \to \chi(g)$ is a homomorphism from G into the complex number field and so the range of χ , as group in this field, is a cyclic group. Let $g_0 \in G$ be such that $\chi(g_0)$ generates the range of χ . Then the order of χ in \hat{G} is the order of $\chi(g_0)$ in the multiplicative group of \mathfrak{C} . Thus $\chi(g_0)$ is a primitive d^{th}

root of unity. Because at least one entry of the vector $(\cdots, \chi(g), \cdots)_{g \in G}$ (a row of *Ω)* has order *d,* the conjugates of this vector (obtained by applying to the entries the automorphisms of the field $Q(\zeta_d)$ are exactly $\varphi(d)$ in number. Consequently it follows that each character χ of order *d* belongs to a class of $\varphi(d)$ distinct conjugate characters.

From each such class of conjugate characters select one repre sentative character. We call these selected characters the *independent characters,* and as *χ* ranges over the independent characters we call the associated eigenvalues $\lambda_i(A)$ the *independent eigenvalues* of A.

How many independent characters (or eigenvalues) are there? Each independent character of order *d* belongs to a class of $\varphi(d)$ characters, each having order d. Let $\mathscr{Q}(d)$ denote the number of elements of order d is \hat{G} . The elements of order d in \hat{G} thus produce exactly $\mathscr{Q}(d)/\varphi(d)$ independent characters. We may make this calculation for each $d \mid n$. It is a simple matter to see that $\mathscr{Q}(d)/\mathscr{P}(d) = N(d)$, where *N(d)* denotes the number of cyclic subgroups of order *d* in *G.* We thus arrive at the following conclusion.

LEMMA 2. *The independent eigenvalues of A are in one-to-one correspondence with the cyclic subgroups of G.*

If we know the values of the independent eigenvalues of the group matrix *A* (for which the entries are in *Q)* then the values of all other eigenvalues of *A* are determined. Conversely, suppose we assign to each independent eigenvalue λ _z an arbitrary value from the field $Q(\zeta_d)$ (where *d* is the order of χ) and use the conjugacy relations to determine from these independent eigenvalues values to be assigned to the nonindependent eigenvalues. Rewriting (3) as

$$
(4) \qquad \qquad (\cdots, a_{\scriptscriptstyle g}, \cdots)^{\scriptscriptstyle\tau} = n^{-1} \Omega^* (\cdots, \lambda_{\scriptscriptstyle \chi}, \cdots)^{\scriptscriptstyle\tau}
$$

we may determine a group matrix A which has the assigned λ_{χ} as its eigenvalues. We claim that this *A* must have rational numbers as entries. From (4) we see that

$$
a_g = n^{-1} \sum_{\chi \in \widehat{G}} \overline{\chi}(g) \lambda_{\chi}
$$

= $n^{-1} \sum_{\chi} \sum_{\chi} \overline{\chi}(g) \lambda_{\chi}$

where, for a fixed independent character χ , the sum \sum_{z} is over all characters conjugate to it, and Σ_{t} is the sum over the different independent characters. Since the λ_{χ} take conjugate values in exactly the same manner as the χ do, the sum \sum_{2} is fixed under each automor phism and therefore is a rational number. Consequently, a_g is a sum of rational numbers and hence $a_g \in Q$.

Let G_{-1} denote the set of group matrices A having rational entries, obtained as follows. For each independent character χ let λ_{χ} be an arbitrary unit in the group of units of the algebraic integer ring of the number field $Q(\zeta_d)$, *d* being the order of χ . Use the conjugacy relations to obtain values to assign to the remaining λ_{χ} . Let G_{-1} be the group matrices with rational entries obtained in this way. Thus G_{-1} is isomorphic to a direct product of *N* abelian groups, where *N* is the number of cyclic subgroups of *G.* Let us compute the rank of G_{-1} . This rank is the sum of the ranks of the constituent direct factors of G_{-1} , and the constituent direct factor associated with λ has rank

(5)
$$
\frac{1}{2}\varphi(d)-1
$$
 if $d>2$, 0 if $d=1$ or 2.

The number (5) contributes to the sum giving the rank of G_{-1} pre cisely as many times as there are cyclic subgroups in *G* of order *d.* This yields Lemma 3.

LEMMA 3. $Rank \ G_{-1} = r \ where$

(6)
$$
r = \sum_{\substack{d \mid n \\ d>2}} \left(\frac{1}{2} \varphi(d) - 1 \right) N(d) \; .
$$

Here *N(d)* denotes the number of cyclic subgroups in *G* of order *d.*

We are now ready to prove our first main result.

THEOREM 1. The common rank of the groups G_0, G_1, G_2 is the *number r given by* (6).

Proof. Clearly G_0 is a subgroup of G_{-1} , and G_{-1} has rank r. To prove that rank $G_0 = r$ it will suffice to prove that $G_{-1}^m \subseteq G_0$ for some exponent m . For this we use a device from $[4]$. Let R be the algebraic integer ring of $Q(\zeta_n)$, and let R' be the quotient ring $R/(n)$. Each independent eigenvalue λ_{χ} , being a unit in R, determines a unit in the finite group of units of the finite ring R' . Hence for some fixed exponent m we have $\lambda_{\chi}^{m} \equiv 1 \pmod{n}$. Therefore $\lambda_{\chi}^{m} = 1 + i_{\chi} n$ where i_z is an algebrac integer. For the matrix A^m the associated eigenvalues are the λ_x^m , and if we apply formula (4) to find the entries of *A^m ,* we find that they take the form

$$
n^{-1}\sum_{\chi\in\hat{G}}\overline{\chi}(g)\lambda_{\chi}^{m} = n^{-1}\sum_{\chi\in\hat{G}}\overline{\chi}(g) + \sum_{\chi\in\hat{G}}i_{\chi}\overline{\chi}(g).
$$

Here $\sum_{\lambda} i_{\lambda} \chi$ is an algebraic integer, and $n^{-1} \sum_{\lambda} \chi(g) = 0$ or 1 according as *g* is not or is the identity. Thus the entries of *A^m* are algebraic

integers. Since A^m has rational entries, it follows that $A^m \in G_0$ There fore $G_{-1}^{\infty} \subseteq G_0$, completing the proof. (This trick is taken from [4, page 238].)

3. The quotient group G_0/G_1 .

THEOREM 2. $G_0/G_1 \cong G^2$, where G^2 is the group of squares in G .

Proof. Let $A \in G_0$, say

(7)
$$
A = \sum_{g \in G} a_g P(g) , \qquad a_g \in Z.
$$

Define a map $\sigma: G_{\scriptscriptstyle{0}} \to G_{\scriptscriptstyle{0}}$ by $\sigma(A) = A^{-1}A^{\mathscr{I}}$. Clearly σ is a homomorphism since G_0 is abelian. Because $\lambda_\chi(AB) = \lambda_\chi(A)\lambda_\chi(B)$ and $\lambda_\chi(A^\mathcal{F}) =$ $\lambda_{\gamma}(A^*) = \overline{\lambda_{\gamma}(A)}$, we see that

$$
\lambda_{\chi}(\sigma(A))=\overline{\lambda_{\chi}(A)}/\lambda_{\chi}(A).
$$

Thus $|\lambda_\chi(\sigma(A))|=1$ for each $\chi\in \widehat{G}$. We already know that $\lambda_\chi(A)$ is a unit in $Q(\zeta_n)$. Therefore $\lambda_{\chi}(\sigma(A))$ is a root of unity, and hence $\sigma(A)$ has finite order. In order to exploit this fact we now give the following lemma, a special case of a result in [4].

LEMMA 4. If $B \in G_0$ has finite order then $B = \pm P(g)$ for some *geG.*

Proof. There is an element $g \in G$ such that $C = \pm P(g)B$ has a positive entry in the $(1, 1)$ position. Since the only $P(h)$, $h \in G$, which has a nonzero entry in the main diagonal is *P(e) (e* is the identity of G) and since *C* is a linear combination of the *P(h),* we see that *C* has a positive integer, call it c_0 , as its common entry down the main diagonal. Since C has finite order each $\lambda_{\chi}(C)$ is a root of unity. Therefore,

trace
$$
C = nc_0 = |\sum_{\chi} \lambda_{\chi}(C)| \leqq \sum_{\chi} |\lambda_{\chi}(C)| = n
$$
.

Thus $0 < c_0 \leq 1$, hence $c_0 = 1$, hence equality holds in this application of the triangle inequality, hence the $\lambda_{\chi}(C)$ are equal, and hence C is scalar. Since *C* is integral and unimodular, we get $C = \pm I_n$. Thus $B = \pm P(g^{-1})$, as desired.

Applying Lemma 4 to $\sigma(A)$, we see that $\sigma(A) = \pm P(h)$ for some $h \in G$. We now exclude the possibility of the minus sign. If we had $\sigma(A) = -P(h)$, then from $A^{\mathcal{F}} = -P(h)A$ we get

$$
\sum_{g\in G} a_g P(g^{-1}) = -\sum_{g\in G} a_g P(gh) ,
$$

$$
\sum_{g\,\in\,G} a_g P(g^{-1}) = -\sum_{g\,\in\,G} a_{g^{-1}h^{-1}} P(g^{-1}) \; .
$$

Thus

(8)
$$
a_g = -a_{g^{-1}h^{-1}}, \text{ all } g \in G,
$$

since the matrices $P(g)$ are linearly independent.

Let f denote the permutation on G defined by $f: g \to g^{-1}h^{-1}$. Then f^2 is the identity, and hence f is a product of one cycles and two cycles. For each g fixed by f we obtain from (8) that

$$
(9.1) \t a_g = 0
$$

and for each g moved by f we obtain from (8) that

$$
(9.2) \t\t\t a_g + a_{f(g)} = 0.
$$

On *A* perform the elementary operations in which we add to the first column of *A* all the other columns of *A.* The common entry down the first column of the resulting matrix is $\sum_{q} a_q$ and this sum, by (9), equals 0. Thus *A* is singular, a contradiction.

Consequently $\sigma(A) = P(h)$. Suppose h is not a square in G. Then the permutation f above has no fixed points. From $A^{\mathcal{T}} = P(h)A$ we obtain (in place of (8)) the formula

$$
(10) \t ag = af(g), and g \neq f(g).
$$

Adding together, as above, all the columns of *A,* we see from (10) that the common entry $\sum_{g} a_g$ in the first column must be an even integer. Thus det $A \equiv 0 \pmod{2}$. This contradicts the unimodularity of *A.*

We now know that $\sigma(A) = P(h)$ and $h = g^2$ for some element $g \in$ *G.* Since $\sigma(P(g^{-1})) = P(g^2)$, it follows that σ is a homomorphism from G_0 onto the group of all $P(g^2)$, $g \in G$. What is kernel of σ ? A short calculation shows it to be G. Thus $G_0/G_1 \cong$ the group of all $P(g^2)$ for $g \in G$. This completes the proof of Theorem 2.

Theorem 2 yields the following interesting variant of the polar factorization theorem.

THEOREM 3. Let $A \in G_o$. Then $A = P(g)B$, for some $g \in G$ and some $B \in G_1$.

Proof. Let $\sigma(A) = P(g^{-2})$. Then $A^{\mathscr{F}} = P(g^{-2})A$, hence $P(g^{-1})A$. Thus $B = P(g^{-1})A$ is symmetric so that $B \in G_1$. Since $A =$ *P(g)B,* the result is at hand.

4. The class numbers.

THEOREM 4. Let K be either G_1 or G_2 . Then the number of G *congruence classes in K is* $[K; G_i^2]$

Proof. If $A, B \in K$ and are G-congruent then $B = CAC^{\mathcal{T}}$ where $C \in G_0$. By Theorem 3, $C = P(g)C$ ₁ where $C_i \in G$ ₁. Hence $B = C_i A C_i^{\mathcal{F}} =$ C_1^2A . Thus *B* and *A* are in the same residue class of *A* modulo G_1^2 . Conversely, if $A \equiv B \mod G_1^2$ then $A = BC_1^2$ for $C_1 \in G_1$, hence $A =$ $C_1BC_1^{\sigma}$ and so A and B are G-congruent. Thus the number of Gcongruence classes is exactly $[K: G_i].$

COROLLARY 1. If two group matrices in G_0 are G-congruent, *they are G-congruent by a matrix from* G_i *.*

 $THEOREM 5. The number of congruence classes in $G₁$ by elements$ *of* G^o *equals the number of congruence classes in G^x by elements of* G_i , and is 2^{r+t+1} , where r is given by (6) and t is the number of basis *elements in the Sylow* 2 *subgroup of* G

Proof. This number is $[G_1: G_1^2]$. The rank of G_1 is r, and hence G_1 is a direct product of its subgroup of finite order elements and r cyclic groups of infinite order. The finite order elements in G_i are, by Lemma 4, of the form $\pm P(g)$ and in order for $P(g)$ to be symmetric, we must have $P(g) = P(g^{-1})$, that is, $g^2 = e$. Thus the finite order subgroup of G_i is the direct product of t cyclic groups of order 2 and the group $\langle -I_n \rangle$. The only finite order element in G_i^2 is I_n . Hence the finite order part of G_i contributes 2^{t+1} to $[G_i: G_i^z]$. The infinite order generators contribute 2^r to $[G_1; G_1^s]$. This yields the result.

THEOREM 6. The number of congruence classes in G_z by elements of G_0 equals the number of congruence classes in G_2 by elements of Gi *and this class number is a divisor of* 2^r , *where r is given by* (6).

Proof. This number is $[G_2: G_1^2]$. Now $G_1/G_2 \cong (G_1/G_1^2)/(G_2/G_1^2)$ and hence

$$
[G_{\scriptscriptstyle \rm 2}\!\!:G_{\scriptscriptstyle \rm 1}^{\scriptscriptstyle 2}] = [G_{\scriptscriptstyle \rm 1}\!\!:G_{\scriptscriptstyle \rm 1}^{\scriptscriptstyle 2}]/[G_{\scriptscriptstyle \rm 1}\!\!:G_{\scriptscriptstyle \rm 2}] \,\,.
$$

By the proof of Theorem 5, $[G_1: G_1^2] = 2^{r+t+1}$, and thus $[G_2: G_1^2]$ is a divisor of 2^{r+t+1} . Thus $[G_2; G_1^2]$ is a power of two. However, all of the group matrices of the form $\pm P(g)$ for $g^2 = e$ lie in different cosets of G_1 mod G_2 . For if $g_1^2 = g_2^2 = e$ and $\pm P(g_1 g_2^{-1})$ is positive definite, it follows that each eigenvalue of $\pm P(g_1g_2^{-1})$ (being a positive real root

of unity) must be one, and hence $\pm P(g_1g_2^{-1}) = I_n = P(e)$. This says $g_1 = g_2$, and the \pm sign is $+$. Consequently the 2^{t+1} matrices $\pm P(g)$ as g ranges over the solutions of $g^2 = e$ are distinct mod G_2 . . Since these matrices form a subgroup of G_i , we see that $2^{t+1} | [G_i: G_i]$]. Thus $[G_2: G_1^2]$ is divisor of 2^r .

5. An example. One may ask how close to the actual class number is the upper estimate 2^r for the number of G-congruence classes in $G₂$. In some instances it is too high; as an example take G to be the cyclic group of odd prime order *p.* In this case *r —* $(p-3)/2$ and so Theorem 5 tells us that for this G the number of G-congruence classes in G_2 is a divisor of $2^{(p-3)/2}$. However, it is known (this is unpublished; see [1]) that for all $p \leq 100$, with a single exception, the actual number of $G₂$ classes is one. Thus our bound is much too large in these cases.

In some cases, however, our bound *2^r* is the precise number of G-congruence classes in $G₂$. This is so when $G₂$ is the direct product of cyclic groups of orders 2 and/or 4 and also when $G₂$ is the direct product of cyclic groups of orders 2 and/or 3, since in these cases $r = 0$, i.e., there is only one G class. Thus our estimate is exact, but in a trivial way.

In all examples heretofore known the number of G-congruence classes in $G₂$ is one or two. In view of this evidence it is natural to ask whether this class number can ever become larger than two.

We now give an example of a class of groups G for which the number of G-congruence classes in $G₂$ is exactly 2^r , and for which this number can be made arbitrarily large by selecting an appropriate group from the class.

Let *H* be a cyclic group of order eight and let *K* be an elementary abelian 2-group of order 2^t. Set $G = H \times K$. Then we claim, for this group G , that $r = 2^t$ and that the number of G -congruence classes in $G₂$ is

$$
2^r=2^{2^t}.
$$

Proof. Let *h, k* denote the typical elements of *H, K* respectively. Let ψ , ρ be the typical characters on *H*, *K* respectively, and prolong them to characters on G by setting $\psi(k) = \rho(h) = 1$. Then the typical character χ on G has the form $\chi = \psi \rho$ and the typical element of G is $g = hk$. Let

$$
A = \sum_{g \in G} a_g P(g) = \sum_{h \in H} \sum_{k \in K} a_{hk} P(hk)
$$

belong to G_0 . The matrix A is symmetric if and only if $a_g = a_{g-1}$; this is equivalent to

$$
a_{h^{-1}k}=a_{hk}
$$

for all $h \in H$, $k \in K$. The eigenvalues of A are

(11)
$$
\lambda_{\psi\rho}(A) = \sum_{h} \sum_{k} a_{hk} \psi(h) \rho(k) = \sum_{h \atop h^2 = e} \psi(h) \sum_{k} a_{hk} \rho(k) + \sum_{h \atop h^2 \neq e} (\psi(h) + \psi(h^{-1})) \sum_{k} a_{hk} \rho(k).
$$

The first \sum_{h} denotes the sum over all h such that $h^2 = e$, the second \sum_{h} denotes the sum over all pairs (h, h^{-1}) for which $h \neq h^{-1}$. Let

$$
(12) \t\t A_{h\rho} = \sum_{k} a_{h k} \rho(k) .
$$

Then

(13)
$$
\lambda_{\psi\rho}(A) = \sum_{h^h\atop h^2=e} \psi(h)A_{h\rho} + \sum_{h^h\atop h^2\neq e} (\psi(h) + \psi(h^{-1}))A_{h\rho}.
$$

For fixed *h*, by letting ρ range over \hat{K} , we may view (12) as a system of linear equations in the a_{hk} for which the coefficient matrix $(\rho(k))_{\rho \in \hat{K}, k \in K}$ is a nonsingular matrix with entries ± 1 . (In fact the matrix is the Kronecker product of t copies of $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$. assigning arbitrary values to the $A_{h\rho}$ yields unique $a_{h\kappa}$, lying in the same field as the $A_{h\rho}$.

Let h_0 be the generator of H and ψ_0 the generator of \hat{H} for which $\psi_0(h_0) = (1 + i)2^{-1/2}$. Then from (13) we obtain

$$
\lambda_\rho = A_\rho + A_{h_0^{4\rho}} + 2 A_{h_0^{2\rho}} + 2 A_{h_0\rho} + 2 A_{h_0^{3\rho}} \ ,
$$

$$
\lambda_{\psi_0^{4\rho}} = A_\rho + A_{h_0^{4\rho}} + 2 A_{h_0^{2\rho}} - 2 A_{h_0\rho} - 2 A_{h_0^{3\rho}} \ .
$$

Here $\lambda_{\rho} = \pm 1$, $\lambda_{\psi_0^4 \rho} = \pm 1$ (since these numbers are units and rational). Subtracting, we find

$$
\lambda_{\rho} - \lambda_{\psi_{\rho}^4 \rho} \equiv 0 \pmod{4} .
$$

Hence

 $\lambda_{\rho} \, = \, \lambda_{\psi^{4}_{\,\circ}\rho} \; , \quad A_{h_{\,\circ}\rho} \, + \, A_{h_{\,\circ}^3\rho} \, = \, 0$

Thus also

(14) $\lambda_{\rho} = A_{\rho} + A_{h_0^4 \rho} + 2A_{h_0^2 \rho}$.

From (13) we next get

(15)
$$
\lambda_{\psi_{0}^{2}\rho} = A_{\rho} + A_{h_{0}^{4}\rho} - 2A_{h_{0}^{2}\rho}
$$

and therefore (since the right-hand side of (15) is rational), we get

$$
\lambda_{\psi^2_{\alpha}\varrho}=\pm 1.
$$

Subtracting (15) from (14) we obtain

$$
\lambda_{\rho} - \lambda_{\psi_{0}^{2}\rho} = 4 A_{h_{0}^{2}\rho} ,
$$

and therefore

$$
\lambda_{p} = \lambda_{\psi^{2}_{0} \rho} \; , \quad A_{h^{2}_{0} \rho} = 0 \; .
$$

Define $\varepsilon_{\rho} = \lambda_{\rho}$, so that $\varepsilon_{\rho} = \pm 1$. We now have

(16)
$$
\varepsilon_{\rho} = \lambda_{\rho} = \lambda_{\psi_{0}^{2}\rho} = \lambda_{\psi_{0}^{4}\rho} = \lambda_{\psi_{0}^{6}\rho} = A_{\rho} + A_{h_{0}^{4}\rho} ,
$$

(17)
$$
A_{h_0^2\rho} = 0 = A_{h_0^6\rho} , \quad A_{h_0^3\rho} = -A_{h_0\rho} .
$$

Returning to (13) we also have

(18)
$$
\lambda_{\psi_0 \rho} = A_{\rho} - A_{h_0^4 \rho} + 2^{1/2} (A_{h_0 \rho} - A_{h_0^3 \rho})
$$

$$
= (2A_{\rho} - \varepsilon_{\rho}) + 2A_{h_0 \rho} \cdot 2^{1/2}.
$$

Thus $\lambda_{\psi_{\mathbb{C}}^{\rho}}$ is a unit in $Z[2^{1/2}]$ and hence has the form $\pm(1 + 2^{1/2})^{\tau}$. But $(1 + 2^{1/2})^r = \alpha + \beta \cdot 2^{1/2}$ has $\beta \equiv 0 \pmod{2}$ if and only if τ is even. Therefore we must have

$$
\lambda_{\psi_{0} \rho} = (2 A_{\rho} - \varepsilon_{\rho}) + 2 \boldsymbol{\cdot} 2^{l/2} \boldsymbol{\cdot} A_{h_{\hat{\mathbb{C}}} \rho} = \delta_{\rho} (3 + 2 \boldsymbol{\cdot} 2^{l/2})^{\tau_{\rho}} = u_{\rho} + 2^{l/2} v_{\rho}
$$

where $\delta_{\rho} = \pm 1, u_{\rho} \in Z$, $v_{\rho} \in Z$. Then also

$$
\lambda_{\psi^3_{\alpha^\rho}}=u_\rho-2^{1/2}v_\rho=\lambda_{\psi^5_{\alpha^\rho}}\,,\quad \lambda_{\psi^7_{\alpha^\rho}}=u_\rho+2^{1/2}v_\rho\;.
$$

Next, observe (by (16)) that

$$
\varepsilon_{\rho} = \sum_{k} a_{k} \rho(k) + \sum_{k} a_{h_{0}^{4}k} \rho(k) .
$$

Let ρ' be a fixed character on k . Then

$$
\varepsilon_\rho + \varepsilon_{\rho\rho\prime} = \sum_k a_k \rho(k) + \sum_k a_{h_0^kk} \rho(k) + \sum_k a_k \rho(k) \rho^\prime(k) + \sum_k a_{h_0^kk} \rho(k) \rho^\prime(k) \\ = 2 \sum_k a_k \rho(k) + 2 \sum_k a_{h_0^kk} \rho(k) .
$$

The last two sums here are over all k for which $\rho'(k) = 1$. Hence

$$
(\varepsilon_{\rho}+\varepsilon_{\rho\rho\prime})/2=\sum_{\substack{k\\ \rho'(k)=1}}a_k\rho(k)+\sum_{\substack{k\\ \rho'(k)=1}}a^*_{h_0k}\rho(k).
$$

Thus

$$
(\varepsilon_{\rho}+\varepsilon_{\rho\rho})/2 \equiv \sum_{\substack{k\\ \rho'(k)=1}} a_k + \sum_{\substack{k\\ \rho'(k)=1}} a_{k_0^4 k} \pmod{2}.
$$

On the right-hand side here no character other than ρ' appears. There-

fore, for any character ρ and ρ _{*i*} we have

$$
(\varepsilon_{\scriptscriptstyle{\rho}}\, +\, \varepsilon_{\scriptscriptstyle{\rho\rho\rho}})/2 \,\equiv\, (\varepsilon_{\scriptscriptstyle{\rho}_1}+\, \varepsilon_{\scriptscriptstyle{\rho}_1\rho\prime})/2 \pmod{2} \,\, ,
$$

and this implies that

$$
\varepsilon_{\rho} + \varepsilon_{\rho\rho\prime} \equiv \varepsilon_{\rho_1} + \varepsilon_{\rho_1\rho\prime} \pmod{4} \ .
$$

Consequently $\varepsilon_{\rho} = s(\rho') \varepsilon_{\rho\rho'}$, for all ρ , where $s(\rho') = \pm 1$ and $s(\rho')$ depends only on *ρ* Changing notation, we get

$$
\varepsilon_{\rho_1\rho_2} = s(\rho_1)\varepsilon_{\rho_2} .
$$

LEMMA 5. (i) $\tau_{\rho} \equiv \tau_{\rho}$, (mod 2) for every $\rho, \rho \in K$. (ii) If $\varepsilon_{\rho} = \varepsilon_{\rho}$, then $\lambda_{\psi_{\mathbb{C}}\rho}$ and $\lambda_{\psi_{\mathbb{C}}\rho}$, have the same sign.

Proof. (i) We have

$$
A_{h_0\rho} = \, v_\rho/2 \; .
$$

Now $A_{h_0\rho} \equiv A_{h_0\rho}$, (mod 2) since

$$
A_{h_0\rho}\equiv \textstyle\sum\limits_k\,a_{h_0k}\pmod{2}\,\,.
$$

 $\text{Therefore} \ \ v_{\rho} \equiv v_{\rho} \pmod{4}. \quad \text{But}$

$$
(3+2\boldsymbol{\cdot} 2^{1/2})^{\tau} \equiv (-1)^{\tau} + (1-(-1)^{\tau}) 2^{1/2} \pmod{4}
$$

for any integer exponent τ . Thus

$$
v_\rho\equiv \delta_\rho(1-(-1)\tau_\rho)\equiv \begin{cases} 0\pmod{4} & \text{if}\quad \tau_\rho\equiv 0\pmod{2} \cr 2\pmod{4} & \text{if}\quad \tau_\rho\equiv 1\pmod{2} \end{cases}.
$$

Therefore (i) is proved.

We also have $2A_{\rho} - \varepsilon_{\rho} = u_{\rho} \equiv \delta_{\rho}(-1)^{\tau_{\rho}} \pmod{4}$. Thus, if $\varepsilon_{\rho} = \varepsilon_{\rho}$, then

$$
\delta_{\rho} - \delta_{\rho'} \equiv (-1)^{\tau_{\rho}} 2(A_{\rho} - A_{\rho'}) \pmod{4} .
$$

Since $A_{\rho} \equiv A_{\rho}$, (mod 2) we get $\delta_{\rho} \equiv \delta_{\rho}$, (mod 4) and this implies $\delta_{\rho} =$ *p ,.* That is, (ii) holds.

Notice that, if $k \in K$, then $\lambda_{\psi \rho}(P(k)) = \rho(k)$

Let k_1, k_2, \dots, k_t be basis elements of K and let $\rho_1, \rho_2, \dots, \rho_t$ be the associated dual characters (that is, $\rho_i(k_j) = 1$ if $i \neq j$, $= -1$ if $i = j$). Let

$$
\rho = \rho_{1}^{e_{1}} \cdots \rho_{t}^{e_{t}}, \quad e_{1}, \cdots, e_{t} = 0 \quad \text{or} \quad 1.
$$

Then from (19) we see that

$$
\varepsilon_{\rho} = s(\rho_{1})^{e_{1}} \cdots s(\rho^{t})^{e_{t}} \varepsilon
$$

$$
= (-1)^{a_{1}e_{1}} \cdots (-1)^{a_{t}e_{t}} \varepsilon
$$

where $\varepsilon = \pm 1$, and depends on A but not on ρ , and where $\sigma_1, \dots, \sigma_k$ $\text{area defined by } (-1)^{a_1} = s(\rho_1), \dots, (-1)^{a_t} = s(\rho_t). \quad \text{Let } A_i = P(k_1^{a_1} \cdots k_t^{a_t})A.$ Then

$$
\varepsilon_{\rho}(A_1) = \lambda_{\rho}(A_1) = \lambda_{\rho}(P(k_1^{\sigma_1} \cdots))\lambda_{\rho}(A) = (-1)^{e_1 \sigma_1 + \cdots + e_t \sigma_t} \varepsilon_{\rho}(A) = \varepsilon.
$$

That is, for A_1 , all ε_ρ are the same, and hence, denoting A_1 by A , we have in A that $\varepsilon_{\rho} = \varepsilon$, independent of ρ . Multiplying A by ε , we can assume all $\varepsilon_{\rho} = +1$. Thus in A we have all $\lambda_{\rho} = \lambda_{\psi_{0}^{2}\rho} = \lambda_{\psi_{0}^{4}\rho} =$ $\lambda_{\psi_{\alpha}^6} = +1$, and all $\lambda_{\psi_{\alpha}^6}$ have the sign δ (independent of ρ) (by Lemma 5).°

Next observe that $\lambda_{\psi}P(P(h_0^*)) = \psi(h_0^*)$. Thus

$$
\lambda_\rho(P(h^*_\circ))=\lambda_{\psi^2_{\circ}\rho}(P(h^*_\circ))=\lambda_{\psi^4_{\circ}\rho}(P(h^*_\circ))=\lambda_{\psi^6_{\circ}\rho}(P(h^*_\circ))=1\,\,.
$$

If $\delta = +1$ then all $\lambda_{\psi \rho}$ of *A* are positive. If $\delta = -1$, then in $P(h_0^*)A$ all $\lambda_{\rho} = \lambda_{\psi_0^2 \rho} = \lambda_{\psi_0^4 \rho} = \lambda_{\psi_0^6 \rho} = +1$ and $\lambda_{\psi_0 \rho}(P(h_0^4)A)$ has the sign of $-\delta > 0$ 0, so that in $P(h_0^4)A$ each eigenvalue is positive. The outcome of this discussion is the following: starting with our original $A \in G_i$, we have found $\pm P(g)$, with $g^2 = e$, such that $\pm P(g)A$ has each eigenvalue positive. That is, $\pm P(g)A \in G^2$ for some g with $g^2 = e$. We summarize this as Lemma 6.

LEMMA 6. If $A \in G_1$ then $\pm P(g)$ exists, $g \in G$ with $g^2 = e$, such $that \pm P(g)A \in G_2$.

Since $(\pm P(g)A)B(\pm P(g)A)^{\mathcal{F}} = ABA^{\mathcal{F}}$, in computing the matrices $ABA^{\mathscr{F}}$ of the *G*-congruence class of a positive definite $B \in G_2$, we may do our computation using only A in G_z . Thus the number of G -con gruence classes in G_2 is $[G_2: G_2^z]$. Since G_2 is the direct product of r infinite cyclic groups, we easily see that $[G_2: G_2^2] = 2^r$. It is easy to compute from (6) that for the group G in question we have $r = 2^t$. We have completed the proof of Theorem 7.

THEOREM 7. *If G is the direct product of a cylic group of order eight and t cyclic groups of order two, then the number of G-congruence classes in G² is*

$$
2^r=2^{2^t}.
$$

6. Skew circulants. Let P be the companion matrix of the polynomial $\lambda^n + 1$. Let $C = \sum_{t=0}^{n-1} a_t P^t$ where $a_t \in \mathbb{Z}$. The matrix C is an integral skew circulant. It may be symmetric and even positive definite symmetric. Let S_0 be the group of integral unimodular skew

circulants, $S₁$ the group of symmetric integral unimodular skew circulants, *S²* the group of positive definite symmetric integral uni modular skew circulants. By using the techniques above, with some minor modifications, the following facts may be proved.

 (i) rank S_0 = rank S_1 = rank S_2 = r, where

(20)
$$
r = \sum_{\substack{d \mid n \\ d < n}} \left(\frac{1}{2} \varphi(2n/d) - 1 \right).
$$

(ii) For $A \in S_0$ the map $\sigma: A \to A^{-1}A^{\mathcal{T}}$ is a homomorphism from S_0 onto the group P^{2t} , $t = 0, 1, \dots, n$, with kernel S_1 .

(iii) Given $A \in S_0$, there exists $t \in Z$ and $B \in S_1$ such that $A = P^t B$. Let K be either S_1 or S_2 . On K define the equivalence relation of skew circulant congruence by $A \sim B$ if and only if $A = CBC^{\sigma}$ for some $C \in G_0$. Here $A, B \in K$. Then:

 (iv) Two members of K congruent by an element of S_0 are also congruent by an element of S_i .

(v) When K is S_i , the number of skew circulant congruence classses is 2^{1+r} where r is given by (20).

(vi) When K is S_z , the number of skew circulant congruence classes is a divisor of 2^r , where r is given by (20) .

For calculation of the number of skew circulant classes in S_z for some values of *n,* see [3].

REFERENCES

1. R. Austing, *Groups of unimodular circulants,* J. Research Nat. Bur. Standards, **65B,** (1965), 313-318.

2. Daniel Lee Davis, *On the distribution of the signs of the conjugates of the cyclotomic units in the maximal real sub field of the q th cyclotomic field, q a prime.* Thesis, California Institute of Technology. 1969.

3. D. Garbanati and R. C. Thompson, *Skew circulant quadratic forms,* J. Number Theory, to appear.

4. G. Higman, *The units of group rings,* Proc. London Math. Soc, 46 (1940), 231-248. 5. M. Newman, *Circulant quadratic forms,* Report of the Institute in the Theory of

Numbers, Boulder, Colorado, 1959, 189-192. 6. M. Newman and 0. Taussky, *Classes of positive definite circulants,* Canad. J. Math., 9 (1957), 71-73.

7. , *On a generalization of the normal basis in abelian algebraic number fields,* Comm. Pure and Appl. Math., 19 (1956), 89-91.

8. R. C. Thompson, *Classes of definite group matrices,* Pacific J. Math., 17 (1966), 175-190.

9. O. Taussky, *Unimodular integral circulants,* Math. Z., 63 (1955), 286-289.

10. E. Weiss, *Algebraic Number Theory,* McGraw Hill, 1963.

Received June 1, 1971. The preparation of this paper was supported in part by the U. S. Air Force Office of Scientific Research, under Grant 698-67.

UNIVERSITY OF CALIFORNIA, SANTA BARBARA