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FIBER INTEGRATION IN SMOOTH BUNDLES
J. W. AUER

The purpose of this paper is to comment on the opera-
tions of flber integration, or integration over the fiber,
which arise in the study of the cohomology of bundles.

Let & = (E, Il;, B, F, G) be a smooth (C~) bundle, where as usual
E is the total space, B the base, F' the (connected) fiber, G the
group, and I7,: K — B the projection. Assume H*(F') to be finite
dimensional for all k. A form ® on the total space is said to have
fiber-compact support if, and only if, for all x € B, there is a neigh-
bourhood U, of #, a trivialization ¢: U, x F' = n3'(U,), and a compact
set Kc F such that (support ¢*w) N (U, x F)c U, x K. Denote
these k-forms by A%(E), and their de Rham cohomology by HE(E).
When F is compact A%(E) = A*(E), the algebra of all k-forms on E;
if B is compact, A (E) is the algebra A, (F) of forms on E with
compact support. Now integration over fiber has been defined by
various authors as a linear map

v: H(E) — H* ™ (B; H™(F)) , k= m ,

where m is the dimension of F. These definitions are essentially
algebraic in nature; for example ¥ has been defined by a spectral
sequence. Using this idea when & is orientable, a linear map

v,: HYE) —> H*™(B)

is defined, and called algebraic fiber integration on account of the
origin of the definition.
On the other hand, when & is orientable, there is the geometrical-

ly defined linear map %F: A%(E) — A*™(B) given roughly speaking by

<§Fw> (9[}) - SFJ, (!)/Fx ’
where w e A%(F), € B, and F, denotes the fiber of £ over 2. The

induced map ¥, of cohomology is called geometric fiber integration:
¥,: H:(E)— H*™(B). The main purpose of the paper is to show

THEOREM. U, =7,

1. The spectral sequence in A;(F).
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(a) In this section we obtain results analogous to a theorem of
Borel [6], which we use to obtain an expression for ¥,.

The action of G on F induces an action on H*(¥') and on H}(F),
k=0,1,2 ««., m, where H*(F') denotes the de Rham cohomology of
forms on F' with compact support. Denote by i* the total space of
the bundle over B with fiber H(F'); because this bundle has a
discrete group, the exterior derivative 6%? in A%(h% (the p-forms
on B witn coefficients in &% is a differential operator. Denote
Ker 027/Im 627>¢ by H?(B; h9).

(b) We filter AEX(E) following Hattori [5] and Borel [6]: when
{x;}, {y;} are coordinates on neighbourhoods in B and F' respectively,
©1=1,2 e m—m, j=1,2 +++, m, where n = dim E, we use the
same symbols to denote coordinates induced on sufficiently small open
sets in E; then according to Hattori and Borel, I? consists of those
forms which involve at least p base differentials dx;.

It will be convenient to define this filtration by a bigradation of
A (E). For this purpose, it is necessary to assume that a fixed
connection ([7], p. 63) has been prescribed in £. Of course, by the
remarks above, the filtration will be independent of the connection.
If X is a C= vector field on E, then by definition its horizontal and
vertical parts, HX and VX respectively, induced by the connection,
are again C= vector fields. Whenever {z;}, {y;} are coordinates on an
open set W C E, as described above, we denote by dy%, 5 =1,2, ---,
m, the l-forms on W defined by dyi(x) = dy;(VX), where X is a
vector field on W. Then {dz;} U {dy%} generate A'(W) over C>(W).

DEFINITION 1. C?? = C?YE) = {w € A2 (&) |i(X) +-+ (X, )0 =
21(Yy) ++«1(Y,1)® = 0 for all horizontal vector fields X; and vertical
vector fields Y; on E}.

Here, as usual, 7(Z) is the substitution operator with respect to
the vector field Z on E:

?’(Z)a)(ZI, ) Zp+q—l) = (U(Z, Zl, Tty Zﬂ+lI—-l)

when Z,, ---, Z,,,, are vector fields on E, w e A***(E). Thus i(Z):
AZH(E) — AxtY(E), because A (F) is clearly stable under i(Z).
Now we let Greek letters «, B, etc., represent sequences of posi-
tive integers of the form (¢, +--,4,), for some positive integer p,
with 4, < 4, < +++ < 4,. Then dw, will denote dz; A -+ A dw; and
so on. We put |@|=» when a= (¢, +++,%,). Then if W is a
coordinate neighbourhood in E, w e A*(E), we may write w/W as

(1) o/W =3 3. 0%z, )\ dy;
p+a=k |aj=p
|18l=q
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where w**eC=(W), the C=-functions on W. Consequently any
weC? (W) may be written
(2) w = >, w*dx, N\ dy,

lal=p
|8l=q

it

with w* e C=(W).

DEFINITION 2.
I = @ Creter , I? = EB I,

r2p q=0

It is easily seen that

PROPOSITION 1. {I*};, is a decreasing filtration of Ax(E). It is
the filtration associated with the gradation {C?}3-, of Ap(E), where
C? = P,z C™%, because I* = @,.,C".

Note in particular that I°= A.(F), and I*= {0} for p >dim B =
n— m.

REMARK. If the above definitions are carried out for A(E), one
obtains the filtrations of Hattori [5] and Borel [6]. In particular,
the filtration is independent of the choice of connection in &.

(¢) Denote by {E?? the spectral sequence defined by the filtra-
tion {I”% of A,(E) defined above (see § 2). Then we will next show

PROPOSITION 2.
Ep* = H*(B; h% , 0,¢q=0.

Let .&7F be the sheaf of germs of p-forms on B, and &5~ the sheaf of
germs of C=-functions on B.

DEFINITION 3. The sheaf & ¢ of fiber-compact g-forms along the

fiber of £.
We first define the presheaf % * on B by & (U) = C**(IIz'(U)),
when U is open in B. Then & ¢ is the sheaf induced by & °.

LEMMA 1. Ef*=I'(% Q F 9 (I'(S”) denotes the module of
sections of any sheaf &%, and all tensor products are over the sheaf

5)-

Proof. From the definitions we have that
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(3 ) Eop,q = Cr?

DEFINITION 4.
QTR 79— C?.

Let sel'(.2" Q@ & 9; then if U cC B is sufficiently small, we may
write s locally as a sum of terms of the form ®, where

w = ( M,Z;pwf dxa) ® (léqwf dy%)

with wfe C=(U), w;ec C~(IIz'(U)). Put

2() = 3 @:)of dv, A\ dy;

18l=q

and extend linearly to define Q(s).

LEMMA 2. Q s well-defined, independent of the choice of coordi-
nates.

Proof. This follows from the fact that if {¥;}, {¥;} are coordi-
nates defined on an open set in E overlapping the domain of defini-
tion of the coordinates {x;}, {;}, then

iz, = S, 9% gy,

lel=p ax#
and
(4) gy = > Weay,
lal=¢q aya

where 0%,/0x, represents the p x p sub-matrix with rows a, columns
p of the (n—m) x (n—m) matrix with entries 0%z;/0x;, and analogously
for 0y,/0y.. Note that equation (4) is mot the equation of transfor-
mation for the dy,’s; the latter equation also involves linear combi-
nations of the dx,’s. Since 2 is easily seen to be an isomorphism,
this completes the proof of Lemma 1.

DEFINITION 5. The homomorphism
0 I'( A R F)— IR F 1.

We first define the presheaf homomorphism §: . ?— & . Let
Uc B be open, g .7 4(U) = C*(II;(U)), and Y,,-++,Y,,, be vertical
vector fields on 77 (U). Then
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5%‘(U)(¢)(Yu s Yq+1)

g+1 .
(5) ZI_—T—__]?%(_]')WIY‘(fé(K"‘" Yi:"” q+1)

A

TN S REEICPY 000 0 1D ARTINE AUOIS AOIS
g+ 135

where the symbol ¥, indicates that Y; is to be omitted. In terms
of coordinates, if ¢ = 3 ,-, ®* dy}, with @?e C>(II3'(U)), then

(6) 3(U) (¢) =3 2% dyp A dys
ifI=¢ & 0Y,

Now 0% is the sheaf homomorphism induced by d%, and 6%? is the
homomorphism of modules of sections induced by (-1)"1,s ® 4.

Let 429 Epf*— EP** be the map induced by the exterior deriva-
tive on E; that is, 427 is defined by the diagram below, where p??
is the canonical projection:

5__, Ittt

IP;Q

p,q p,q+1

! &

1
Oﬁ,q SN Eop’q+ .
AP
0

Now in view of Ef? = C?9, 42 is exactly the differential operator
induced in C? by the exterior derivative on E':

‘op,q+1§ = AP C1—— Oroatt ,
where p?': A3t (E) — Gt is the canonical projection induced by

ANE) = ®,,,C?.

LEMMA 3. The diagram below is commutative:

Q
F(%p@ﬁq) — > (C?? = Eop,q
” I
["(.%p ® ﬁ‘qﬂ) Q > Pttt — Eop,q-H .

Proof. Any sel' (57 Q & 9 is locally expressible on W C E
as a sum of terms of the form

0= (zoran)o (zotan)

laj=p q
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so that
Qw) = 3 (0F IT;) @ dz, A dy .

lal=p

18l=¢

Now we may write on W

(7) dy; = dy; + 3. 0; dw;
(8) dyk=dyz+§j]a;dxj

where 6%, e C=(W).
Replacing dy; using equation (7) one obtains
Q) = 3 (0l ) ©f dw, A dy? + IZ (+ =) dwa A\ dy,

lel=p a|>p
18l=¢ )2

(where (---)** indicate coefficients of terms with |[a| > p) so that
using the definition of 0”?*', one obtains on account of 9/dy,(w:Il,) =0,

(9)  4e70() = p"00(w) = 3, 3,5 (@FT,) dyi A di, A d;
al=p &

1Bl=q

One sees immediately that this is the same as the expression for
20%%(w), proving Lemma 3.
As a consequence we have

Ep? = Ker 497/Im 4" = Ker 6%/Im 637" .

Let #? be the sheaf of germs of smooth sections of the bundle A°.
Now one can show by an argument identical to the one employed by
Borel ([6], pp. 206, 207) that there is an isomorphism

(10) £t = Ker 0%/Im 63

and hence also Ker 62¢/Im 627 = A%(h%). Thus we have
LEMMA 4. EP? = A%(hY).

Proof of Proposition 2. Because H?(B; h?) = Ker 0%7/Im 6377 (see
§1 (a) for the definition of %% and Ep? = Ker 47?/Im 47~ it suf-
fices to show that the diagram (11) below is commutative:

o

N Elp,q

Ag(h?)

(11) Ay A
ol l

o
—_— Elpﬂ,q .

A3()
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Here Q' is the isomorphism induced by virture of Lemma 4.
Consider the exact sequence of cochain complexes

0 —— Crtbat _’L_, Cre @ Crtta-t J >C?»1 —— ()

AgH—l,q—-l P 143’,1

0——> Crtha > C2att @ Crthe > C?atl > 0
@ J
| l

where 077 is induced by the exterior derivative d: A(F) — A(F) and
i(d) = (0, d), de C?7, j(, d) = ¢,ceC?.

Now it is known ([3], p.85) that the differential operator 4?7 is
the same as the connecting homomorphism d?¢ induced by this exact
sequence:

d”*: Ker 407/Im 45~ —— Ker 48+ /[Im 43+*7 .
Consequently, if @ e Ker 42¢
ap((lspe) = [0 0] pproa

where [w]y»« indicates the class of w in Ef? and so on; that is,
Ar([w]zpa) is 07%w modulo Im 4F++e,

Now suppose that @ € A%(h?; then for a coordinate neighbourhood
Uc B, w/U may be written as

o/U(x) = 3, [0"dys] s (s, dTa

laj=p
|18l=q

where v ¢ U C B and w** e C=(IIz/(U)).
A consideration of the isomorphism Q' yields

Il

Ql(a)/ U) zlmz_‘;‘p[waﬁdxa /\ dyg]Ef'q

18l1=¢

= [z @dwy A dys + 3, (- ) dw, A dy,,] ,
ll P lzl>p P,q

E?

where we have again replaced dy; by means of equation (7).
A short computation now shows, when all quotients have been
taken, and using (8), that
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"I

(12) a2 U) =| 3 3 "‘;’ o, A e A dyﬁ] ;
SRR

P+1 q

on the other hand,

2017/ U) = Qo (g (@Yl s, )
Bl=q
ﬁ
~o(2 3 [% a4y, dsAd)
=2k L 0w, ulr)

i%]
where [w*dy;],o .y, indicates the section of A* over U defined by
[waﬁdyg]ﬂg(m(m) = [C‘)aﬁdyg]H‘j(Fx), xeU

(recall that (r?), = HI(F)).
The expression above clearly yields the right hand side of equa-
tion (12), as required.

2. Fiber integration, algebraic definition. As mentioned earlier,
algebraic fiber integration is defined by using the definition of Borel
and Hirzebruch [1] applied to the spectral sequence {F,} arising from
the filtration {I*} of fiber-compact forms on the total space of £.

For convenience we recall some definitions from the theory of
(decreasing) spectral sequences:

Zpt = Ap"(E) n{aeI?|dac I}
Dg:q — Agjq(E) NnI*néres
Ept = Z2o)(Z25 @ Dy

where 0 =< p, ¢, s < .
Let II: Z — H;(E) be the canonical projection; then

13) H» = Hp(E)( I(Z2) filter Hy(E), and Ez7v = Hzt/Hz o

Because dim 7 = m and dim B = n — m, it follows that E?»7 =0
for g >m, p=0, r =0 and that I* =0 for p >n — m

LEMMA 5. (a) EP"C ERY, r=3, p=0.
(by E}f ™t =EL™, r>sup(n—Fk, k—m), k=m, ¢=0.
(¢) E&m™m = HEE)/HE™" " k= m.

As a consequence of Lemma 5 we now have an injection
hy: BEE™™ = Bl C e C BT

where r, = sup(n—k, k—m) + 1, and a projection h,: Hi(E)— Et—™™,
Let y: Ef~™™ = H*™(B; h™) be the isomorphism induced by 2 (Pro-
position 2). Then the definition of Borel, Hirzebruch yields yhh.:
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*E)— H*"™(B; k™). We now define o: H*™(B; h™) — H*™(B),
under the assumption that & is orientable, in the following sense
(see [4]):

DEFINITION 6. ¢& is orientable if, and only if, there exists an m-
form + on E such that for all xe B, if 4 is an orientation on F,,
the fiber over z; 7,: F,C E. If such a + has been chosen, & is called
oriented.

Clearly F' is orientable when ¢ is.

Recall that <™ = Ker 67/Im 67! = & ™/Im 7.

We first define a map of presheaves, .7: & ™— &%=, where

&5~ denotes the presheaf of germs of C=-functions on B: Let z¢e U,

U open in B, and @ € &# ™(U); then (7 (U)(w))(x) =S o(x). To show
= r,

this is well defined, let {U;/j€J} be a covering of B by open sets

such that F is trivial over each U;, with ¢;: U; x F = Iz (U;), jeJ.
Define j,,: F'— F, by v;,.(f) = ¢;, f), ©€ U;, feF. Then

(14) (F (U) @)(@) = deg 4. | v3.(00) ;

this shows that _#(U)(w) is C~ in =z, because, since @ has fiber-
compact support, the forms «}.(®w(x)) on F have supports contained
in a common compact set for z in sufficiently small open sets in B.

Thus there is a sheaf homomorphism .#: g ™— &~ if
®elIm o3 (U), then by Stokes’ Theorem, (7 (U)(w))(x) = 0, for all
z e U. Consequently, .# induces a sheaf homomorphism, also denoted
by 4 A F "Imor' = 4™ — &,~°. Lastly,

o: H*™(B; h™) — H*™(B)

is canonically induced by .# on account of the commutative diagram
below:

Ay = Mm@ T parky = ab
5g—m’ml lag—m
raQ.”)

Ag—m+1(hm) ~ F(L%k—m-l—l ® ém) F(%k—m+1) — Aig—m-\\—l .

Combining ¢ with the map y&,k, we obtain algebraic fiber integration
¥, = oyhh,; ¥,: HYE) — H*™(B).

3. Fiber integration, geometric definition ([4], chapter 7). For
arbitrary manifolds B, F, and 2¢ B, yc F, define
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iyt F'—— B X F by 1,(y) = (x,y), ye F,
i, B— B X F by 1,(¢) = (x,y), v€B.

When & e T,(B), put & = (i), € T,,,,,(B x F) and when e T,(F), let
{ = (i)sl e Top(B x F).

Define N, = C»%B x F')— AYF; N*Tj7(B)) (with the trivial con-
nection in the product bundle B x F') by

()“xw)(y; Cl, °t %y Cq)(sly %y {:p) = a)((xy y); él: ) ém il, %y Cq))

where ze B, we C*YB x F'), {;e T,(F) and &;¢ T,(B). For the pro-
duct bundle B x F' geometric fiber integration is the linear map

g . C»" (B x F)—— A?*(B), p=0,
F

defined by (S 0’) (%) = {LMCU, weB,r=m where w e C»"(B x F).
i 0, r = m,

For an arbitrary oriented bundle &, let {U;, ¢;} be a family of

trivializations as before with ¢;: U; x F = II;X(U;). If we A%(E),

¢¥w is a fiber-compact form on U; X F', so that w; defined by w;(x) =

deg ;.. (S ¢;‘:w)(x) is a k—m form on Uj. Deﬁneg AL(E) — A*™(B)
r / F
by (g (w))(x) — w,;(®) when ze U,
Vi
It is easily shown that this is independent of the choice of Uj,
so that g is well defined ([4]).
F

Furthermore, % Op = 0p g , so that there is an induced map
F ;

E
¥y Hi(E) — H"™(B),

k = m, called geometric fiber integration.

4, Proof of Theorem. ¥, =7¥,.
Let [w] € HE(E) be represented by we A% (E).
If W; = II7/(U;) is sufficiently small we may write

o/W; = >, oz, \dy;, o*ecC=(W;),

lal+18l=k

or, upon substitution of equation (8) for dy,,

(15) o/W; = >, o%dx, Ndy; + >, (++)¥dz, A\ dyj .

|a|=k—m la|>k—m
|Bl=m 8

Since hy: HE(E)— HE(E)/HE ™ ™' = E¥~™™ is merely the projection,
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o) =[ 3, o Adyi], .-

la|=k—
| Bl=m

Hence,

wh([0) = | 5, (@ dyilndo. |

|aj=l—m HE—m (B; pm)
|8i=m

and
V. ([w]) = oxhh(@]) = [t wi—m ) »
where pe A¥™(B) with

(16) pa) = 3 (deg . i 3 orrdyy)da

when ze U;.
On the other hand,

V(o) = [cho]Hk_m (B)

and

an (f0)@ = degvs. | o) = degys. | (5 0. du)da,

as a short computation shows.
A comparison of (16), (17) shows that ¥, = ¥, as required.
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