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A BIFURCATION THEOREM FOR %-SET CONTRACTIONS
J. W. THOMAS

One of the the most often used results of bifurcation theory
is the following theorem. Let C be a compact mapping from
the Banach space X into itself. Suppose that C is such that
C(6) =6 and the derivative of C exists at x =¢. Then each
characteristic value, 1, of odd multiplicity of C/(9) is a
bifurcation point of C, and to this bifurcation point there
corresponds a continuous branch of eigenvectors of C. The
main result in this paper will show that the above theorem
can be extended to a class of non-compact mapping of the
form I — f where f is a k-set contraction.

In the process of proving the above mentioned theorem a charac-
terization of topological degree for k-set contractions is obtained.
This characterization can be used, and actually has been used, as an
alternate definition. The theorem that yields this characterization
also allows an axiomatic approach to topological degree for k-set
contractions, which in turn yields a uniqueness theorem for this
degree.

In § 2 we define k-set contractions and obtain several properties
for k-set contractions. Some of these properties and other work
concerning k-set contractions can be found in [4], [7] and [8].

Section 3 contains the main theorem, which extends the bifurca-
tion theorem due to M. A. Krasnosel’skii as found on page 196 of
[6]. Applications of this theorem will follow in a later paper. In
the process of proving this theorem we obtain a characterization of
topological degree that was used by Fenske as the definition. (See
[5].) This definition is useful as a calculational device.

In §4 we state axioms and use Corollary 5 to show that the
topological degree of a k-set contraction is unique. The approach
used here is much the same as was used in [3].

I would like to thank Robert F. Brown for his suggestions which
let to the results obtained in § 4.

2. Preliminaries. Let X be a real Banach space. For any
subset of X, say £, define the measure of compactness of 2 to be
v(2) =inf{d > 0|2 can be covered by a finite number of sets of
diameter less than or equal to d} (See [7], page 413). We shall say
that g is a k-set contraction if given any bounded set A & X, g(4)
is a bounded subset of X and 7 [g(4)] < kv[A] (See [4] and [8]). We
shall consider only k-set contractions for which k¥ < 1. An example
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of a k-set contraction is the sum of a compact map and a contraction.
Now suppose that G is an open bounded subset of X and that
f:G— X is a k-set contraction for which a¢ (I—f) (3G). It is then
possible to define the topological degree of I — f at a with respect
to G, denoted by d (I — f, G, @), as is shown by Nussbaum in [8].
This definition of topological degree has all of the usual properties
of topological degree and contains the usual definition of degree.
We next state a lemma giving some properties of %-set contrac-
tions that we shall need. Proofs of these properties can be found in

[8].

LEMMA 1. Suppose that f is a differentiable k-set comtraction.
Then

1) f'(x) is also a k-set contraction,

(2) the spectrum of f'(x) is fimite for |N| > k, and

3) f'(=) i1s a Fredholm map of index 0.

The above lemma is the key to the proofs given in this paper.
These three properties are also satisfied by compact mappings and
are, in fact, the properties that make possible much of the work
done with compact mappings. It is for this reason that the class of
k-set contractions seems to be a convenient setting in which to study
much applied mathematics.

The last preliminary result that we shall need is that the product
formula for topological degree holds for k-set contractions. We have
the following proposition.

PROPOSITION 2. Let X, and X, be real Banach spaces and G,C X,
and G, X, be bounded open sets. Suppose that fi: G, — X,, 1 =1, 2 are
k-set comtractions for which 6 ¢ (I,—f;) (0G,), © = 1, 2 (where I, denotes
the identity on X;). Then

Al — fi X fo, Gy X Gy (0, 0)) = dI, — f, Gy, 0) d(I, — f, Gy, 0)

where I 1s the wdentity on X, X X,.

Proof. Nussbaum defined d(I — f, G, 0) to be the fixed point index
of f restricted to a certain compact ANR [8]. Consequently, the
the result follows from the product theorem for the fixed point index
on compact ANR’s [2].

3. Main result. Again let X denote a real Banach space, let
f be a k-set contraction which is differentiable at x = 6, and let F
denote f’(d). Without loss of generality let fF(0) =6. (If fF(0) +# 0,
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perform an appropriate translation.) We then state the following
lemma.

LEMMA 3. Let f and F be as above and suppose that t,, where
| | >k, is mot a characteristic value of F. Then we can find o
ball about 0, say BC X, in which there are mo eigenvectors of f cor-
responding to eigenvalues close to .

Proof. This theorem is proved for the case when f is compact
on page 192 of [6]. Since the compactness is not used in that proof,
the same proof holds for our lemma.

We next state a proposition that is helpful not only for obtain-
ing our main theorem but also for obtaining Corollary 5, which pro-
vides a convenient method for calculating the topological degree of a
k-set contraction.

PROPOSITION 4. Let f and F be as above and suppose that 1 is
not an eigenvalue of F. Then 0 is an isolated solution of
(- fw) =0

and the index of 0 is (—1)?, where B s the sum of the multiplicitiesA
of the characteristic values of F in (0, 1).

Proof. Since 1 is not an eigenvalue of F, there exists an M >0
such that ||(I—F)(%) || = M||y||. Let R be such that

f(@) = F(z) + E(),

where || R(®)||/||x||—0 as ||z||—0 (f'(§) = F and f(0) = ). Choose
0 so that z e B, (the ball of radius o about ¢) implies that || R(x)|| <
M||x||/3. Then

=@zl —-F)z|l - | B@) ||
=Mzl - M||z|l/3 = @2M)/3] =] .
Therefore, 6 is an isolated solution.
If we let H(x,t) =1— tf(x) — (1 —t) F(x), then a calculation

much like the last one shows that H, is a homotopy such that 6 ¢
H,(0B,, t) for all t. Thus

d(I — f, B,,0) = d(I — F, B,, 0) .

(Note that d(I—F, R,, §) is defined since by property (1) of Lemma 1,
F is a k-set contraction.)
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Now let X, = {span of the eigenvectors of F associated with
characteristic values in (0,1)}. X, is finite dimensional by property
(2) of Lemma 1. Let g be the dimension of X,, X' be the com-
plementary space of X,, P be the projection from X onto X, and set
B=B,NX, and B'=B,N X'. Then by the product formula for
topological degree we have that

d(I—F, B, 6 =d(I—f B0 dI—F, B 0).

Letting Hyz,t) = (I — tF')(x), we see that Hy(z, ) = 0 for some
te[0,1] and xcdB*' if and only if F has a characteristic value in
(0,1] (or I(x) =0 on 0B"). But in X' this is clearly impossible.
Thus

d(I - F,B,6) =d(I, B, 0) =1.

If we let Hy(w, t) = (2t — 1) I — tF) (x), we see that H,(x,t) =0
on 0B and hence that

d(I—F,B,6) =d(—1I,B,0) .

But d(—1I, B, 9) = (—1)*. Thus d(I — f, B,, 0) = (—1)%.

In [5] Fenske gives an alternate definition of the topological degree
of a differentiable k-set contraction at a regular point and then
proceeds to show that the new definition of topological degree satisfies
all of the usual properties. It is not shown in [5] that the two
definitions are equivalent. Using Proposition 4 we obtain this defini-
tion as a corollary.

COROLLARY 5. Considez the open bounded subset G of the Banach
space X. Suppose that f: G — X is a differentiable k-set contraction.
Given a point y tn X, there is a regular point y' of f such that

dI—-fGy = 3 (=1,
ze (I—f)"Ly’)
where B(f'(x)) denotes the sum of the multiplicities of the characteristic
values of f'(x) in (0, 1).

Proof. By the Sard-Smale theorem, we may choose %' close enough
to ¥y so that d(I — f, G,y) =d(I — f, G,y'). Since (I — f)7'(¥') is
finite, the additivity property of degree (see § 4), a translation back
to 6, and Proposition 4 then complete the proof.

We now proceed to state and prove our main result.

THEOREM 6. Let f be a k-set contraction from the Banach space
X into ttself such that f(0) = 6 and f'(0) exists. Then each charac-
teristic value, || > k, of odd multiplicity of f'(0) is a bifurcation
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point of, and to this bifuraction point there corresponds a continuous
branch of eigenvectors of f.

Proof. For any ¢ > 0 there exists by Lemma 3 a ball with
center at 4 in which the only solution of the equations

(I—p—e)f)@) =0

and (I — (¢ + €)f)(x) =6 is = 6. By Proposition 4 we can find a
ball B* C B containing 6 so that

(I — (¢ — &)f, B*,0) = —d(I — (¢t + ©)f, B*, 0) .

Therefore, I — (¢t — ¢€)f and I — (¢ + €)f are not homotopic, and
hence there exists an xcdB* and a pe(y — &, % + €) such that
(I — f) (x) = 0. This completes our proof.

It is sometimes convenient to consider a bifurcation problem in
the form (A — pf)(x) = 6, where h is a homeomorphism. We note
that if we add the conditions that % is such that (1) foh™ is a k-
set contraction for ¥’ <1 and (2) h'(f) exists and is such that A'(9)
is a homeomorphism, then Theorem 6 will remain true.

As an application of Theorem 6 for which the case for compact
maps will not apply we consider the Hartree equation for the Helium
atom (See [10]). The Hartree equation is of the form

* —ldu——2—u+u§ () dt = \u, u € L(R®
2 K2 [t — ]
and can be represented in form A = G(w) where G is not compact.
Since G is of the form L + H where L is compact and H satisfies
lH@x)— H(y) || < M(z, ) ||~ y|| where M(x, y)—0 as (z, y) — (6, 0),
it is easy to see that there exists a neighborhood of the origin in
which G is a k-set contraction. Thus we see that at the odd eigen-
values of equation * we obtain a continuous branch of eigenvectors.

4. The uniqueness of topological degree. While discussing
the results obtained by Fenske in [5], it was suggested that it
might be of interest to obtain a set of axioms for topological degree
on Banach spaces out of which we could obtain a uniqueness theorem
analogous to the result in [3]. In this section we shall obtain such
a theorem for differentiable mappings on Banach spaces.

Suppose that G is a bounded, open subset of the Banach space
X. Consider I — f: G — X where f is a differentiable k-set contrac-
tion. We suppose that a degree of I — f with respect to G at ¥
(for y ¢ (I — f)(0G)), denoted by d(I — f, G, y), is defined and satisfies
the following properties.
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(1) (The Additivity Property). If all solutions of (I — f)(&) = ¥
in G are contained in Ui, G;C G, where the G; are bounded, open
and pairwise disjoint sets for which y ¢ d(I— f)(G;), then

Ul - £,G,9) = 340 — 1, Gy 1) -

(2) (The Homotopy Property). If H: G x [0,1] — X is such that
H is a k-set contraction and such that H(x, t) # y for 2e€dG for all
te[0, 1], then d(I — H(o, t), G, y) = constant for all ¢£e][0, 1].

(8) (The Normalization Property). d(I, G,y) =1 yeQG.

(4) (The Product Property). If f,,f. Gi, G, ¥, and y, are such
that d(I — f,, Gy, v) and d(I — f,, G, ¥,) are defined, then

Al — fi X foy Gv X Gy (Y1, ¥2))

is also defined and
d(I - fl X fz, G1 X Gz’ (?/1, ?/2)) = d(I - flr Gu yl)d(I - fz; Gzy yz) .
The next step is to show that

- =569 = 3 (~)we,
ze (I—F) "y

where y, is any regular point of f in a sufficiently small neighbor-

hood of y, follows from properties (1) — (4) stated above. If any

topological degree satisfying properties (1) — (4) can be expressed as

in **, then it is surely unique.

We note that the expression ** was obtained in Corollary 5. Thus
we need only to verify that Proposition 4 and Corollary 5 follow from
the properties (1) — (4) stated above. A review of these proofs shows
that besides the steps that follow from the properties of k-set con-
tractions, most of the steps are clearly consequences of properties
(1) — (4). The major exception is the statement that d(—I, B, §) =
(—1)? where B is a ball in 8 dimensional space. This can very easily
be seen to be true considering the definition of finite dimensional
topological degree via the Jacobian. However, for the purposes of
this section, that approach is inadequate. For this reason we prove
the following lemma.

LEMMA 7. Let B and B be as above. Then

d(—1, B, 6) = (—1).

Proof. We began by using the additivity -property to reduce
d(—1, B, 6) to d(—1I, C, §) where

C:{(wly""xﬁ)llxil<1’i:11 "'::8}‘



A BIFURCATION THEOREM FOR £-SET CONTRACTIONS 755

We then repeatedly use the product property to reduce our problem
to that of showing that d(—1I, (—1,1), §) = —1. To prove this we
consider the following funection

—x xe(—1,1)

9(@) = {x—2 ze(,4).

The additivity property yields
d(gy (_'1, 4)’ 0) = d(_I’ (_1, 1), 0) + d(x - 2y (1’ 4)7 6) .

It is then easy to show that g is homotopic to the function (x4-6)/5.
Thus d(g, (—1, 4), 6) = d((x + 6)/5, (—1, 4), 6).

We next need the following consequence of the additivity axiom:
if (I—f) (x) =y has no solutions in G, then d(I—f, G,y) = 0. This
property is used to show that d((x + 6)/5, (—1,4), ) = 0. Thus we
have that d(g, (-1, 4), 6) = 0.

We also note by the additivity property

d(x - 2’ (_1’ 4)’ 0) = d(w - 2’ (_19 1): 0) + d(x - 2: (ly 4)’ 0) .
Again, as above, the additivity property implies that
d@—2,(—1,1),0) =0.

On the other hand x — 2 is homotopic to I on [—1, 4] without solu-
tions on the boundary, so

d(w - 27 (_1; 4)’ 0) = d(I, (_"17 4); 0) =1

by the homotopy property and property (8).
The above calculations then imply that

d(—Iy (_17 1)! 0) = -1

which is what we were to prove.

Thus using Lemma 7 along with the proofs of Proposition 4 and
Corollary 5 we see that a topological degree for differentiable k-set
contractions which satisfies properties (1) — (4) is unique. It is possible
to remove the differentiability condition if we consider a Hilbert space
by using the Weierstrauss approximation theorem which can be found
in [9]. It is unknown whether this can be done for an arbitrary
Banach space.
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