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INVERSE SYSTEMS OF GROUP-VALUED MEASURES
HuGH MILLINGTON AND MAURICE SION

In this paper a basic theory is developed for inverse (or
projective) systems of group-valued measures. This theory
parallels the one for nonnegative measures. However, many
of the results are new even in the real case.

The main tools for dealing with group-valued measures
are the concepts and results given by Sion in ‘‘Outer measures
with values in a topological group’’, Proc. London Math.
Soc., 19 (1969), 89-106. When dealing with inverse systems
the point of view adopted is that of Mallory and Sion,
“Limits of inverse systems of measures’’. Ann. Inst. Fourier,
Tome 21, Fase. 1 (1971) 25-57. This viewpoint involves find-
ing a limit measure first on a large space 4 and then studying
conditions under which this will yield a limit measure on some
subset of 4. By introducing the concept of almost-sequential
maximality, this paper not only extends known results but is
also able to indicate a connection between ‘abstract’’ and
‘“topological’’ methods for producing a limit measure.

In the last section the results obtained are applied to
cylinder measures. Here again the viewpoint adopted differs
somewhat from the usual one, even for nonnegative measures,
and enables one to study a variety of possibilities for a
target space on which to place a limit measure.

0. Notation and basic notions. Throughout this paper, ® is
the set of nonnegative integers, R is the real line, I" is a com-
mutative, complete, Hausdorff, topological group with identity o under
the operations + and —.

For any sets A and B,

A~ B={x:xecA and z¢ B}.
For any subsets A and B of I" and n e w,
A+ B={x+y:xcA and ye B},
nA=A+ ...+ A (n terms) .
DEFINITION 0.1. For any family 5# of sets, 5% is w-compact

iff every countable subfamily of 5% with the finite intersection pro-
perty has a nonempty intersection.

DEFINITIONS 0.2. For any function & on the family of all sub-
sets of some space Q2 to I,
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(1) A is &-measurable iff AcC 2 and, for every
TcQ, T)=4TNA+(T~4).

(2) M, = {A: A is &-measurable}.
(3) A is é-null iff AcC Q and, for every aC A, &(a) = o.
(4) ¢ is an outer measure on £ iff.
(i) M, is a o-field and ¢ is o-additive on M.,
(ii) for any AC @, &(A) = limit &(o) as « runs over
{ee M;: AC a} directed by D.

DEFINITION 0.3. For any function 7 on a family .o~ of sets to
I and 57 C.o7, 57 is an inner family for ¢ iff, for every Ae . &
and neighborhood U of 7(A), there exists He 57 such that HC 4
and, for every ac .

HcacA=—rt(@eU.

DEFINITION 0.4. For any topological space 2, & is a Radén outer
measures on 2 iff & is an outer measure on £ such that

(i) closed sets are &-measurable,

(ii) the closed, compact sets form an inner family for (¢/M,).

In the sequel, we shall need the following theorems which gener-
alize well-known results for real-valued measures.

THEOREM 0.5. Let .7 be a field of subsets of a space 2 and T
be a g-additive fumction on 7 to I” such that, for any monotone
sequence® o in &, lim, t(a,)el". If

(U a,) = lim, 7(a,) for a,Cca,., €.
and, for any AcC 2, t*(A4) = limit 7'(8) as B runs over
{Be v Ac B} directed by O

then t* is an outer measure on 2 such that &7 C M. and 7%/ 7 = 7.
Proof. See Sion [11] Theorem 3.3.

THEOREM 0.6. Let 2 be a regular topological space, 2% be the
Family of closed, compact subsets of 2, and T be o g-additive function
on 22 to I' such that

(i) Jfor any ascending sequence C in 2¢; lim,(C,) eI,

(ii) for any meighborhood U of o and Ce >, there exists an
open G such that CC G and, for every C'e 5%,

1 Depending on context, letters (a, F, etc.) may denote a single set or a sequence
({an}, {Ex}) of sets.
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CcC'cG=—=7(C)—7t(CHeU.
If, for any open G, O'(G) = limit ©(C) as C runs over

{Ce 2. Cc G} directed by < and, for any AC 2,
o0(4) = limit p'(G) as G runs over

{G: G is open and AC G} directed by DO ,

them p is a Raddém outer measure on 2 and (0/2¢7) = .
Proof. See Sion [11] Theorem 6.3.

LEMMA 0.7. For awny outer measure &, AeM, iff, for every
netghborhood U of o, there exist A’y A" € M, such that A’ AcC A” and
(@c A" ~ A'=&(a) e D).

1. Inverse systems of abstract measures. Throughout this paper,
& is an index set directed by a relation <;
(S, r) is an inverse system of spaces indexed by (&, <), i.e.,
S; is an abstract space for Fe¢ &,
755 Sp— Sy is surjective for E < F,
755 1s the identity map,
Poe = VeroTre for £ < F < G;
(4, p) is a limit of (S, r), i.e.,
4 is an abstract space,
Pz A— Sy is surjective for Fe &,
Pe = Tgr°Pr for £ < F
/¢ is a system of outer measures on S, i.e., for each Fe &,
tp is a I'-valued outer measure on S; and M, = M,,.

DEFINITIONS 1.1. (1) #¢ is an inverse system of measures over
(S, r) iff, for E, Fe. & with E < F and Aec M,

rzr [Ale My  and  pp(rzr [A]) = pe(4) .

(2) p is monotone iff, for any ascending sequence £ in & and
any sequence A with

A, e M, and T, [Au] C Auyy for new,
we have lim, ¢, (A) e 7.
Note: Any inverse system of nonnegative measures is monotone.

DEFINITION 1.2. For any 2C 4,
(1) ¢ is a limit of ¢ on Q iff & is a I"-valued outer measure on
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2 such that, for every Ec.&# and Ae M,
@nozlADeM, and £QNpF'[A]D) = p1(4) .

(2) Cylo2={Qnp:[A]l; Fe. & and Ae M.
(8) 17, is the function 7 on Cyl 2 such that

(2 N pz' [4]) = pe(4) for Ee & and AeM;.

(4) 7; is the outer measure on £ generated by 7, as in
Theorem 0.5.

REMARKS. (1) CylQ is a field of subsets of Q.
(2) 7, is well defined iff, for every Fec. & and Ac M,

2N pzs[A] = ¢ = pz(4) = 0.

(This will clearly be the case if p;[2] = S; for Fe 5).

(3) When 7, is well defined, it is finitely additive. Moreover,
if ¢ is a monotone inverse system of measures then, for any monotone
sequence « in Cyl®, lim,7,(a,)el’. For such a p therefore, by
Theorem 0.5, we see that 7z} is well defined iff 7, is c-additive, in
which case 7} is an outer measure on 2 which extends z,.

Assumption 1.3. For the remainder of this section, we suppose
¢ is a monotone inverse system of measures over (S, 7).
Remark (3) above then yields immediately the basic result.

LEMMA 1.4. For any QC/I; there exists a limit of p on Q2 if
7, 18 o-additive, in which case T§ is such a limait.

In view of the above lemma, all the known theorems about the
existence of a limit of ¢ on 4 when I" = R can be extended to the
general situation discussed here with little or no difficulty. For the
remainder of this section, we consider a problem which has received
little attention in the literature, except in special cases, namely that
of finding conditions under which the existence of a limit of ¢ on 4
implies the existence of a limit of ¢ on a subset of 4.

We first note the following key lemma.

LEMMA 1.5. Suppose t, is o-additive, N = tf and 2C A. Then
Ty 18 g-additive tff M2 N B) = MB) for BeCyl 4.

Proof. (1) Suppose 7, is c-additive and BeCyl 4.
For any ascending sequence B in Cyl 4 with

2NBc U, BB
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since 2N B, €Cyl 2, we have
lim, 7,(8,) = lim, 7,(2 N B,) = T,(2N B) = 7,(B) = MB) .
We conclude therefore AM(2 N B) = A(B).

(2) If M(@NB)=B) for BeCylA then the restriction of \
to the subsets of 2 is clearly a limit of ¢ on 2 and hence 7, is o-
additive.

We then have the following.

THEOREM 1.6. Suppose v, is o-additive, » = 75 and 2cC A. If,
for any ascending sequence E in F, the set

N(E)
= {f € 4: There does not exist g € 2 with pz (9) = pz,(f) for all n € w}

28 N-null then T, is o-additive.

Proof. We shall show that the hypothesis implies that any
sequence B in CylA which covers 2 must cover almost all of 4.
Indeed, let B, = p7.[A.] with E, < E,., and A,e M;, for necw and
‘Q - UnEan'

Then we must have
4~ U B.CN(E)

for, if fe A and there exists g2 with pz (9) = pg,(f) for all new
then, since g€ B, for some m <€ w, we have

pEm(f) = pEm(g) € Am y SO fe pE:,, [Am] = Bm .
Since N(E) is A-null, we conclude
MU B = M)

and therefore, for any BeCyl4, M2 N B) = AM(B). Application of
Lemma 1.5. then yields the desired conclusion.

We now state conditions on £ in terms of the system g, rather
than in terms of the limit A\, which guarantee the existence of a
limit of z on Q.

DEFINITION 1.7. For any neighborhood U of o, Ee % and
AcS;, Ais U-small iff, for every Fe & with E< F,

aCrgp[A]l = pr(@) e U.

DEFINITIONS 1.8. For any 2cC 4,
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(1) Q is sequentially maximal iff, for every ascending sequence
E in & and sequence f with

fn€ SE,, and TEnEn+1(fn+1) = f, for new,

thers exists a geQ with p; (9) = f. for all new.

(2) R is almost sequentially mazximal iff, for every neighborhood
U of o and ascending sequence F in &, there exists a sequence A
such that

(i) A.eM;, r3s,,, [A.] C A,y and A, is U-small for n e o,

(ii) for any sequence f with

fu€8Ss, ~A, and  7gp,. (far) =/ for n ¢ w,

there exists a geQ with p; (9) = f, for all necw,

DEFINITIONS 1.9. For any family & of subsets of 4,

(1) pis &=tight iff, for every neighborhood U of o, there exists
Ce & such that (S; ~ pz[C]) is U-small for every Ee &7.®

(2) e is sequentially &-tight iff, for every nighborhood U of o
and ascending sequence E in f, there exists Ce <& such that (S, ~
2z,[C]) is U-small for every nec w.

REMARK. The condition of sequential maximality is extensively
used in the literature in connection with finding a limit of p,
especially when dealing with abstract measures. (see, e.g. 2, 3, 4, 5).

- However, as the observation at the end of § 3 shows, such a
condition is much too strong to be useful in many applications. Hence,
when dealing with topological measures, one finds the condition of
tightness frequently used (see, e.g. 7, 8, 9, 10).

No relation seems to exist between the two approaches. By using
the weaker concepts of almost sequential maximality and of sequential
tightness, introduced above, we show the connection between the
two notions while extending known results even when /" = R.

THEOREM 1.10. If g has a limit on A and Q2 C A 1is almost
sequentially maximal then ¢ has a limit on 2.

Proof. We shall show that the hypothesis of Theorem 1.6 is
satisfied. Let N = 7}, E be an ascending sequence in .&# and

BC {j;e A: there does rnot exist g € 2 with pg (9) = p;,(f) for all ne w} .
To see that MB) = o, given any neighborhood U of o, let A be

-2 See Ch. I of the forthcoming book by Laurent Schwartz ‘‘Radén measures on
topological spaces.”’” Tata Institute, Bombay.
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a sequence satisfying Conditions (i) and (ii). of Definition 1.8.2. Then

BC Uneo 5, [4.]

for any ke o,
k
U pz.[4.] = pz,[Ai]
and for any aeCyl 4,

aC pg 4] =— T.(@) e U.

Hence 2\(B) eclosure U. Since U is arbitrary, we conclude \(B) = o.

THEOREM 1.11. Suppose 2C 4 and & is an w-compact fomily
of subsets of 2 such that, for Ce &, Fe # and fe8; ps[C]le Mg
and (CN oz [flle & If p is sequentially &=tight then 2 is almost
sequentially maximal.

Proof. Given a neighborhood U of o and an ascending sequence
E in &, choose Ce & so that

Sk, ~ Pz, [C] is U-small ‘ for ncw,
and let
A, = 8, ~ 5, [C] .
Since
05, [Cl = 75,5,,, [z, [C]],
we have

’)"E;E,Lﬂ [A]C A, .
Given any sequence f with

fn € SE,,, ~ An and rEnEn+1 (fn-H) = fn ’

we see that, for any k€ o,

6+ CNpslflcCn Avalfl -
Therefore
NECPILD # ¢
i.e., there exists ge Cc 2 with pg (9) = f. for all ncw.

COROLLARY 1.12. Suppose 1 has a limit on A, 2C A and & is
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an w-compact family of subsets of 2 such that, for Ce &, Ee &#
and feSz p:[Cle My and CNpz[fle & If pr is sequentially &~
tight then p has a limit on Q.

2. Radén systems. We suppose now that, for each Eec.#, S,
is a topological space and %% is the family of closed, compact sub-
sets of Sj.

DEFINITION 2.1. #¢ is a Radon system iff, g is a monotone,
inverse system of measures such that, for each EFec &,

(i) closed subsets of S; are p -measurable and

(ii) for every Ae M, and neighborhood U of o, there exists
Ce %% such that Cc 4 and (A ~ C) is U-small.

For Radén systems, we have the following fundamental result.

THEOREM 2.2. Let it be a Radon system and rzr be continuous
for E < F. If A1is almost sequentially maximal then t, s o-additive.

Proof. Let g be a descending sequence in Cyl 4 with

limz,(B,) # 0.

We shall show that N...8. # ¢. Choose a neighborhood U of o and
New so that 7,(8,) ¢3U for » > N and let

Buwin = P5.[B,] with E,< E,, and B,eM, .

Next, choose a sequence A satisfying Conditions (i) and (ii) of Defini-
tion 1.8.2 of almost sequential maximality. Thus,

#E,,,, (-Bn ~ An) € 2U and (Bn+1 ~ An+1) c TE;E”+1 [Bn ~ An] .
Let V be a sequence of neighborhoods of o with

g VicU for ncw
and, by recursion, choose C, € % ;, so that C,c B, ~ A,,
Cot1 €758, [Ca]
e C)+ 2 V2 U 50 Co# 0.
Since {pz.[C.]; n € w} forms a filter base, let 57 be the ultra filter

induced by it. Then p; [2#] is an ultrafilter in C, and hence there
exits f, e C, with f, = limit p; [5#]. Since r; ; ,, is continuous, we
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have

T EpEnty (faz) = fa
hence there exists g€ 4 such that pg (¢9) = f, for new, i.e.,

ge "prz; [C.lc Qwﬁn .

REMARKS. Even when I = R, the above theorem extends known
results in that it uses the weaker hypothesis of almost sequential
maximality instead of sequential maximality. As we shall see, this
is crucial in connecting “topological” and “abstract” methods for
getting limits. Variations of it involving weaker conditions on the
rzr and replacing the K; by more general families as in [3], [4], can
also be obtained by using slightly different arguments than those

used in the above proof.
We now turn our attention to some 2 c 4 on which a topology

is given and try to determine when g has a Radon limit measure on
Q.

Assnmptions 2.3. For the remainder of this section, we as-
sume S; is a Hausdorff, regular, topological space for FEe & ;
rgzr is continuous for K < F';

f,9€d and f # g == py(f) # pz(9) for some Eec & ;

Qc 4, 2 is a regular topological space and pz/2 is continuous for

Fef; ¢ is a Radon system.
Thus, 2 is a Hausdorff space and we let 2¢; be the family of

compact subsets of Q.

Our main tool for constructing a Radon measure on 2 is Theorem
0.6. The following lemma enables us to check that the hypotheses
of the theorem are satisfied.

LEMMA 2.4. Suppose T, is o-additive and N\ = 7. Then

(1) X 2s o-additive on 5¢3.

(2) for any Ce 2%, and meighborhood U of o, there exists an
open G eCyl Q2 such that CC G and

CcAcG@G=—=MC) —NA)eU,
(8) for any Ce >%;,
MC) = limit p(pz[C]) as F runs over & .

Proof. Let & denote the family of subsets of 4 which are
compact in the weakest topology on 4 under which p; is continuous
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for all Ee. #. Then 9%;C &.

(1) We first check that A is finitely additive on & Indeed,
given disjoint C, C'e &, since the open elements in Cyl4 form a
base for the topology on 4, we can find a BeCyl 4 with Cc B and
C'NB=@. Since Be M,, we get M(C U C’) = MC) + NC'). The o-
additivity of » on K, then follows from the fact that, for any ascending
sequence @, MUnco @) = lim, Ma,) (see Sion [11] Th. 3.3]).

(2) Given Ce % and neighborhood U of o, from the definition
of )\, there exists a sequence B in Cyl 4 which covers C and such
that

CcAcUB,— M4) — MC)e U.

newW

Let V be a sequence of neighborhoods of o with
ﬁ] V.cU for kew,

B, = p3:[B.] with E,e & and B, € Ms,.

Since ¢ is a Radon system, for each % € w, there exists an open
Y. C Sg, such that g.cv, and (v,~@,) is V,-small. Since Ce%
there exists ke w such that if

k
G = Upill
then C < G. Moreover G is open, GeCyl 4 and
CcAcG=—=NMA) —NC)e2U.

Note that if Cc 2 then Cc(GNRY), (GNL) is open in 2, and
(GN2eCyla.
(8) Choose any Ee.# with E, < E for n =0, ---, k and let

k
v = L:!)'r;;,; [v.] .

Then G = p3'[v] and, for any Fe &# with E < F and any aec M,

pelClcacritv] — C < pitla] € p3i[Y] = G
— \@Fal) — MC)e2 U
— po(@) — MC)e2U.
and therefore

Ur(07[C]) — MC)e3U.

REMARKS. When 7, is o-additive and » = 7§, (1) in view of }
Lemma 2.4 and theorem 0.6, we see that (\/.9%;) generates a Radon
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outer measure 0 on £.

(2) Lemma 2.4.3 gives a characterization of (\/.>¢;) directly in
terms of g, which poins out that, when I" = R, the processes for
constructing a Radon limit measure followed respectively by Mallory
and Sion in [4] and by C. Scheffer in [9] are essentially the same.

Putting all the pieces together, we get the following.
THEOREM 2.5. f has a Radon limit on 2 iff p is S#5-tight.®

Proof. (1) Suppose ¢ has a Radon limit p on 2. Then, for
any neighborhood U of o, there exists Ce .%%; such that

» aCQ~C=—pa)eU.
For any E e &, since
2N pz[Se ~ p:[Cllc2~C,

we see that (S; ~ pz[C]) is U-small. Thus, ¢ is 9%;-tight.

(2) Suppose p is .97;-tight. Then, by Theorem 1.11, 2 and
hence a fortiori 4 is almost sequentially maximal so, by Theorem 2.2,
7, is o-additive. Let )\ = 7} and, using Lemma 2.4 and Theorem 0.6,
let o be the Radon outer measure on 2 generated by (\/.2%;). We
shall check that p is a limit of ¢ on 2. Let EFe &, Ac M; and
a = 2N pz[A].

(2a) To see that e M,, given any neighborhood U of o, choose
a compact A’ .and open A” such that A/c Ac A” and (4" ~ A') is
U-small and let o’ = 2N pz'[A'] and &” = p3'[A”]. Then &, &’ € M,,
a’'caca’ and, for any Ce %5, by Lemma 2.4.3, Cca’~a’ = p(C) =
MC) e U. Hence, for any BC a” ~ a’, we have p(g) €2U. Thus, by
Lemma 0.7, a e M,.

(2b) To see that po(a) = ¢z(A), given any neighborhood U of o,
choose C,, C,e 9%, and K e 27 such that

(i) (Sy ~ »z[C)]) is U-small for all Fe &,

(ii) C,caand BCca~C,=p(R)e U,

(iii) Kc A and (A~ K) is U-small,
and let

C=(C.npz'[K)UC:.
Then Ce 2%, C,cCca, so p(@) — p(C)e U and, for any Fe &
with E < F,

3 The case of real-valued measures is treated in the forthcoming ‘‘Radén measures
on topological spaces,”” (Tata Institute, Bombay) by Laurent Schwartz, Thms. I. 20,
1. 21,
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r5x [K] ~ pr[C]1C Sy ~ pr[Cl]

pr[Cl ~ rzr [K] C 1z [A ~ K]
SO

tr(pr[C]) — pe(rzr[K]) €2U
and

tr(pr[C]) — ¢(A) €3U .
By Lemma 2.4.83 therefore, o(C) — p£z(A4) €4U and so
p@) — px(A)esU .

REMARK. For I" = R, the above theorem was first given by
Mourier [7] and later extended by Prohorov [8]. Minlos [6] attributes
a similar theorem to V. Erohin.

3. Cylinder measures. We shall now apply the ideas of the
previous sections to the study of eylinder measures.

Given any vector spaces X, Y over a field @, let .# be the
family of all finite dimensional subspaces of X directed by C;

S: be the set of all linear functions on E to Y for Ee.&#;

reri €S — (f/E)eS; for E,Fe &# with ECF.

DEFINITIONS 3.1. (1) g is a cylinder measure over (X, Y) iff
is a monotone, inverse system of measures over (S, 7).

(2) When the S; are topological spaces for F €. &, ¢ is a Radon
cylinder measure over (X, Y) iff ¢ is a Radon system of measures
over (S, 7).

When @ = Y = R, the S; are finite dimensional spaces for Ee &
and hence have a canonical locally convex topology with respect to
which the 7, are obviously continuous.

If, in addition, we let " = R, ¢ be a Radon system, X be a
topological vector space, 2 be the topological dual of X, and p;: fe2—
(f/E)e Sz for Ee & then, in our terminology, 7, is the function
referred to as a cylinder measure by most workers. Even when the
definition of cylinder measure is formulated as an inverse system
of measures, the system is given in terms of 2 (see e.g., Minlos [6],
Schwartz [10]).

Thus, besides allowing more general sets for @, I" and Y, our
definition of cylinder measure is free of any a priori choice of a
target space 2 on which to place a limit measure and permits us
therefore to consider a variety of sets 2. Let 4 be the set of all
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linear funections en X to Y and py: fed—(f/E)ec Sy for Ee %

One justification for the choice of (4, p) a limit for (S, r) is that
it can be identified in an obvious way with the canonical inverse
limit (L, 7) where

L= { £ eIl Sui raplfs) = fs for B, Fef with E’Cﬁ’}

and
wz(f) = fx for feL and Eec 7 .

Assumptions 3.2.. For the remainder of this seetion, we assume
Sz is a Hausdorff, regular topological space for Fe & ; rzr is con-
tinuous for E, Fe & with ECF; it is a Radon cylinder measure
over (X, Y); 2c 4.

The results of the previous sections then yield.

THEOREM 3.3. p has a limit on A.
Proof. 4 is clearly sequentially maximal so Theorem 2.2 applies.

THEOREM 3.4. If Q is almost sequentially maximal then p has
a limit on Q.

Proof. Apply Theorem 1.10.

THEOREM 3.5. If 2 is a regular topological space, (pz/2) is con-
tinuwous for Ee F, and 2% is the family of compact subsets of 2
then

(1) g has a Radon limit on 2 iff ¢ is S#-tight.

(2) If ¢ has @ Radon limit on 2 then 2 is almost sequentially
maximal.

Proof. Apply Theorems 2.5 and 1.11.

We should point out that Theorem 3.4 would have very limited
applicability if we replaced “almost sequential maximality” by
“sequential maximality” in view of Theorem 3.5 and the following.

Observation. If X is a topological vector space over R with an
infinite bounded linearly independent subset, Y = R and Q2 is the
topological dual of X then £ is not sequentially maximal.

Proof. Let {¢,; ncw} be a bounded linearly independent subset
of X, let X, denote its span and f be the linear functional on X
with f(e,) =n for new. If 2 were sequentially maximal, there
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would exist ge 2 with ¢g/X, = f, which is impossible since f is not
continuous on X.
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