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WALLMAN COMPACTIFICATIONS ON E-COMPLETELY
REGULAR SPACES

NorMA PiacuN AND L1 P1 Su

The Wallman space on FE-completely regular spaces is
considered. Let & be the family of all E-closed subsets of
an E-completely regular space X. Then the Wallman space
¥ (X, F ) is a compactification of X. In particular, if E is
such that I = [0, 1] is E-completely regular, then 777 (X, &)
is an FE-compactification. An example is given to show that
I being E-completely regular is necessary.

Recently, the relations between Stone-Cech compactifications and
Wallman compactifications, and those between realcompactifications
and Wallman compactifications have been studied by Frink [7],
Njastad [11], the Steiners [12], [13], Alo and Shapiro [1], [2], [3],
[4], and some others.

Frink [7] introduced the concept of a normal base. (A normal
base in a T,-space X is a base, &, for the closed subsets of X such
that (i) & is disjunctive, i.e., given any closed set F' in X and any
point « in X\F, there is a member A of & which contains 2 and
is disjoint from F; (ii) & 1is a ring, i.e., & contains all finite
unions and intersections of its members; and (iii) any two disjoint
members A and B of & are separated by disjoint complements of
two members of &, i.e., there exist elements C and D of & such
that Ac X\C, Bc X\D, and (X\C) N (X\D) = @.) Frink showed that
if X has a normal base &, equivalently X is Tychonoff, then the
Wallman space %7 (X, &), consisting of the .Z-ultrafilters, is a
Hausdorff compactification of X. Hence, the Stone-Cech compactifica-
tion is always such a Wallman compactification. Njasted [11] came
along and gave a condition for a Hausdorff compactification to be of
the Wallman type as defined by Frink. The condition is that the
corresponding proximity admits a productive base consisting of closed
subsets. Alo and Shapiro [2]* used another approach for the results.
While Alo and Shapiro in [1]* imposed some conditions on the normal
base # (see Theorem 2, [1]), and gave similar results for a wider
class of compactifications, Njastad showed that Alexandroff, Stone-
Cech, Freudenthal [6], Fan-Gottesman [5], and Gould [9] compact:-
fications satisfy the conditions in his theorem.

In [3]*, Also and Shapiro used a delta normal base on a Tychonoff

* The authors wish to express their thanks to the referee for calling these articles
to their attention.
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space X. (A delta normal base .# is a normal base which is closed
under countable intersections, and such that for each A e . & there
exist B, B,, -+ € % with Z = X\U, B;). They show that the sub-
space o(X, ) of %77 (X, &%) which consists of all .&-ultrafilters
with the countable intersection property assigned is realcom-
pact. They [4] also used the notion of .Z-ultrafilters in a counta-
bly productive normal base .# to introduce a new space (X, &)
consisting of all those .#-ultrafilters with the countable intersection
property. They showed that if & is the collection of all zero-sets,
then 7n(X, &) is precisely the Hewitt realcompactification. However,
the Steiners [13] provided an example to show that not every real-
compactification can be obtained as an 7(X, &# ). They also gave an
example of a space which is an 7(X, &) but not realcompact.

E. F. Steiner [12] generalized Frink’s results and established the
necessary and sufficient conditions for a Wallman space to be a
compactification. The Steiners [13] used the notion of separating (see
Definition 3) nest generated intersection rings (see (1.1), [13]) and
studied the Wallman compactification 277 (X, &% ) and the Wallman
realcompactification v(X, & ). Incidentally, the concept of a delta
normal base, introduced by Alo and Shapiro [3], is equivalent to that
of separating nest generated intersection rings for collections & of
closed sets.**

This note is to consider the Wallman compactification of an E-
completely regular space. (See [10].)  We have found a class of
Hausdorff spaces, £, for which the Wallman compactification arising
out of the ring of all E-closed subsets of X is an E-compactification.
In light of the examples in [13], we know that not every E-compacti-
fication can be obtained as a Wallman compactification.

We first recall come terminologies from [10].

DEFINITION 1. Let E be any Hausdorff space. A T)-space X is
said to be E-completely regular if |-, C(X, E") separates the closed
subsets and points in X. Here, C(X, E") is the set of all continuous
functions from X into the Cartesian product E™.

Note that this is equivalent to saying that for each closed sub-
set 4 of X and for each pe (X\A), there is a positive integer n and
a continuous function fe C (X, E™) such that f(p)¢cl f[A]. This is
also equivalent to saying that X is homeomorphic to a subset of E*
for some cardinal a. (See [10].)

We will always assume that E is a Hausdorff space.

DEFINITION 2. A subset A in a space X is called an E-closed

** The authors wish to thank the referee for pointing out this fact.
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subset of X if there is a positive integer n and a continuous function
feC(X, E™ such that A = f~'[F'] for some closed subset F' of E™".
One can easily show that a finite union and a finite intersection
of E-closed subsets of X is FE-closed. (See 3.18 [10].) That is, the
family of all E-closed subsets of X forms a ring.
Combining these two definitions, we have:

LEMMA 1. A Ti-space X is E-completely regular if and only if
each closed subset F of X and each point xe X\F are separated by
disjoint E-closed sets; i.e., there are disjoint E-closed subsets A and
B of X such that x€ A and F C B.

Proof. Necessity. By definition of E-complete regularity, there
is a positive integer n and a continuous function feC(X, E") such
that f(x) ¢ clpn f[F]. Let A = f'[f(x)] and B = f[clz f[F]]. Then
ANB= @ and A and B are E-closed subsets of X.

Sufficiency. Let F be a closed subset in X and x¢ F. By as-
sumption, there are disjoint E-closed sets A and B such that ze A,
FcB and ANB= @. Since B is FE-closed, there exist a positive
integer n, and an fe C(X, E™) such that B = f~[D], for some closed
subset D in E". Now, since ¢ B = f[D], f(x) ¢ D. This implies
that f(x) ¢clpm f[B] as clg f[B]cD. Hence, X is E-completely
regular.

Before stating our next result, we give the following:

DEFINITION 3. A family & of closed subsets of a space X is
called separating if for each closed subset F of X and each point
xze X\F, there are disjoint elements A and B of & such that
ze A and FC B. (See ]12].)

E. F. Steiner in [12] proved:

THEOREM 2. If X s a T.-space and &~ 1is a separating family,
then the Wallman space 27 (X, %) is a compactification. If the
Wallman space W(X, &) is a compactification, then X is T, and the
ring generated from F 1is separating.

Now, suppose X is E-completely regular. Then there is a cardinal
«, and a homeomorphism, A, from X into E*. Let .&“ denote the
family of all E-closed subsets of E% and & = {Fc X: F = h'(F'),
for some F'e.$”}. Then we have:

THEOREM 3. The Wallman space % (X, F) is a compactification
of X.
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Proof. By Theorem 2, we only have to show that & is a
separating ring. However, by remark of Definition 2, & is a ring,
so that & is a ring. Now, let F be any closed of X, and ze X\F.
Then that h(x) ¢ cl,«h[F] is clear. Since E* is E-completely regular,
h(z) and clph[F] are separated by two disjoint E-closed sets, say
A, and A, where h(zx)e A, and cly«eh[F]c A,. Then B; = h'[A)],
1=1,2 are in % and xze€ B, and F C B,.

THEOREM 4. Let X be a T, space and & be the family of all
E-closed subset of X. Then the Wallman space % (X, F ) 18 a com-
pactification of X if and only if X vs E-completely regular.

Proof. Sufficiency. We know that & is a ring, and by Lemma
1, & is separating. Hence, %7 (X, & ) is a compactification.

Necessity. If 977 (X, &) is a compactification of X, then the
ring & is separating by Theorem 2, and, and by Lemma 1, X is
E-completely regular.

In general, we do not know if %77 (X, &) is E-completely regular.

Next, we would like to determine under what conditions the Wall-
man compactification defined by the ring of all E-closed subsets of
an F-completely regular space is an E-compactification.

We recall that an E-completely regular space X is E-compact
if and only if X is homeomorphic to a closd subset of E¢ for some
cardinal «. Hence, each compact E-completely regular space is E-
compact. Then we have:

THEOREM 5. If E, a Hausdorff space, is such that I = [0, 1] with
the usual topology is E-completety regular, then if X is an E-com-
pletely regular space, the Wallman space 27 (X, F ) generated by the
ring & of all E-closed subsets of X is am E-compactification of X.

Proof. By Theorem 2, % (X, & ) is T,compact. Since I is E-
completely regular and compact, I is E-compact and 7 (X, &) is
I-compact. Thus, %7 (X, & ) is E-compact by (4.6) [10]. Hence, it
is an FE-compactification of X.

REMARK. (1) We know that there exists a space E such that I
is E-completely regular. For example, let E, be any Hausdorff space.
Define E to be the topological sum of I and E,. Then I is clearly
E-completely regular, as I is homeomorphic with a subspace (namely
I) of E. Note that as long as E, is Hausdorff and not completely
regular, E is not completely regular.
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(2) Next we point out that the condition that I be E-completely
regular cannot be omitted, for consider E = X, where X is the space
of Knaster and Kuratowski. We still recall it here (see p. 210 of
[14]). Let C denote the Cantor middle third set, and @ the end
points in C. Let p = (1/2, 1/2) € R?, and for each 2 e€C, denote by
L, the straight line segment joining » and z.

Define

L — {(x,, @) € L,: x, is rational}, if ze@
’ {(x,, z)) € L,: x, is irrational}, if xzeC\Q.

Then E = X = U,.c L}\{p}. Here U.,.c L} is connected, while
E =X is T, totally disconnected, and dim X = dim E # 0 (see 29.8
[14]). It is then clear that I is not E-completely regular, since E=
is totally disconnected and so is any subset of E<*. (See 29.3 [14].)

Now, X is E-completely regular, a metric space (see 29.8[14]),
and is hence normal. Consider &, the family of all E-closed sub-
sets of X. &, in fact, consists of all closed subsets of X. Thus,
the Wallman compactification 9%7°(X,.#) is BX, the Stone-Cech
compactification (see [8], p. 269).

Finally, X is T, compact space, but SX is not totally discon-
nected, for otherwise by Theorem 16.17 in [8], we would have
dim X = 0. But Theorem 16.11 [8] says that dim X = dim X, and
we know that dim X = 0.

Therefore, X = %77 (X, # ) cannot be E-completely regular, and is
thus not an E-compact space.

In view of Remark (2), we have:

COROLLARY 6. For a Hoausdorff space E, if X is a T, zero-
dimenstonal mormal space having more than one point and such
that every closed subset of X 1is E-closed, them the Wallman space
7 (X, F ) generated by the ring of all closed subsets of X is an E-
compactification of X.

Proof. Since dim X =0, dimgX = 0. Also, pX = Z7"(X, &)
since X is normal. Now, %7 (X, & ) is T, and zero-dimensional. One
can easily show that it is E-completely regular. Hence, 7 (X, &)
is E-compact.

COROLLARY 7. If X 1is discrete, then %7 (X, &) is an E-com-
pactification of X, where F 1is the family of all closed subsets of
X.
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