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SOME ISOLATED SUBSETS OF INFINITE
SOLVABLE GROUPS

D. S. PASSMAN

The main theorem of this paper offers necessary and
sufficient conditions for a solvable group G to be covered by
a finite union of certain types of isolated subsets. This result
will have applications to the study of the semisimplicity problem
for group rings of solvable groups.

Let H be a subgroup of G. We define
YH =V H={recG|a"c H for some m =1}.

Observe that V' H need not be a subgroup of G even if G is solvable.
We say that H has locally finite index in G and write [G: H] = l.f.
if for every finitely generated subgroup L of G we have [L: L N H] < co.
Suppose [G: H] = l.f. and let € G. Then [{x): {x) N H] < so a™c H
for some m =1 and €1 H. Thus G =V H. The main result of
this paper is a generalized converse of this fact for solvable groups G.

THEOREM. Let G be a solvable group and let H,, H,, ---, H, be
subgroups with

G =UrvH,.
Then for some 1 =1,2, «+-, n we have [G: H;] = l.f.

This paper constitutes one third of the solution of the semisim-
plicity problem for group rings of solvable groups. The remaining
two thirds can be found in [1] and [4]. Moreover a description of
this latter result as well as an analogue of the above theorem for
linear groups will appear in [3].

We first list some basic properties of subgroups of locally finite
index.

LEMMA 1. Let G2 W22 H, G2 W, 2 H, and let N <]G.

(i) [G: H]=1.f. implies [G: W] = L.f.

(ii) [G/N: HN/N] = l.f. implies [G: HN] = L.f.

(iiiy [W: H] = l.f. implies [WN: HN] = l.f.

iv) [W:H]l=l.f.and [W: H]=Lf. implies[WN W,: HN H]=1.f.
(v) [G:W]=Lf.and [W: H] = l.f. implies [G: H] = L.f.

Proof. (i) If L& G then [L: WN L] < [L: HN L] so this is clear.
(ii) Let L be a finitely generated subgroup of G. Then LN/N
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is finitely generated so
[LN/N: (HN/N) N (LNIN)] < o .

Thus [LN: HNNLN] < . Since L & LN this yields [L: HN N L] < oo.

(iii) Let L be a finitely generated subgroup of WN. Then there
exists a finitely generated subgroup S& W with LN = SN. Now
[S: SN H] < « so [SN: (SN H)N] < «. Observe that (SN HYNS
SNN HN so [SN:SNN HN]< . Finally LS LN = SN yields
[L: LN HN] < « and [WN: HN] = l.f.

(iv) Let L be a finitely generated subgroup of W N W,. Then
LS W yields [L: HN L] < - and similarly [L: H N L] < . Thus
[L:(HNH)NL]< o and [WN Wy: HN H] = L.f.

(v) Finally let L be a finitely generated subgroup of G. Since
[G: W] =1l.f. we have [L: LN W] < c. Thus by [1, Lemma 6.1]
L N W is finitely generated and since [W: H] = l.f. we have

[LONW:LNWNH]< .
This yields [L: L N H] < - and the lemma is proved.

LEMMA 2. Let AH be a group with A a normal abelian sub-
group. Set

B={acA|l[H: HN H] = I.f.} .

Then we have
(i) ANH<JAH
(ii) 2 ac A then HN H* = Ny(a(H N A))
(iii) B ts a subgroup of A and B <] AH.
(iv) if [4A: B] < « and B/(A N H) is torsion, then [AH: H] = l.f.

Proof. (i) Since A <] AH we have AN H <] H. Since A is abelian
we have AN H<]A. Thus AN H<]AH.

(ii) Let he HN H° Then heH and »*'e H so hh* ‘e HN A
since A is normal. Thus 4 centralizes ¢ modulo HN A so % normalizes
a(HN A) and HN H*S Ny(a(H N 4)).

Let he Ny(a(HN A)). Then he H and h*= h modulo HN A.
Since HNA<]{AH we have H*2HNA and he H*(HN A) = H"
Thus he HN H°.

(iii) Clearly 1€ B. Since [a(HN A)]™ = a™(HN A) we see that
Ny(a(HN A)) = Ny(a'(HN 4)). Thus ae B implies o€ B. Finally
let a,be B. Then [H: HN H®] = l.f. implies [H® H*N H*] = I.f.
so by Lemma 1 (iv), [HN H* HN H* N H?®*]=1.f. Now [H: HN H'] =
l.f. so Lemma 1 (v) yields [H: HN H* N H*®] = l.f. Since HN H*2
HN H*N H® we have [H: HN H*®] = l.f. and B is a group. Clearly
B < AH.
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(iv) By Lemma 1 (ii) since AN H<{AH ANHSB,ANHEH
it clearly suffices to work in AH/(A N H) or in other words we may
assume that AN H = {1). Thus AH is the semidirect product of A
by H. Now [AH: BH] < c so by Lemma 1 (v) it suffices to show
that [BH: H] = L.f.

Let L be a finitely generated subgroup of BH. Then there exists
a finitely generated subgroup B, of B and a finitely generated sub-
group H, of H such that L & Bfi. H,. By definition of B and by (ii)
each element of B, has only finitely many conjugates under the ac-
tion of H,. Thus Bf: is a finitely generated abelian group. Since
this group is torsion by assumption we have

|Bft| < eo and [Bf*+H: H]=|Bf]<eo.

Finally L& B¥+- H,so [L: L N H] < . Since LN H=L N (Bf:- H)N
H = L N H, the result follows.

We can now obtain the main result.

Proof of the Theorem. By induction on d(G), the derived length
of G. If d(G) = 0 then G = {1) so the result is clear. Assume the
result for all groups G with d(G) = d. For any group G let DG =
G be the dth derived subgroup of G.

Suppose d(G) = d + 1. Since G = JrV H; we have clearly

G/(DG) = U vV HDGDG) .

By induction some of these groups have locally finite index in G/(DG).
Thus by Lemma 1 (ii) we have for a suitable ordering of the H]s
that [G: H(DG)]=l.f. fort=1,2, -+, s (some s =1) and [G: H(DG)] =
l.f. for + > s. We call s the parameter of the situation and we prove
the d(G) =d + 1 case by induction on the parameter starting with s =0
which does not occur.

Assume the result for all groups G with either d(G) < d or d(G) =
d + 1 and parameter < s. Now fix G and suppose d(G) =d + 1, G =
U?V H; and the parameter of this situation is s. Set A = DG so
A is a normal abelian subgroup of G and say H,A, H,A, ---, H,A have
locally finite index in G. For each 7 < s set

B, = {acA|[H: H;N H] = l.f.} .
By Lemma 2 (iii) B; is a subgroup of A.
Step 1. For each 7 < s set

A ={acA|[H: Hf 0N H] = Lf.}.
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Then A = s 4.

Proof. Fix ac A and let e H,. Then (aza™)™ ¢ H; for some j
so 2™ e H N H,. Thus

H=U"HnE .

If d(H)) £d then by induction [H: Hf N H,] = l.f. for some ¢ and as in
the argument below ¢ <s so ac A4,;. Assume that d(H)) = d + 1 and
consider the parameter of this situation. Observe that DH, S AN H,.

Suppose [H,: (H! N H)DH,]=1.f. Now H 2 DH, and H* 2 (DH))"* =
DH, since A is abelian. Thus (H N H,)DH, = H' N H, so [H: H* N
H]=1f. and ac A,,.

Thus we may suppose that [H: (H'N H,)DH,] =+ l.f. Let [H:
(Hf N H)DH,] = I.f. Since A is normal in G and A2 DH, we have
by Lemma 1 (iii)

[HA: (H: 0 H)A] = [H.A: (H: 0 H)YDH)A] = L.f.

Now [G: H,A] = l.f. so by Lemma 1 (v) we have [G: (H} N H)A] = l.f.
Now H;A2(H, N HHA so [G: H;A] = l.f. by Lemma 1 (i) and j < s.
Since j ## 1 the parameter of this situation is < s.

By induction [H: H, N Hf] = l.f. for some ¢ < n. But then by
Lemma 1 (i) [H: (H, N HY)DH,] = l.f. so 1 < s by the above. Thus
ac A,

Step 2. If A,;# @ and a;€ A,; then A4,; = B;a,.

Proof. Suppose A,;= @ and fix a;€4,;, and let ac A;. Then
[H: Hf N H] = 1lf. and [H;: H¥ N H] = l.f. yield by Lemma 1 (iii)
(iv) first [H: H, N Hf N HE] = L.f. and then [H A: (H, N Hf N HH)A] =
I.f. Since [G: HA] = l.f. we have by Lemma 1 (v) [G: (H, N H N
Hi)A] = I.f. Now

(H, N He N HHACS (H 0 HeA = (H, 0 He'T)A
so we have by Lemma 1 (i) (iv) [G: (H; N H*7H)A] = I.f. and
[H: H, 0 (H, N HeTHYA] = LS.
Observe that H, N H*'2 H; N A and thus
H,N (H, N HTYA = (H, N H#*7')(H; N A) = H, 0 Hy'

Therefore the above yields [H;: H, N H*'] = l.f. s0 aa;'e B; and ae
B,a;. Hence A,;< B;a,.
Now let be B;. Then [H;: H! N H;] = L.f. yields [H¢i: H* 0 H -
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l.f. so by Lemma 1 (iv) [H,N Hg: H N H* N H) = Lf. Since
[H:: H N H%] = l.f. Lemma 1 (v) yields [H;: H, N H* N H] = L.f.
Since H, N H*2 H, N H* N H we have [H;: H, N H/*] = l.f. and
ba;e A;. Thus B,a; < A,; and this fact follows.

Step 3. We may assume that for all ¢+ =1,2,.-+,s we have
[A: B;] < « and B;/(A N H;) not torsion.

Proof. By Steps 1 and 2 we have
A= UB, overall A,+ @
and hence by Lemma 5.2 of [1]

A = UBiai over all Ali i @ ’ [A: B'I,] < 0 .

In particular since 1€ A there exists k£ <s with [4: B,] < « and
le A,.

Suppose k # 1. Then 1€ A,, implies that [H,;: H, N H] = l.f. and
hence as we observed earlier this yields “yH, N H, = H,. Since this
clearly yields ¥H, =Y H, we then have G = Uz vH;. Observe that
here [G: H(DG)] = l.f. precisely for ¢ = 2,38, -+, s so that parameter
of this new situation is s — 1. By induection [G: H;] = l.f. for some
© and the result follows. Thus we may assume that %k = 1. Hence
[A: B]] < co.

Note that B2 AN H, since AN H, <{AH,. If BJ/(AN H) is
torsion then Lemma 2 (iv) implies that [H,A: H] = l.f. Since [G: H,A] =
l.f. we conclude by Lemma 1 (v) that [G: H] = l.f. and the result
follows again. Thus we may assume that B,/(A N H,) is not torsion.

In a similar manner for each j <s we can define sets A;; for
1=1,2,+--,5 and conclude that we may assume [A: B;] < « and
B;/(A N H;) is not torsion.

Step 4. Completion of the proof.

Proof. Now A is abelian so YA N H, is a group. Since A #
YA N H; for i <s by Step 3 we cannot even have [4: VAN H;] < co.
Thus by Lemma 1.2 of [2], A= VAN H;, so choose acA,ag
VAN H, for all i <s.

Let B= B, NB,N++-NDB,. Then [A:B] < « and say o' = be B
with ¢ > 1. Then clearly b¢ ¥4 N H, for all 4 <s. For each 7 < s
let B, = H,( H' = Ny(b(H; 4) by Lemma 2 (ii). Then beB,
implies that [H;: E;] = l.f. so by Lemma 1 (iii) (v) since [G: H;A] = L.f.
we have [G: E;A] = 1.f. Observe that A abelian implies that
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E.AC Ny(b(H:( A)). If E=(: E.A then by Lemma 1 (iv), [G: E] = L.f.
Let ec E. Now G = Jr V' H; so for the n + 1 elements e, be, b,
«++, b there exists integers m;, k; = 1 with

(bfe)’”feH,,j for 5=0,1, -, 7.

By the pigeon hole principle there exists % = j with (b%e)™:, (bie)™i
both in H,. Thus if m = m;m; then (b%e)", (b’%¢)™ both belong to H,.

Suppose that k <s. Now ec ES E,AS H,A so e normalizes the
cosets O(H, N A) and (H, N A). Thus

(b'e)™ e bime™(H, N A) , (b'e)™ e H,

so bime™ ¢ H,. Similarly d™e™ ¢ H, and hence "™ = (b*me™)(b’™e™)™' €
H,, a contradiction since (¢ — j)m = 0 and b¢V H,N A. Thus k > s.

Since (bie)*ec H, for k> s and be A we see that e™ec H,A and
hence E = U, VH,AN E. Thus E/A = U,V (H,AN E)JA. Since
DE<= A we have d(E/A) <d so by induction and Lemma 1 (ii),
[E: HLAN E] = l.f. for some k> s. Since [G: E] = l.f. we then have
by Lemma 1 (v) (i) [G: H,A] = l.f. for some k >s. However this
contradicts the definition of the parameter s and the theorem is proved.

We close with a few comments about the theorem and proof.

First, some assumption on G is obviously needed in the theorem.
For example let G be the finitely generated infinite p-group constructed
by E. S. Golod (see Corollary 27.5 of [2]). Then G =1v/'{d) but
[G: (D] = LS.

Second, one might be tempted to guess that the appropriate defi-
nition of locally finite index should be [G: H] = i}'/ if and only if
[(H, S): H] < « for every finite subset S of G. However this is not
the right condition here. For example let G =Z, } Z,. and let
H = Z,.. Then G is solvable and periodic so G = V' H but

KH, Z,): H] = <o .

Third, it is interesting to observe in the proof that if G = (1)
is abelian, then G = A so the results of the first three steps are
trivial in this case. The proof for G = A is contained in the first
paragraph of the fourth step.

Finally, we remark that the proof of the special case of this
result in which G is assumed to equal VH is very much simpler.
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