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FEYNMAN INTEGRALS OF NON-FACTORABLE
FINITE-DIMENSIONAL FUNCTIONALS

G. W. JouNsoN AND D. L. SkKouG

Let Cy[a, b] denote the space of continuous functions x on
[a, b] such that a(a) =0. Recently Cameron and Storvick
defined an operator-valued Feynman integral J,(F') of func-
tionals F on Cyla, b]. Let F(x) = f(x(ty), - -, #(t,)) where a =
to<t; < --- <t,=0b. The present authors earlier established
the existence of J,(F') for functionals F' as above under the
assumption that f is factorable and bounded. In the present
paper it is shown that with the factorability assumption com-
pletely removed, J—;(F") may fail to exist even with f required
to be in L,(R,) for 1 < p < co. On the other hand it is shown
that J,(F') does exist under the rather surprising condition
that fe Ly....; where Ls;..... is the set of all complex-valued
measurable functions f on R,(n = 2) such that ||f]|s....c =
[1f]] < co where

rn={]" [T -2l

L 12 2 172
X (S !f(uly Y u’n) [2du1) duZ' ¢ 'dun-—l] dun} .

Another positive result shows that if F'is an analytic function
of a finite sum of factorable functions, then J,(F') exists.

Cameron and Storvick introduced their operator-valued function
space integrals and, in particular, their operator-valued Feynman
integral in [2]. The study of these integrals has continued in [3,
4,5, and 6]. A related function space integral associated with a
general Gaussian-Markov process instead of the Wiener process has
been considered in [1].

Insofar as possible we adopt the definitions and notation of [2
and 4]. Throughout the paper we assume that F' has the form given
above where f is a measurable function on R,.

In Theorem 1, we establish the existence of I,(F) for Rex > 0.
Here no factorability is required, and the hypotheses on f are minimal
enough so that any bounded and some unbounded functions f are
allowed. Further we show that I,(F') is the strong operator limit of
the operators I(F') rather than just the weak operator limit as re-
quired by the definition. Comparison of Theorem 1 and the corre-
sponding result in our earlier paper [4, p.777] shows that, even in
the factorable setting, the present result is stronger.

Theorems 2 and 3 contain the positive results mentioned above.
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258 G. W. JOHNSON AND D. L. SKOUG

In Theorem 3, the assumptions on F' preserve “enough factorability”
so that the proof can be carried out. In Theorem 2, the “sufficient
condition” requires no factorability. Further work is in progress con-
cerning this condition.

The example mentioned above is perhaps the main contribution
of this paper. The functional F' in the example is very restricted;
F depends on x only through the values of x at three points, and
the associated function f on R, is severely restricted, and yet, J_,(F)
fails to exist. This example rules out many attractive conjectures in
regard to the extent of the existence theory for J,(F').

In the positive results concerning J,(F') the operator J,(F) is
obtained as the strong operator limit of the operators I,(F') as A — —igq
in C* = {x e C: Rex > 0} rather than just the weak operator limit as
required by the definition. Further, the existence of J,(F') is obtained
for all ¢+ 0 as in [3,4, and 6] rather than the indeterminate
“almost every nonzero ¢” as in [2 and 5].

1. Non-factorable finite dimensional functionals. Our first
Theorem deals with the existence of the operator I,(F') for Rex > 0.

THEOREM 1. Suppose f(u,, -+, u,) ts such that for every p > 0,
the fumnction By(uy, +«+, U, &) = [y, =+ -, u,) exp [—p 27, (u; — u;0)"
is bounded, say by H(p). Then IL,(F) exists for every xeC' and, in
fact, I3(F) — I,(F') in the strong operator topology as |[o||—0 (as in
earlier papers, u, = &).

Proof. For reL® and &€ (— o0, =), let
EENE = 4 " )|, -y w)p)

X exp(—%‘l}z((“tf%t::)).) .odu,

(1)

where A = [@2r)"(t, — a)---(t, — t,_)] 7

We wish to show that K,(F') € <©(L,). The inequalities necessary
to show the boundedness of K,(F') will be given in some detail while
similar details will be omitted later on in the proof. First note that

(EEDE 1 AP )| 1 F o) L)

eXp < 4(5,8_7\1 )ﬁ:“ (u; — 7”’1‘—1)2> exp ( —éRe 4)62?’—_ _t:'_('f)")2>dul' «odu,,
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X exp(——i‘,ReMu %;)* )olul -du,

= At — tly)
Rex a2f Rex A=
= H( ))(2IM/Rek e (b_a)) RELCAI
% exp( Rei;((b%—';)g)>

Hence by Lemma 1 of [2],

1Ky = H( )@ Ry [

and K,(F) e 2 (Ly).

Now the argument given in [2, p.530] shows that for x>0, K;(F') =
I(F). Further we claim that an application of Morera’s theorem
shows that K,(F') is an operator-valued analytic function of A\ for
xeC*t. To establish this, it suffices to show that for every +, ¢¢
L,, h(\) = (K;(F)+r, ¢) is an analytic function of X\ in C*. To begin
with one shows that % is continuous in C*. Let A eC* and suppose
that {\;} is a sequence in C* such that »;, —X. Let D be an upper
bound for {|);|} and E > 0 be a lower bound for {Re;}. To obtain
the continuity, one applies the Dominated Convergence Theorem.

The expression
- E e By — w )

2 DPAH(—— — BIRE: U — %)
@) () ¥ 166 | exp (- 350 =T
will serve as a dominating function and is an integrable function of
Uy, = o, Uy, and &.

Now let I" be a triangular path in C*. We wish to show
S (K (F)¥, ¢)dn = 0. This is clear from the Cauchy Integral Theorem
r

if one can justify moving the integral with respect to )\ inside the
other integrals. But, if D is chosen as an upper bound for {{A|: e [}
and £ > 0 is chosen as a lower bound of {Rex: eI’} then the funec-
tion in (2) is integrable with respect to u,, ---, u,, &, and A, and domi-
nates the function in question. Hence the use of Fubini’s theorem
is justified.

Since K,(F') is analytic in C* and agrees with I,(F) for » > 0,
It"(F') exists throughout C* and equals K (F').

We finish the proof by showing that I{(F) — I,(F) in the strong
operator topology as ||g||— 0 for each fixed n e C*. It suffices to con-
sider a fixed +r € L, and a sequence {o;} of partitions such that ||o;||—0
and show that [|I{(F)y — Ky(F)+||—0. We will do this by showing
(i) there exists an L,-function which dominates I3i(F')« for ||o;|| suf-
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ficiently small and (ii) (I7#(F)¥)(E) — (Kx(F)y) (&) for all £ (—co, o).
(i) implies that the sequence {||I{:(F')+ ||} is bounded, and that, along
with (ii) implies that I{(F)+ — K)(F')+ weakly. (i) and (ii) allow one
to use the Dominated Convergence Theorem and write

1@l =" 1@ e — " 1EEWE P = I K@)y
and this, along with weak convergence, implies the desired strong
convergence.

So it remains to establish (i) and (ii). For the rest of the proof
we consider partitions 0;: a = s, < s, < +-+ <8, = bsuch that 2]|o;|| <
min {{, —a, ---, ¢, — t,_;}. By carrying out m — n integrations we
obtain

IEEW)E = @D ¢ —a) -+ o= ra ] 0|7 S, ooy w)

X or(u,) €Xp (‘,231 W)d% oo du,

where 7, = @ and 7r; is that sx such that sx < ¢; < sx4,. Hence

| TEERIE |
< AH (4—7?(%—9_3”—6)(% w2 S: (’n)Sl |y () |
(3) & exp (~; Re 7:1(;‘;;': ;;’f*‘)z)dul vor du,
- (B (B .

Now by Lemma 1 of [2], the right hand side of 3 is an L,-function
of &, which establishes (i). To obtain (ii), fix £ and note that since
the integrand in the right hand side of (3) is the product of two L,-
functions, it is integrable. Hence the integrand in the middle term
of (8) is a dominating integrable function and since r; — t; as || ;|| — 0,
the Dominated Convergence Theorem gives the desired pointwise con-
vergence.

In the next theorem we show that if fe L,..,, then the operator
J(F) exists. On the other hand we show in an example below that
if the condition fe Ly,....,, is replaced by the condition fe L, (R,) for
1 < p £ =, then the operator J,(F') need not exist. We mention that
(Ligtootzy || * |lse.12) is @ Banach space; this can be shown in much the
same way that one shows L, to be a Banach space.

THEOREM 2. Let F(x) = f(x(t), ---, (t,), n = 2, where f e Ly,...;.
Then I,(F) exists for every neC* and is given by (1). Furthermore
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J(F) exists for all real q # 0 and I(F) — J(F') in the strong oper-
ator topology as »— —1iq. Also J,(F) is given by

JF))E) = <“—q—‘)1’2 © il

(4) 2wi(t, — a)
X exp (qu(Zl_:f))—)g(qu; — qi, w)du,

and
(5) HT(EF) I = p(a) 1]l
where
(6) p(A) = (M2m) TV [(Ey — t) o0 (G — Ea)]T
and

oinw) =20 |" =0 |7 s, e wp)
(7)

for re L, and Rex = 0, N =~ 0.

Proof. First we see that for +e L, g(y; A, <) is in L, for all
A # 0 such that Rexn = 0. This follows since, by the Schwarz ine-
quality, we have

g, <) I
=" tornw) fau = w0 )" @n -2 [T 1w v, |

[ 1 <oy ) [1F iy s+ ) | s [ty -+ Qv -+,
= (a0 | i) I[|” @=2" 1w ) ldu, - du,Jow, )
= {0 [ 1w 1[{7 = |7 (17 1ra, e, w paw)”

X duy + - du,Jauf < [pO0) 15 1IF1] < oo

Thus the right side of (1) and the right side of (4) define operators,
which we shall temporarily denote by K,;(F') and K,(F') respectively.
By Lemma 1 of [2] we have

K@) I < o) (1F]] and [| K(F) || < p(la ) [IF]] -

Next we wish to show that I,(F') exists for all AeC* and is
given by (1). First we note that for A > 0, I,(F) exists and equals
K,(F) (In fact that is how K,(F) was obtained; we evaluated the
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Wiener integral defining I,(F) for A > 0, took the obtained expression
and used it to define K, ,(F') for neC*.). We need to show that
I¥Y(F) and I¢*(F) both exist and equal K,(F). We claim that an
application of Morera’s Theorem shows that K,(F') is an operator-
valued analytic function of A in C*. The details are similar to those
given in the proof of Theorem 1 above. Thus If"(F) exists and equals
K,(F) throughout C*. Next we will show that I{(F) — K,(F') in the
strong operator topology as ||g||— 0 for each fixed e C*. Again,
as in the proof of Theorem 1, it suffices to consider a fixed € L,
and a sequence {o;} of partitions such that ||o;||— 0 and show that;
(i) there exists an L,-function, say G(£), which dominates (I7i(F)+) (&)
for || o;|| sufficiently small, and (i) {{(F)¥)(E) — (Ki(F)v)(E) as
[lo:]| —0 for almost all real &. To establish (i), note that for any
partition o;:a=s,<s < -+ <s,=0b such that 2] o;|| < min
X{t,—a, -+, t, — t,_;} = d we have (see (3) and the preceding equa-
tion) that (IZ(F)+)(£) is dominated by G(§) where G is defined by

6@ = (i EE= D) (R )T [ exp (<Eepl= i)

% [S; (n — 1) Sl () (s =+~ , ) |ty + o+ dun]dul )

Since S (n—1) S | () f (Whsy + -, %) | dats + -+ dus, is an Ly-function of
Uy, G is in L,. Moreover G(é) is always finite since the exponential
is also an L,-function of u,. To establish (ii), let £ be any fixed real
number. Then for any partition g;:a =5, <s < +++ <, = b such
that 2| 0;|| < d we have (see the equation and notation preceding (3))
that the quantity

ANE[@R) (e — @)+ e (0 = P )T (W) (U, <0, )

o My — uj_l)z]
X ex — _—
p[ ’21 2(7"1' - "'j—-l)

is dominated by the quantity

(%l)”“ [ (W) f (U, ==+, u,) | €XP [—é_“l Re 7\2'((2;;:‘:;;]-_1)2]

which is in L,(R,) as a function of u,, +--, %,. Thus by the Dominat-
ed Convergence Theorem
lHm (I7:(F)v)(8)

Il zll—0

= lim 7&"’2[(275)”(7"1 —a) e (r, — n_l)]—llz X: (m) Sl ¥ (%,)

liogll—0

X f(uy, +++, U,) €Xp [— f_“ M]dul e du,
=1 2(7"_7' - 7']'_1)
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= v @ry = a) o b=t [T o (7 v

S, oee, ) exp | — 3 M =i gy, <. du,

= (K(F)) (&) -

Thus I;*(F') exists and equals K,(F') throughout C-*.
We will finish the proof by showing that I,(¥) — K,(F') in the
strong operator topology as A — —1gq.

For ge L, let (C,9)(%)

= (vt — ) e

£33

and

U.0E) = @mitt, — )" " exp (SE=F)owdu

Let {\,} be a sequence in C* such that \,— —ig as m — o and
such that |»,| <]q]+ 1 for all m. We need to show that
[ L, (F)y — K (F)y|[—0 as m— c. Clearly it suffices to do this
for «+ a continuous function with compact support.

Note that

L, (F)y — K (F)y || = || Co,9(; My ) — Usgls —1g, ) ||
+ 1 Co,9(; — g, ») — Ug(y; — g, ) || .

But in [4, pp. 776-779] we showed that ||C; || = 1 and that [|C; g(v; —
iq, ) — Ug(y; — igq, <) ||— 0 as m — . Hence it suffices to show
1 g(y; Ny +) — g(pr; — 1q,+) || — 0 as m — . This follows by use of
the Dominated Convergence Theorem since g(v/; M, %,) is dominated
by the L,-function G, defined by

Giw) = p + gD |~ 0= D[ 1A, oo ) v | dus - du,
while g(f; N, %) — g(ir; —1q, u,) a8 m — oo for all w, such that G,(u,)
is finite.

COROLLARY. Let F(x) be as in Theorem 2 and assume that

fy, =, u,) = TI5-f5(w;) where fi, fo € Ly(— oo, o) and f; € Ly(— oo, )
for 3=2,8,-+--,mn — 1. Then the conclusions of Theorem 2 hold.

Note that even in the factorable case, this corollary yields the
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existence of J,(F') for some F'’s not covered by the earlier Theorem
[4, p. T78] as the f;’s above need not be bounded.

Next we come to the example which was discussed in some detail -
in the introduction. In addition to our earlier remarks, note that in
case n = 2, L,(R,) = L,, so that in order to obtain an example of the
type we have, one must go at least to a function f on R;; R, is not
enough.

ExXAMPLE. For convenienceleta=0,t,=1,%=2,t,=3=05. Let
f(@, 9,2 = (In2)7(Iny)™ exp [—2y2/2 + i(z — ¥)*/2 + i(y — 2)*/2+12%/2]

for £ > 0,y = 2,z = 2 and let f vanish elsewhere. Clearly f is bound-
ed by (In2)™ and so fe L,(R;) for 1 < p < - since

S:, S:, S:o | f, v, 2) | dzdydz = 2(In 2)72 .

Let F(x) = f(z(1), 2(2), 2(3)). We will show that J_,(F') doesn’t exist
by finding ¢e L, sueh that lim,,; I,(F)¢ doesn’t exist in the weak
topology on L,. As a matter of fact, H(§) = lim, ;(I,(F)¢)(&) will
exist for all £ée(— o, ) and H will be a bounded uniformly con-
tinuous function, but H¢ L,.

By Theorem 1 we know that I(F') exists for all xeC* and is
given by the right side of (1). For +re€ L, let (as in the proof of
Theorem 2, we use (K,(F)+)(§) to denote the right hand side of equa-
tions (1) and (4) when N = —gq1, ¢ real and nonzero)

oo

EAFW)E) = f2m) e |~ egy; a)do

where
o ) = {(i/Z:r)S:S:(ln 2)7(In ) exp (—oy2/¥@dydz , >0
0 , 250,

We will establish the following; (a) For each € L,, (I,(F)+y)(&) —
(K_(F)y)(¢) as x— 1 for all £ e (— o0, o), (b) there exists ¢ € L, such
that K_,(F)¢¢& L,, and (¢) I,(F)¢ doesn’t eonverge weakly to an L,
function as A — ¢ (and hence J_,(F') doesn’t exist).

First we note that g(vy; x) exists pointwise in & for all v e L,
since for z > 0,

| g(; @) | < [ra(n 27 S:l_«z%z_ <o,

Furthermore, g(y; +) € L,(— o, «) for all € L, since
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= ) 2 1y@1 4, ("_dy
S_w lo(ys @) [do < 2 Sz z(In 2)° i Sz y(ny)®

Thus (a) follows upon use of the Dominated Convergence Theorem.

Now let ¢(2) = 27"*(In 2)™* for 2z = 2 and let #(2) vanish for z < 2.
Clearly ¢€ L,, ¢¢& L, and ¢(2) = 0 for all z. We claim that g(¢; -) ¢ L,.
This follows since

lo: ) 1 = | lowi o) da

— @) f U: S: (In 2)~*(In ) e~ 2g(2)dy dz | das

= @n | s@m o= [ o0 o |y [T ma
% S“ exp (—o(yz + st)/2) dodsdydtdz

— 20> s@ana= | s my=| o
X (st + y2)'dsdydtdz

= 2e0™ | s@n 2= [ s0 o= |ty | o
X (st + y2)'dsdydidz

> @7 5: 6(2)(In 2)~* g: () (In )= Sj y~(In y) g” s=(In s)~*dsdydide

— 2n)~ S“’ 5(@)(In 2)~dz r (6)(In H)~*dt
2 2
— @n) Sf 2-12(In 2)~*dz S” (I ) ~dt = + oo .
2
But ¢g(¢; -) ¢ L, implies K_,(F')¢ ¢ L, by the Plancherel theorem. Thus
(b) is established.

To establish (c), assume I,(F')¢ converges weakly to an L,-func-
tion as n—14. Let {\,} be a sequence in C* such that \, —7 as
m— oo, As {I, (F)g} converges weakly there exists M = 0 such that
|| I, (F)¢ || < M for all m. But I, (F)¢ converges pointwise to K_,(F)¢

as m — oo,
Hence

1K) 1= |1 ELEDE ras
< mint || (5, (9@ s
= liminf | I,,(F)s ||
=M
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which contradicts the fact that K_,(F)¢& L,. Hence I,(F)¢ doesn’t
have a weak L.,-limit as A — 4 and so J_,(F) doesn’t exist.

2. Amnalytic functions of finite sums of factorable finite-dimen-
sional functionals.

Forl<jism,leta=t,;< -+ < bajui = b be a partition of [a, b].
Alsofor1 < j<mand 1< 1< ny, let fi; be a function of one variable.
Finally, let G be a function analytic at 0. In this section we consider
the existence of J,(F') where F'has the form F(z) = G (37, T2, f:[=(t:,)])-
By multiplying, if necessary, by additional functions f;; which are
identically 1, we can, and will, assume that the partitions are the
same for every j.

THEOREM 3. Let a=t, <t < +++<t,=0b be a partition of
[a,b]. For each 1 =j<m and 1 <1< n, let f;; be a function which
is essentially bounded, say by M;;. Suppose GRR) = Droa,2" is a
Sunction analytic at 0 with a radius of convergence R> >\7., [1i, M;; =
M. Let F(x) = G(Hy (%)) where Hy(x) = L(x(ty), «--, x(t,)) and, in turn,
Ly, ooy u,) = 2000 i fis(w).  Then J(F') exists for every q=+0 and,
wn fact, L(F) — J(F) in the strong operator topology as N — —iq in
Ct. Moreover ||I(F) || < > lap | M* for all e Ct and [|J(F) || <
S lay| M* for every q + 0.

Proof. For each integer k = 0, let F.(x) = [H,(®)]*. From [4, pp.
777-8], one sees that I,(F,) and J,(F}) exist for all xeC* and all
g # 0 respectively. Also by comparing [H,(x)]* and [>\7, TT, M;;]* =
M* and using the decomposition of I(¥)) and J,(F)) described in [4,
p.778], one sees that ||I,(F,) | < M* and ||J,(F,) || £ M*. Further
I,(F,) is given by

LEINE =™ o |7 )L, o)
(8) - -
s MU = %)\ g g
X exp( JZ,I 20 — 1) > Uy Uy
J(F,) is given by a similar formula but with \ replaced by —qi and
the integrals interpreted in the mean.
The existence of I,(F) for ne C* follows from Theorem 1 and we
have

GENE = A" o [y [ S ariw, - w)

= Ny — u~_1)2)
X N 2\ =y dul ceo dit, .
eXp( Jj=t Z(tj - tj_l)

(9)

Now since || >3k, e L,(F)v || < 230%., la, | MF, it is clear that for every



FEYNMAN INTEGRALS OF NON-FACTORABLE 267

VW € Ly, IV (F)p = S, 0, L(F)+ converges in L,-norm as N — oo,
But taking

e [ o] o]

as a dominating function and applying the Dominated Convergence
Theorem much as in the proof of Theorem 1, we see that IY(F)yr
converges pointwise to I,(F). Hence we must have

(10) | LF)y — IX(EF)p [[—0 as N—eo.

Now let K (F) = v J,(Fy) and J)(F)y = S J,(F)y. From
our earlier estimates on || J,(F}) ||, it is clear that this makes sense
and

11) K (F)y — J{(F)p|[—0 as N—co.

We finish the proof by showing that I,(F) — K, (F) in the strong
operator topology as A — —iq in C*. (Once this is done, the norm
estimates on J,(F') and I,(F') follow readily from (10) and (11).) But
the desired convergence follows from (10) and (11) and the fact [4,
p. 778] that Iy (F) — J¥(F') in the strong operator topology as » — —1ig
in C".

We should remark that the present theorem is related to the
theorem in [4] in much the same way that Theorems 7 and 5 of [2]
are related.
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