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CYCLIC VECTORS FOR REPRESENTATIONS
ASSOCIATED WITH POSITIVE DEFINITE
MEASURES: NONSEPARABLE GROUPS

F. P. GREENLEAF AND M. MOSKOWITZ

Let p be any positive definite measure on a locally compact
group, and let (z#, 57 *) be the associated unitary representa-
tion of G. Previous work of the authors’ showed that a cyclic
vector exists for =+ if G is second countable; there is now a
simple proof of this result, due to Hulanicki. Rather element-
ary conditions on the way u is related to the geometry of G
are examined which are necessary, or sufficient, for the exist-
ence of a cyclic vector. These conditions require 2 to be
‘‘constant’’ on cosets (or double cosets) of certain subgroups
of G. A conjectured necessary and sufficient conditions is
presented. These results are adequate to decide whether or
not z* is cyclic for various nontrivial measures. As a special
case it is shown that the left regular representation of G is
cyclic = G is first countable.

1. Notations. All groups are locally compact, not necessarily
second or first countable. The space C.G) of continuous functions
with compact support is given the usual inductive limit topology.
Convolutions fxg of functions in C,(G) are defined in the usual way;
we use the involution operation

fr@) = f@™)4(@™)

(4 the modular function) which makes C.(G) a ||-||,-dense *-subalgebra
of the convolution algebra L'(G). Positive definite measures g are
Radon measures (not mecessarily bounded), so that peC,(G)*, that
satisfy the condition

Gy £7y = | (FoeD@dpe) 2 0, all e CAG) -

Positive definiteness is indicated by writing ¢ > 0. The representation
(n#, ") associated with g is defined by imposing the conjugate
bilinear form

(7, o) = [o"sfdpe for £, 9€CLG)

on C,(G). Left translation )\,f(y) = f(x#™'y) preserves this form.
If we write || fll. = (f, /)i and set 7 = {f € C(@: || f||. = 0},
then the quotient map j,.: C.(G) — 5£4* = C./.+"* maps C.(G) into a
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166 F. P. GREENLEAF AND M. MOSKOWITZ

pre-Hilbert space whose completion is denoted by 5#°#. Left translation
induces a unitary operator w4 on 5#°#; if we write j7.(f) = [f]., then
[ fl. = [N.f]. for all vectors in the dense subspace S£;“. Details
concerning the representation (7*, 5#°*) can be found in Dixmier [2],
or Effros-Hahn [3]. For additional comments on positive definite
measures, and their relationship to positive definite functions see [5]
(introduction to §3).

The space M(G) = C.(G)* of all Radon measures (bounded or not)
has an involution defined by

<ty £y = |\ F@Eiu(@) all feCLB) .

To a certain extent convolution is defined in M(G); thus p+v is defined
if one of the measures has compact support, or if both are bounded
(finite total variation). Left Haar measure on a closed subgroup K =
G is denoted by myg; C.(G) becomes a convolution subalgebra of M(G)
if we identify f € C.(G) with f-mye M(G). M(G) includes point masses
0, for x¢ G, and the left translate n,f of fe C,(G) is just d,xf.

We will be interested in measures “constant on cosets” of a closed
subgroup K. Constancy on right cosets K\G = {Kz: 2 € G} (resp. left
cosets G/K = {¢K: x € G}) means that

(1) Opxpt = pr (resp. px(dg(k)oy), all ke K ;

here 4, is the modular function on G. If g arises from a continuous
function ¢ on @, so that g = ®-m,, this notion of constancy agrees
with the usual one, in which

P(kx) = P(x) (resp. P(xk) = p(x)) for all ke K,z G .

By definition of convolution of measures (see Appendix), the modular
function must appear in right-hand convolutions if constancy of meas-
ures is to agree with constancy of functions; indeed, if € G then
consider what happens to the right convolutes of Haar measure:

Mexd, = (&™) my; and mex(4(x)+0,) = mg .
Let P.(K) be all probability measures (v = 0 in the usual sense;

de = 1) with compact support and supp (v) & K. By taking weak-x
limits of convex combinations it is easily seen that (1) holds =

(2) yxpt = p (resp. pxdg-v) = p) all ve P(K) ;

here

[r@dl4,1@) = {£@,@)dv(@) for feCi@ .
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Special facts about convolutions, and constancy on cosets, are discussed
in the Appendix.

2. A special case: left regular representation. We (briefly) deal
with the left regular representation which acts in L*G) via 1, f(9) =

f(@™g).

THEOREM 2.1. The left regular representation of a locally compact
group G 1is cyclic = G 1is first countable.

Proof. (=) This is (2.6) of [5].

Proof. (=) If there is a cyclic vector f e L*G) its support
supp (f) is g-compact, so supp (f) lies within an open o-compact sub-
group G'. If x¢ G’ then \,f is supported on 2G’; thus supp (\.f) N
supp (f) = @, so that (\,f, f) = 0 in L*G). Evidently, the “reduced
action” G' x L*G') — L @) is also eyclic, with cyclic vector f, because
translations of f by x¢ G’ cannot contribute to the approximation of
any vector in the subspace L*G') & L*(G). The following basic lemma
(applied to G’) shows that G’ is first countable; thus G is first countable.

LEMMA 2.2. If G X 57F7 — 57 is faithful, cyclic representation
of a g-compact group G on a Hilbert space 57, then S# 1is separable
and G 1is first countable.

Proof. Take compacta K, containing the unit such that K, &
int (K,,,) and Uz, K, = G. If { is the cyclic vector the map @: g —
7,(8) is norm continuous, ¢: G — 5# Thus ¢(K,) is norm compact,
hence totally bounded, and there is a finite set of translates of £,
S, & ®(K,) such that all points in ®(K,) are within distance 1/n of
S.. Now the closed linear span

(U P(K.) = Blp(@) = lslz,0: g€ G)

equals S7Z, and it is easy to see that Is{Uz., S.} = 57 too. Thus 5%
is separable.

Now let Z'(5#) be the unitary operators on 5%, with strong
operator topology. The representation 7: G — Z/(5#) is a continuous
isomorphism. If K is a compact neighborhood of the unit in G,
7: K — n(K) is a homeomorphism. But the strong operator topology
is first countable since 57 is separable; thus the (relative) topology
on K is first countable, and G is first countable.
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This completes the discussion of regular representations.

3. Sufficient conditions. In [5] we showed that the representa-
tion (m*, 57#) is cyclic for every positive definite measure on a second
countable locally compact group. That proof, based on operator algebra
methods, was nonconstructive and we raised the question of finding
a construction which produces a cyclic vector using nothing but the
geometric/algebraic features of the group. Even when ## is the left
regular representation and G = R (real line) it is not completely
obvious how this is to be done. In an elegant note [7] Hulanicki
and Pytlik have proven:

THEOREM 3.1. If ¢ > 0 on a first countable group, the representa-
tion (m*, 2#*) s cyclic.

The proof is totally constructive: take any countable basis of
compact neighborhoods of the unit K, and form the characteristic
functions @,; taking scalars a, = 0 so that 32, a,|| PP |le < =, We
get a function ¢ = >}, a,PF+®, € C.(G). The vector £ = [¢], is cyclic.
In particular, one can find cyeclic vectors within S#;#; it is not necessary

to turn to the completion S#*.

Added in proof. R. Goodman has found a subtle, but serious, gap
in the sections of the Effros-Hahn memoir [3] on which the results
of Hulanicki and Pytlik [7] depend. To get a correct proof of Theorem
3.1, we start with the results of [5], which are unaffected by Prof.
Goodman’s discovery. A short, self-contained argument then yields
Theorem 3.1. In [5] we used operator algebra methods to establish
Theorem 3.1 for second countable groups; second countability was
required so that operator methods could be applied freely. Below we
show that the theorem may be established for arbitrary first countable
groups without further reference to the theory of W*-algebras. If
the following proof is appended to Theorem 3.1, and references to [7]
deleted, this paper remains unaffected by the gaps in [3]. Our
references to [3] here, and in [5], are fairly superficial and do not
use the afflicted section in [3] (p. 48, lines 9t—11t).

Incidentally, Goodman has justified the construction of Hulanicki
and Pytlik for Lie groups (countable at infinity, but not necessarily
connected) by considering the relation between representations and
positive definite distributions on such groups. He shows that (z#, 5#°#)
has a cyclic vector for every positive definite distribution. His work
will appear soon in an article: Positive definite distributions and
intertwining operators, (Pacific J. Math.).
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Proof of Theorem 38.1. Let G, be any open o-compact (hence
second countable) subgroup in G. The restricted measure v = p|G,
is positive definite on G, the canonical injection i: C,(G,) — C.(G)
induces an isometric injection of 54 into S#;*, as indicated below,
because if f, g€ C,(G,) we have

(f9, = | gefdy = | gsfine = (£, 0,

Therefore, 57> is identified with a closed subspace S#* In S#*.
Under

CAGy) — 577 — 27

R

Cc(G) — %#_-) %#

this identification the operator =% is equivariant with = | 5#°* for every
z € Gy, because (0,xf, 9), = (0,+f, 9). for all x e G,; f, g€ C,(Gy). There-
fore, we may identify the action G, x £ — S#* with the restricted
action G, X 2#£* — 57* on the subspace S#7* & 57~

Now let {e,} = C.(G) be a countable approximate identity with
supports supp (e,) & G, that decrease to the unit {e}: ¢, = 0, Se,,(x)dw =1
all n. As indicated in [5; Lemma 3.8], the vectors [e,], in 5#* are
asymptotically cyclic under the action of 7*(G,). Consequently, since
the W*-algebra % = n*(G,)” in & (5#*) is separable, there is a cyclic
vector { € 57 [5; Lemma 3.4]. Identifying { as a vector in S#F* =
S#*, this means that if ye 5#*, there are functions {k,} & C.(G,)
such that ||7#(h.) — ||, — 0 as n — oo (recall: 7*(G,)"” = 7(C.(Gy))"”).

We assert that { is a cyclic vector for the full action G x 57+ —
S#*. Because 5" is norm dense in 57, it is clearly sufficient to
show that any vector of the form 7 = [f]. € 24 can be approximated
by vectors w*(h){ with he C,(G). Let {x(@): «cI} be representatives
for the distinet left cosets G/G, = {#G,: € G}. If feC,(G), we may
write (finite sum) f = DieerOnm*f« Where f,€C.(G,). Now there
exist {h,.omn =12, ---} such that 7*(h, ) —[f.], for each ael.
Thus,

ﬂg(a)n#(hn,a)c = ﬂﬂ(ax(a)*hﬂ,a)c i ”5((1) [fa] = lax(a)*fa]

as n— oo, and

T*(Xiaer Oa@y* An,a)e = Diaer ThiaT* (Rn,a)C
— Zael [6x(a)*fa] = [f]

as n— . Clearly, ¢ is cyclic.
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If £ > 0 the kernel of n# is a closed normal subgroup in G; now
¢ must be constant on (right = left) cosets of Ker (7*); moreover, this
subgroup may be identified directly by examining how g relates to
the structure of &, without referring to the representation w*.

THEOREM 3.2. Let i be a positive definite measure on a locally
compact group G. Then Ker m* is characterized as the largest normal
subgroup K S G such that p is constant on cosets of K.

For a proof of (3.2) see Appendix A2. The result of [7] can be
extended considerably using Theorem (3.2).

PROPOSITION 3.3. Let 1 be o positive definite measure. If there
exists a closed, normal subgroup K & G such that

(i) G/K s first countable

(ii) p is constant on cosets of K,
then (m#, S7*) 1s cyclic.

Proof. Clearly K = Ker zn”; thus the map x — % is constant on
K-cosets, and the representation ©*: G X SF* — 57 is lifted back to
G from a corresponding representation 7: (G/K) X S#* — S#* via the
quotient homomorphism @: G — G/K.

Define 9': C.(G) — C.(G/K) so that @7 (@K) = | f(sk)dmy (1), where
mg = left Haar measure on K. It is a fairly routine matter to show
that

PN = @NH* P9 = (@ NP9 all f,9eC(G),

and that @’ is surjective, because K is normal in G. Somewhat more
delicate calculations (presented in Appendix) show that the measure
¢ >0 on G corresponds to a unique measure /' on G/K such that

(3) P fy =L fall feC(G) .
It follows from (3) that ¢’ > 0 on G/K, since
@O =, () =L, f*f) =0 all feC.(G)
(@’ is surjective!l); furthermore, the map ¢’ induces an isometry
j: SFH— S, since
@f, PPu = Y, (P PP ) =, P(g"~f))
=L g% f) = (f, Du

for f, g e C(G).
Finally, the diagram in Figure 1 commutes.
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G x 270 22X (@K x s B (GIR) x s

5 o,

L s s

FIGURE 1

The left-hand block commutes since 7 is constant on cosets of K;
the representation 7 (of G/K) is defined so that z,,[f]l. = 7.[f]. =
[0.xf], for x€ G, feC,(G). Next note that

(4) P0.4f) = Op*@'f all feC(G),2eCG;
in fact,
dp*P' f(YK) = ' f(eK-yK) = ¢ f(a"'yK)
= |r@ o) dme () = [@.07) k) dms ()
= P'(0.x)YK) .

Now compare images of a pair (@(x), [f].) € (G/K) X S#* in the right-
hand block:

@@, [f1) — Tl fls = [erfle —> [#' G Pl
@@), [£10) —> @@), [#' Fl) — Tl@ FT = o @ Flu -

These agree, by (4).

Obviously z* is cyclic = @ is cyclic, since both representations
produce the same operators on 5#°*. Commutativity of the right-hand
block shows (7# cyclic) = (7 cyclic) = (7* cyclic). By our hypotheses,
Theorem 3.1 given above applies to the measure 2’ on the first countable
group G/K; we conclude that n#° (and 7¥) are cyclic.

Proposition 3.3 is the basis for a considerably stronger sufficient
condition.

THEOREM 3.4. Let p be positive definite. Assume the existence
of a o-compact open subgroup G' & G, and a closed subgroup K< G
that is mormal in G’ (but not mecessarily mormal in G) such that

(1) G'/K is first countable

(ii) o s constant on double cosets K\G/K, (i.e., on both left and
right cosets). Then (w*, S#°*) is cyclic.

Proof. Note that supp (#) need not be related to G’; we may have
supp (1) = G. Taking G’ as above, let 5’ = Is{[f].: f € C.(G) and
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supp (f) & G'}. Then 5"’ is G'-invariant, so we get a “reduced action”
G' X 7" — 7.
If the reduced action is cyeclic, so is the full action

(5) G X SF*— oF7e .,

To prove (5) consider cosets G/G' = {¢G": x € G} and let {x;:7¢e I}
be coset representatives. Let 57 = Is{[f].: f € C.(G), supp (f) S x:;G"}.
Obviously U.., 57 spans 57, and 7, 97’ — 57 is an isometry onto
(viel). Let {57 = 5~% be the cyclic vector for the reduced
action. If (e 7% (¢ arbitrary), then =z7}({)e 2#’ and there are
finite linear combinations o, of the operators {7, xe€ G’} such that
0,() — 771(0), which = (z,,0,) (&) —{ Therefore 57+ 2 Is{G()} 2
1s{U:e, //) = 27* and (, is cyclic for the action G x ZF* — 57~
Now that (5) is proved, we need only demonstrate that the action
G' x &7’ — 27" is cyclic. The restricted measure v = p¢| G’ is cleary
positive definite on G’, and it is clear that the actions G’ X 57 — 5#*
and G’ X &' — 57’ are equivalent (I an obvious G’-equivariant
isometry S57* = 5#'), so we are reduced to the situation in Proposi-
tion 3.3.

4, Necessary conditions; a conjecture. We conjecture that the
conditions of Theorem 3.4 are also necessary; that is, if G is any
locally compact group and g any positive definite measure, then

Congecture 4.1. (m*, 57*) is cyclic = there exist a o-compact
open subgroup G’ = G and a closed subgroup K & G’ that is normal
in G’ (but not necessarily in @), such that

(i) G'/K is first countable

(ii) ¢ is constant on double cosets K\G/K.

The conjecture will be supported in several ways. First we will
show that these conditions really are necessary in two very different
special cases.

THEOREM 4.2. If 1> 0 and the support supp (#) is o-compact,
then the conjecture is true.

COROLLARY 4.3. On any o-compact, locally compact G the conjecture
is valid for every pt >0 on G.

Proof. The implication (=) in 4.1 is true for every ¢ > 0 (Theorem
3.4). For (=) let { be the cyclic vector. Take h,<c C,(G) such that
l|[%.] — ||, — 0; then there exists a o-compact open subgroup G' & G
such that
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G’ 2 supp (h,), all n, and G’ 2 supp () .

Obviously &7’ = Is{[f]: f € C.(G), supp (f) & G’} is G'-invariant and
[h.] € 577 (Yn); thus (e 57’ too. We claim that

(6) The reduced action G’ x ¢’ — 57 is eyclic (with cyelic vector ).

In fact, if f, ge C.(G) are supported on G/, and if xe G ~ G (set-
theoretic difference), then the double coset (G'zG’) N G’ = @. Thus,

@£, oD, = | g*souefde =0,

since supp (g*#8,*f) & G’2G’ and supp (¢) & G'. Therefore, translates
of £ by x¢ G’ cannot contribute to an approximation of a vector £e
&#'. But & is approximated by G-translates of {, so it must be
approximated using only G’-translates, which proves (6). Let y =
2|G'. Since p is supported on G, there is an obvious equivalence
between the actions G’ x 57’ — 57’ and G’ X £ — 5%, so the
latter is cyclic. If K = Kern* then K is normal in G’ (and closed
in @) and =¥ is obtained in the usual way from a representation = of
G'/K; w and ©* both act on 5#*, and

Towy = 7% all xe G’ (p: G’ — G'/K the quotient map) .

Since we have factored out Ker n*, the representation x: (G'/K) X
" — 27 is faithful; it is also cyclic, since 7* and 7 give the same
operators in 5#*. Applying Lemma 2.2, we conclude that G'/K is
first countable. Obviously v is constant on cosets G'/K, by Theorem
3.2; p is then constant on K\G/K cosets, being zero off G'.

In the next situation, we impose algebraic conditions on g, but
leave off any finiteness requirements.

THEOREM 4.4. If ¢t > 0 and p is a central measure, the conjecture
18 valid.

Proof. Again, we have only to prove (cyclic)= (---). Asin the
proof above, we start by taking 4, € C.(G) such that ||[A,] — ]|, — 0.
Let G’ be an open, o-compact subgroup such that supp (h,) & G’ for
all n. Let 57" = Ts{[f]: f € C.(G), supp (f) & G'}; clearly { e 57’ and
&7 is G’-invariant. By (A. 11) of the Appendix there is a compact
normal subgroup K of G’ such that G'/K is second countable and each
h, is constant on cosets of K.

Now myx = Haar measure on K is a finite measure and myg*h,*mz =
h, for n =1,2, ... Let px = mgxpxmyg; clearly p, is constant on
cosets K\G/K and ptx > 0 on G. Form the submanifold _Z = Is{p*h,:
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peC(@),n =1,2, ---} (algebraic linear span), let j,: C.(G) — S£* be
the canonical injection, and write _Z* = j.(_#); then
(6) A is ||+||.~dense in ZF* .
Indeed, if 7} = S@(x)ﬂ:;‘dx is the integrated form of z* for e L'(G),
it is obvious that

T [f1 = [p=f] all feCiG), all peC(G) ;

furthermore, {75({): » e C.(G)} is [|-||.-dense in S#*, since { is cyeclic.
Thus, given &e 57#, there exists a @ € C.(G) such that [|7;() — &]| <
1/2n, and there exists an %, such that

1
hi] — Clle < ——,
[[h] = Clle < ol
consequently
[P*h] — &lle = | 7milhe] — wE[C) e + 7] — &l
< @l = [+ o= <2
noon

so that _#* is ||-||,~dense.
We would like to show that the mapping A: C.(G) — C.(G) defined
via right convolution

A f — fome e C(G)

induces a well-defined, bounded operator A: 5#* — S7*; that is, we
want

Wf—glle=0=|[f+mx — gxmg|. =0
(or, simply || f|l. = 0= || f*mg||, = 0), and
| femgll, < K+|| fll. (K fixed constant) ,

so that A can be transferred to S#4* = C.(G)/_+"*. If this can be
done, it follows directly that g is constant on K\G/K cosets, because
if A exists it must equal the identity operator I on S#*. This is so
because

Alpxh,] = [pxh,mg] = [p+h,] all e C (@), all n,

(since h,xmy = h,), so that A =T on the dense submanifold _Z*.
Once we know A = I, we observe that for any f, ge C.(G),

lo*<fdpe = (151, loD, = (L7, Alo),

= ([frmg], [gxmg]), = SmK*g* s« frmgdpe .
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It is obvious that m} = mg, so that (gxmx)* = mExg* = mexg*
as above; in the appendix we verify that

SmK*Q*mK d# = S@ d[mK*ﬂ*mK]
for all ¢ e C,(G); thus
lowsr dp = [g<s dps all £,9eCu@) -

Now the submanifold X = {g*«f: f, g € C.(G)} is dense in the inductive
limit topology on C,(G); # and p; are continuous functionals, so we
conclude that gt = px = mgxptxmg. Therefore, pending the existence
of A, we have shown that

(z*, 57°*) eyclic = p constant on cosets K\G/K

where G’ and K are defined as above.

We observe that, up to this point, we have used no special assump-
tions about p; we have proved the umnrestricted conjecture, modulo
the existence of A. Unfortunately, it is difficult to see why we
should have || f||, = 0=|| f*mg||, = 0, let alone boundedness of 4,
unless f is a central measure. Commentary on the unrestricted con-
jecture (following this proof) will be based on the constructions up
to this point.

If p is central we will show that || fxmg||. < || fll. for f e C.(G).
By definition,

e central & p(f+g) = p(g=f), all f,geC(G);
thus, if f is given and g = f*, we have

I fxmuelli = p(mexf*xf +mg) = p(fxmgrmgf*)
= p((mgxg)**(mgxg)) = |[|mgg|[;
= ||7wh Lol < 1-1lgll%
= p(f«f*) = p(f*<f) = I Fll

The proof of Theorem 4.4 is complete.

5. Examples and further comment on the conjecture. We are
now in a position to demonstrate that certain positive definite measures
¢ do not give cyclic representations (7#, 5#°#); to reach this conclusion
we must use the necessary conditions obtained in §4.

ExampLE 5.1. Define H = II{T,: s€ R}, product of uncountably
many circle groups T, = R/Z (written additively). Let G be the space
R, X H equipped with semidirect product structure
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(r, {p.h)-@, {@.}) = (r + 8, {p.} + @.{a.}) ;

here R; = discrete reals, and «,; H— H is the “right shift” mapping
h = {p,} to »' = {q,} where ¢, = p,_, (all s€ R).

Obviously H is compact, connected. Let K, be the compact sub-
group K, = {h = {p,}: p, = 0 for s # 0} & H, and let ¢t = mg, (normalized
Haar measure). Obviously g is positive definite on G; indeed, p¢ =
Mg *0,xmg, and 6, > 0 is obvious (see Lemma A. 6).

If (n*, 57°¥) were eyclic, then by Theorem 4.2 there would exist open
subgroup G’ & G and closed subgroup K & G’ (normal in G’) such that

(i) p is constant on double cosets K\G/K,

(ii) G'/K first countable.

However, any open subgroup G’ must contain all of H, while ¢ cannot
be constant on left cosets of any subgroup larger than K,. Since the
quotient space H/K, is not first countable, the necessary G’ and K
cannot exist, and (z#, 5#*) cannot be cyclic.

Next we indicate the present status of the conjecture. If p£>0
and (n*, 5#*) has a cyclic vector { and if {h,} & C.(G) are chosen so
that ||[A,] — {||l.— 0, we may construct open subgroup G’ < G and
compact subgroup K = ¢’ (K normal in G, but not necessarily in G)
such that

(i) G/K first countable

@ii) h,xmg = h, for n = 1,2, -++ (mx = Haar measure).

If j.: C.(G) — &#* is the canonical map,

A = ls{pxh,: PeC(G),n =1,2, «-+},

and #Z* = j.(#), we showed that _#Z* is ||+|[,-dense in S#*. The
“smoothed” measure fty = mgxtxmg is positive definite on G and, in
addition, is constant on K\G/K cosets. In certain circumstances we
have been able to show that g = f; the conjecture would be verified
if this could be demonstrated in general. We have not been able to
do this so far. However, there is an observation concerning the
representations (7#, 5#°*) and (z#*, 5#*¥) which strengthens our belief
that the conjecture is valid.

THEOREM 5.2. The representations w* and w** are wunitarily
equivalent.

Proof. Consider the scheme of mappings in Figure 2.
CO 2 s e 2,
idl 17 J
. ¥ .
CAQ) 2 2 25 _grx 2, pur
FIGURE 2

PR
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For f = @xh,; g = ¥xh, in _# we get
(f, 9 = Sh::*qp**q)*hmdﬂ = gmk*h,’f*q;r*hm*m,{ dpe
= {Besysehadlmnsma] = (f, O »

so id: #Z — _# induces an isometry J: _#Z* — _#**. We noted that
#* is norm dense in S5#*; but _#Z*¥ is also norm dense in S#F*¥.
In fact, if feC,(G) and ¢ > 0, there exist ® € C,(G) and &, such that
[[[P*h,] — [f*m,]]| < &, by density of _#* in S#*. But,

1F o = [ 777 dlmasesma] = [manf™s feme dp
= [(Frma)*s(Fama) dpe = 1| frmalls

all feC.(G), so that (recall h, = h,xmg, all n=1,2, «++)
|Pxh, — frmgll, = [|Prhyrmy — frmgll, = |[[Prh, — [l <€,

as required for density of _#Z*¥. Thus J extends to an onto isometry
J: 27— g7+ %, 1t is obvious that J is equivariant with respect to
left translations, so the unitary equivalence w = z** is proved.

Let us say that two positive definite measures p, v are equivalent
1~y if m* = ¢ (unitary equivalent representations).

COROLLARY 5.3. If >0 and w* is cyclic, then there exists a
y >0 such that p~ v and v satisfies the conditions set forth in the
conjecture.

COROLLARY 5.4. If ¢t > 0 and w* 4s cyclic, then there is an equi-
valent measure of the very special form px = mgxptsmy (K a compact
subgroup of G) that satisfies the conditions set forth in the conjecture.

These results give necessary conditions for the existence of a
cyclic vector for 7#, but it does not seem to be very helpful to know
only that some measure in the equivalence class of p is related to the
algebraic structure of G as stated in the conjecture. In particular,
it does not seem possible to work out Example 5.1 using these results
alone.

Two measures ¢ > 0 and v > 0 can be distributed on G in very
different ways and still produce the same unitary representation
of G, but if vy is required to have the special form vy = mgxptrmy it
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seems unlikely that v could produce the same representation as p
unless we actually have ¢ = v. If so, this would prove the conjecture.
We have not been able to decide this (isolated) question about positive
definite measures in cases not already covered in Theorems 4.2 and 4.4.

6. ApPENDIX. Convolution of two finite measures g, v is defined
so that

e, £ = [[revdp@ave = || Fenavodes ;

for feC,(G). If pisarbitrary, the convolutions p+y and vx/ are defined
if v has compact support. Then Fubini’s theorem applies because
[[lre0iaii@dlri@ = [1F]l.lxl6 suwp (]|
= [[flle-llvll- 2] (supp (v)~*-supp (f));

|| is applied to a compact set, whose measure is finite. If a measure
¢ € M(G) is convolved with any function f € C.(G), by identifying f with
the Radon measure f-m,, the resulting measures fx+#¢ and pxf are
given by continuous functions on G (multiplying Haar measure my):

Fru) = | £t 4,0 dptt
all seG.
pef(®) = | FE 9t

In fact, for all g€ C.(G),
ety 0y = || ot9apt £@)ds = ([ 7 9a@dpds
= {o@| |rE9apmv s -

Obviously @(s) = \ f(t7's)dp(t) is continuous, since y is a regular Borel
measure and supp (f) is compact. Similarly,

a0y = [[onr@ds dp®) = Jo] |66 4000y e Jas -

Constancy of measures on cosets. Constancy on left or right
cosets are quite different conditions on a general measure pe M(G);
however, if ¢ is positive definite they amount to the same thing.

THEOREM A.1l. Let K be any closed subgroup of G. A positive
definite measure pt > 0 is constant on right cosets of K < it is constant
on left cosets (= constant on double cosets K\G/K).
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To prove this, we must assemble certain facts about involutions
and convolutions of measures. First note that, if A, ve M(G) and one
of these has compact support (so that Axv is defined), then

dge(Mxy) = (deA)*(4gY) 5

because 4, is a homomorphism, we have
[reata-oomie) = (£ 45mdes10)
- |[r6v 20400 0d0
= [ @)

for all feC.,(G). Below, we demonstrate that the adjoint g#* of any
positive definite measure g is given by p* = 4z'-¢. A routine use of
Fubini’s theorem yields:

LEMMA A.2. If pe M(G) and ge C.(G), let us define g(x) = g(x)
(complex congugate), §(x) = g(x™) and gV (%) = g(@ ™) du(xz™) = g*(x). Then

(1) L 9*f)> = g4, >

(ii) <, 9=f) = <g¥*p, f) all feC.(Q)

(iii) <, fg> = =g,

LEMMA A.3. If pre M(G) and if {e..@el} is any nonnegative
approximate identity in C.(G), with supp (e.) eventually within any
neighborhood of the unity, let us define the “smoothed” measures fpt,=
é'a*#*é'a. Then

(1) -2 1t [(06) = weak-x topology].

If p is positive definite, the p, are also positive definite measures;
Jurthermore,
(i) p* = 450-p if 1> 0.

Proof. Here (0) is the o(M(G), C.(G))-topology. Clearly, e} fxe, —
f in the inductive limit topology of C.(G), so that

My 1) = KCurptxs, ) = #, €3+ xe) —> W, )

proving (i). It is also easy to show that g — 45'-p¢ and ¢ — p* are
(0)-continuous mappings on M(G). Now take g > 0; the “smoothed”
measures [/, are represented by continuous functions ®,(2) on G, so
that ¢, = ®,»me. Now g, > 0, because

oy F¥5FD =ty exxf*xfreay =ty g*+g) 2 0

where g = fxe,; thus @, is a continuous positive definite function on
G. For such a function @, it is well known that @(z) = #(x7") on G;
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thus @*(x) = P ™M) 4u(x™) = P(x)-ds(x)™", and pf = 45'-p, for all a.
By continuity, we get

p* = lim, pf = 45" (lim, p,) = 45*+ 12 .

In reaching this conclusion, it is essential that g > 0.

Proof of Theorem A.1l. Suppose that g > 0; then
pr(dY) = o (45 10)%0) = Lo (1sp) = doe (*5p0)* .
Since P,(K)* = P,(K), and p* = 4z'y, we easily conclude that
vrpt = o (all ve P(K)) & ux(4dpy) = ¢ (all ve P(K) .

Now let us consider the relationship between a measure g > 0
and Ker r*.

THEOREM A.4. Let K be a closed normal subgroup in G, and p
any positive definite measure. Then K & Ker n* < ¢ is constant on
right cosets K\G of K < tt is constant on left cosets G/K.

COROLLARY A.5. Let £t >0 on G. Then Kerw* is the largest
closed, mormal subgroup K S G such that p is constant on left (or
right) cosets of K.

Proof. The last (=) follows immediately via Theorem A.1, so
we only prove the first one.
Note that yeKern* =7t = I =

(7) @ LFL [9Dn = (o750, f) = (IF], [9D)x = £(97* )

for all f, ge C,(G), since vectors [f] are dense in S#* Qbviously
K < Ker n* = (7) holds for all y € K; however this happens <

(8) g v f) = p(g*«f) all f, geC(G) ,

where v is any convex sum v = 3 \;0,, of point masses (y;€ K). Let
P,(K) be the probability measures on K with compact support.

In the space M,(G) of all finite (i.e., finite total variation) measures
v on G we introduce a strong operator topology by letting measures
v act by left convolution on L'(G); thus, by definition,

(s0)
Y, — V= ||vxf — vxfl|l,— 0 all feL'(G).

On any compact set @ & G, the (so)-closed convex hull of the point
masses {d,: ¥ € @} is equal to the weak-x closed hull, which is exactly
the set of probability measures supported on Q. (Details: Greenleaf
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[4], §1.) Let ve P,(K), and Q = supp (v); there is a net of finite

convex combinations v, = > {M«, k)d,: k € @} such that v, —(s—o-)-» v, which

implies that ||v.xf — v+ f |, — 0 and || g**vxf — g*xvxf||l. — 0 for f, ge
C.(G). At the same time, all supports lie within a single compact set

supp (9**v,*f) S supp (9) ™'+ Q-supp (f), all a,

80 that g*sy.xf — g*sv+f in the inductive limit topology on C,(G).
Thus (7) holds for all ye K =

(9) wg*xv=f) = pg*«f) all ve P(K), all f, geCAG) .

Now examine left/right-hand sides in (9). We have

&, g*vify = || @@ e 0ds du@

w = ||| ora s aavwis duq
- || |7 s @ smav@)s e
= (a0 || resoavaiaee Jas,
while
(11) e, g%+ £y = (o0 | £sm)dpeio) Jas -

Therefore, {¢, g*+y=fy = (¢, g*=f> for all f, ge C.(G), if and only if
@ortt, £y = [ Flam)dpn@) = [0 sz
- [ |77 ) Jar
= (| wsmav@)dp)
= |[r@map 01w
= (rsdstt, )
for all se @G, feC,(G), which is the same as saying that

Okt = V*xd <L

12
( ) # = (53-—1’”)**55)*/4‘

all ve P(K), all seG.
Note that this equality holds for all s€ G (not just mg-a.e.), because
the expression [---] in (10) and (11) vary continuously in s for each
choice of f. The map vy — 0,-1*v+d, is a convolution automorphism of
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P,(K) since K is normal in G; furthermore, ve P,(K) < v*e P,(K).
Thus, 6,~*P,(K)**0, = P,(K), so that (9) holds <=

(18) ¢ =vxp all ve P(K) .

If K is a compact subgroup in G, then normalized Haar measure
myg € P(K). It is easily seen that a measure pt e M(K) is constant on
right (resp. left) cosets of K -

(14) Myt = [ (resp. psmyg = f1) .
Note that 4,(k) = 1 on K since 4, K— R is a homomorphism.

LEMMA A.6. If K< G is a compact subgroup, and if ¢t > 0 on
G, then ty = My*xmy 18 positive definite. For any pt € M(G) we have:

{mgxpe, £ = oy, myxf)
{xmg, ) =t frmz)
My, ) = {mgxltsmg, [ = {pt, Mgxfxmg) ;

moreover,
Fom(s) = | f(sdmatt
mesf () = | FEdma(t)

Proof. To get the above formula for f+my, we note that 4,(k) =
4+ 1 on K, so that ~

Frme) = | £t )dma(t) = | Flst)dmat)
— SK Fst)dmg(?) .
Now the above formulas follow by routine calculations.

To see that px > 0, use these formulas, and the obvious fact
myx=mj, to conclude that {ttg, f*xf) =t mexf**frme)=<{tt, g*+g> =
0, where g = fxmg.

Shifting measures to quotient groups. Suppose that K is a closed

normal subgroup on G, and let left Haar measures dk and dg be fixed.
Then left Haar measure dB(xK) on G/K can be normalized so that

ga f@)ds = SG/K@' F@K)dg@K) all feC.G)



CYCLIC VECTORS AND POSITIVE DEFINITE MEASURES 183

where
@ f(K) = S Fak)dk all zeG .
K

The mapping ¢’: C.(G) — C.(G/K) is a surjection. (See Bourbaki [1],
Ch. 7 §§2.2 and 2.8.)

THEOREM A.7. The map ¢ is a =-homomorphism between con-
volution algebras with imvolution.

Proof. Recall that f*(x) = F(@ ) 44(¢™"). Note that modular func-
tions agree, 4,| K = 4y; furthermore, if @, = K — K is the automorphism
a,(k) = wka™ for e G, ke K, this map alters Haar measure on K by
a scalar, mod («,), which is given by 4, x(®K) = 44(*)-mod («,) (Bourbaki
[1], Ch. 7, §2.7). Thus @'(f*) = (¥’ f)*, because

(K = | Fr@hdk = | FOET4,0) 4,7 dk
= dyfer)| T e due )
= 45| T )k
= 4 mod (@) Fl Bk

= 4gx(@TK)P' f (@7 K) = (P /)" @K) .

As for convolution, let 7: G — G/K be the quotient homomorphism;
by routine calculations, @'(0,xf)(xK) = 6.,*P f(zK) = @' f(y"'x«K) for
x, y€ G. Now represent convolution of function with compact support

as a weak vector valued integral fxg = S f(y)o,+gdy; the continuity
G
properties of @’ easily lead to the formula

P(f+0) = | £ 0,0y
thus,

FW)o, P (9)dy

G

P(fxg) = S
gm[g Y (yk)dk] WP fABYK)
=12

Il

"fYK)(0,xxP'9)dBWYEK) = (P f)+(#'9) »

G/ K

for f, g€ C.(G).
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THEOREM A.8. Defining ¢": C,(G) — C.(G/K) as above, let pt be
any Radon measure constant on right K-cosets. There exists a unique
Radon measure t' on G/K such that

e, Py =, f) all feC(G).
Furthermore, pt >0 on G=p' > 0 on G/K.

Proof. Uniqueness is clear since @’ is surjective; positivity, since
@' is a »-homomorphism between convolution algebras. The existence
of ¢’ is proved (in a more general context) as Proposition 4, in Bourbaki
[1], Ch. 7, §2.2.

QOur final results in the appendix constitute a slight, but useful,
generalization of a result of Glushkov [6] (G compactly generated)
which in turn slightly generalizes the corresponding result of Mont-
gomery and Zippin [8] (G/G, compact). It is to be hoped that this is
the final generalization of this result.

THEOREM A.9. Let G be a locally compact group. If G is o-
compact and {W;} is a countable family of nbds. of 1 then there exists
a compact normal subgroup K of G such that K < (;W; and G/K is
second countable.

Proof. Let G equal the union of compact sets F,. By induction
choose a sequence {U,} of compact symmetric nbds of 1 in G such
that U, €U,.N W, and (since each F, is compact) such that F,4
U,<U,_,, where 4 is the action of G on itself by conjugation. Let
K = N5-.U,. Then K is a compact subgroup of G contained in ();W..
By taking finite unions we may also assume the F,’s are nested. If
reG and ye K then x¢ F, and therefore x¢ F, for all m = m,. It
follows that zdye U, for m = m, — 1. But the U, are also nested
so 2dye U,,i=1, «++, my, — 2; i.e, xdyc K. If V is an open set in G
containing K then

N.(U.NG-=V)=NU.0G=-V)=KnN(G-V)=0.

By the finite intersection property and the fact that the U, are nested,
it follows that U, N G -V = @, i.e., U,&V. Thus {n(V,)} are a nbd.
basis in G/K where m: G — G/K is the canonical epimorphism. Since
G is o-compact so is G/K. The metrization theorem [8] now completes
the proof.

From A.9 it follows immediately that 2nd countable groups are
characterized as those which are o-compact and first countable. (Al-
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though this can, of course, be seen in a more elementary way.) In
addition, A.9 enables one to characterize o-compact groups.

COROLLARY A.10. Let G be a locally compact group; then G 1is
o-compact if and only if G is the projective limit of second countable
groups.

Proof. If G is o-compact then simply take a single neighborhood
W and apply A 9. Conversely, if G is the projective limit of second
countable groups consider a single approximating group G/K. Since
it is o-compact and K is compact, the result follows.

COROLLARY A.1l. Let G be a locally compact o-compact group
and {h,} be a sequence of continuous functions on G with values in
the separable metric space (X, d). Then there exists a compact normal
subgroup K of G such that G/K is 2nd countable and each h, is
constant on cosets of K.

Proof. Let G = Uz-, F,, where F, are compact sets. By local
compactness of G each F, is contained in a compact neighborhood so
we may, assume they are also nbds. As in the proof of A9 we may
also assume the F’s are increasing. Let {¢%;} be a basis for open
sets of X and consider the sets A4,;. = h;(Z;) N F,, where n, j, m =
1,2, ---, which are nonempty and then those pairs (u, 7, m) and
(n', 37, m’) for which (A4,;,)" N (A, ;)" = . For each such pair choose
a neighborhood W of 1 in G such that A,;,,WN A, ;. W = @. From
this one obtains a family of nbds. {W;} of 1 in G. Choose K as in
A.9. We show #Z,(xy) = h,(x?) for each € G, y, z€ K and integer .
If not then for some choice of the variables ¢ = d(h,(zy), h.(xz)) > 0.
Since zK is compact and {F,} are nested, xK & F,, for m sufficiently
large. Let ¢; and & be basis elements of diam < §/3 which contain
h,(xy) and h,(xz) respectively. Then by continuity of %, and the fact
that the A,;, are precompact, A,;, and A,;, have disjoint closures
and contain zy and xz respectively. They therefore determine a W as
above. It follows that x€A4,;, ¥y S 4,jn-KS A,jn W. Similarly =
is also in A,;,-W, a contradiction.

COROLLARY A.12. Let G a g-compact locally compact group and 0
a continuous finite dimensional representation (not necessarily unitary)
or even a weakly continuous representation of G on a separable Hilbert
space. Then o actually lives on some 2nd countable quotient group
of G. (This automatically extends the Mackey theory from 2nd count-
able groups to o-compact groups.)
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Proof. Let {v;} be an orthonormal basis of 57 and p,;(z) = (0.(v;),
v;), x € G; then {p;;} is a countable family of continuous funections.
By all there exists a K such that p,; are all constant on cosets of
K. Since if x€ G and y € K, p;;(xy) = 0;;(x) for all ¢, j, we get p(zy) =
o).
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